EU ENERGY, TRANSPORT AND GHG EMISSIONS # TRENDS TO 2050 **REFERENCE SCENARIO 2013** # EU ENERGY, TRANSPORT AND GHG EMISSIONS TRENDS TO 2050 **REFERENCE SCENARIO 2013** This publication was prepared for the Directorate-General for Energy, the Directorate-General for Climate Action and the Directorate-General for Mobility and Transport by the E3M-Lab of the Institute of Communication and Computer Systems at the National Technical University of Athens (ICCS-NTUA), Greece, in cooperation with the International Institute for Applied Systems Analysis (IIASA) and EuroCARE and represents those organisations' views on energy, transport and GHG emissions facts, figures and projections. These views should not be considered as a statement of the Commission's or the Directorate-General's views. #### **Authors** E3M-Lab: Prof. P. Capros, A. De Vita, N. Tasios, D. Papadopoulos, P. Siskos, E. Apostolaki, M. Zampara, L. Paroussos, K. Fragiadakis, N. Kouvaritakis, et al. IIASA -GAINS model: L. Höglund-Isaksson, W. Winiwarter, P. Purohit IIASA -GLOBIOM model: H. Böttcher, S. Frank, P. Havlík, M. Gusti EuroCARE: H. P. Witzke The manuscript was completed on 16 December 2013 Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-79-33728-4 doi: 10.2833/17897: © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Cover photo © Arie J. Jager/ iStock/ Thinkstock ## **TABLE OF CONTENTS** | LIST OF TABLES | 3 | |---|-----| | LIST OF FIGURES | 4 | | I. INTRODUCTION | | | | | | PURPOSE OF THE PUBLICATION | | | | | | 2. MAIN ASSUMPTIONS | I 4 | | MACROECONOMIC AND DEMOGRAPHIC SCENARIO | 14 | | WORLD FOSSIL FUEL PRICES | 16 | | ENERGY TECHNOLOGY PROGRESS | 17 | | Policy assumptions | 20 | | Further assumptions | 25 | | Discount Rates | 25 | | Degree days | 26 | | Exchange rates | 26 | | 3. RESULTS FOR THE EU REFERENCE SCENARIO 2013 | 27 | | OVERVIEW OF THE IMPLICATIONS OF ENERGY EFFICIENCY POLICIES AND MEASURES | 27 | | GENERAL OVERVIEW OF RES SUPPORTING MEASURES AND THE EVOLUTION OF RES INDICATORS | | | OVERVIEW OF THE EU ETS AND PROJECTIONS ON CARBON PRICES | | | ENERGY CONSUMPTION | 34 | | Industrial sector | 36 | | Residential sector | 36 | | Tertiary sector (services and agriculture) | 38 | | Transport sector | 38 | | Power generation | 42 | | Electricity generation | 43 | | Steam and heat supply | 47 | | Electricity costs and prices | 47 | | PRIMARY ENERGY SUPPLY AND IMPORT DEPENDENCY | 49 | | CO ₂ EMISSIONS | 50 | | Non-CO ₂ emissions and their drivers | 53 | | Agriculture sector | 55 | | Energy sector | 56 | | Waste and wastewater sector | 56 | | F-gas emissions | 57 | | Industry sectors covered by the EU ETS | 58 | | TOTAL GHG EMISSIONS (EXCLUDING LULUCF) | 59 | | LULUCF EMISSIONS AND REMOVALS AND THEIR DRIVERS | 59 | | Emissions from forest land | 61 | | Emissions from cropland | 62 | | Emissions from grassland | 63 | ## EU ENERGY, TRANSPORT AND GHG EMISSIONS TRENDS TO 2050 | Emissions from other land | 63 | |---|-----| | Total energy system and other mitigation costs | 63 | | Conclusion | 64 | | GLOSSARY | 66 | | APPENDIX I: DEMOGRAPHIC AND MACROECONOMIC ASSUMPTIONS | 69 | | APPENDIX 2: SUMMARY ENERGY BALANCES AND INDICATORS | 85 | | APPENDIX 3: NON-CO ₂ GHG EMISSIONS | 147 | | APPENDIX 4: LULUCF EMISSIONS | 161 | ## **EU** ENERGY, TRANSPORT AND **GHG** EMISSIONS TRENDS TO **2050** ### **LIST OF TABLES** | Table 1: Examples of costs and efficiencies of demand side technologies | 19 | |---|----------| | Table 2: EU and other policies included in the reference scenario 2013 | 20 | | Table 3: Effect of policies adopted in the Reference 2013 scenario on energy consumption | 30 | | Table 4: Average annual change of energy consumption in the industry sector | 36 | | Table 5: Indicators of power generation | 47 | | Table 6: Volume of electricity trade | 47 | | Table 7: Evolution of cost components of electricity price in 2010-20 | 48 | | Table 8: Main National Policies with Specific effects on non-co2 ghgs and considered in the Reference | SCENARIO | | | 55 | | Table 9: Methodology used to estimate LULUCF emissions | 60 | ## **LIST OF FIGURES** | Figure 1: Population of EU28 | 14 | |--|----| | Figure 2: GDP of the EU27 | 14 | | FIGURE 3: AVERAGE ANNUAL GROWTH RATE OF GDP PER CAPITA | 15 | | Figure 4: GINI index for the EU28 Member States | 15 | | Figure 5: Structure of the Economy in EU28 | 16 | | Figure 6: Fossil fuel import prices | 17 | | Figure 7: Ratio of gas to coal and gas to oil prices | 17 | | Figure 8: Development of capital costs over time for power generation technologies | 18 | | Figure 9: Discount rates used in PRIMES | 26 | | Figure 10: RES indicators at the EU level | 32 | | Figure 11: Projection of the ETS price | 33 | | Figure 12: Available allowances and ETS GHG emissions projection | 33 | | Figure 13: Projection of allowances surplus | 33 | | Figure 14: GIC in relation to GDP | 34 | | Figure 15: Energy intensity projections by sector | 35 | | Figure 16: Gross inland consumption | 35 | | Figure 17: Final energy consumption | 35 | | Figure 18: Trends in electricity demand by sector | 35 | | Figure 19: Final energy consumption of the industrial sector | 36 | | Figure 20: Final energy consumption of the industrial sector by energy form | 36 | | Figure 21: Improvements in efficiency of the energy equipment in the residential sector compared to 2005 | 37 | | Figure 22: Final energy demand in the residential sector | 37 | | Figure 23: Final energy demand in the tertiary sector | 38 | | Figure 24: Trends in transport activity and energy consumption | 40 | | Figure 25: Final energy demand in transport | 40 | | FIGURE 26: TRANSPORT EFFICIENCY IMPROVEMENT | 41 | | Figure 27: Final energy demand in transport by fuel type | 42 | | Figure 28: Structure of passenger cars fleet and fuel consumption | 42 | | FIGURE 29: ELECTRICITY GENERATION BY FUEL AND BY PLANT TYPE | 44 | | Figure 30: Installed power capacities | 46 | | Figure 31: Projected capacity additions | 46 | | Figure 32: Fuel input for steam generation | 47 | | FIGURE 33: COST COMPONENTS OF AVERAGE ELECTRICITY PRICE | 48 | | Figure 34: Price of electricity (pre-tax) by sector | 48 | | FIGURE 35: PRIMARY ENERGY SUPPLY | 49 | | Figure 36: Primary energy production | 49 | | FIGURE 37: PRIMARY ENERGY IMPORTS | 49 | | FIGURE 38: NET IMPORTS BY FUEL | 50 | | Figure 39 : CO ₂ emissions of power generation and energy transformation | 50 | | Figure 40: Energy-related CO ₂ emissions of the industrial sector | 51 | | Figure 41: CO ₂ emissions of the residential sector | | | Figure 42: CO ₂ emissions of the tertiary sector | 52 | | Figure 43: CO ₂ emissions of the transport sector | 52 | ## EU ENERGY, TRANSPORT AND GHG EMISSIONS TRENDS TO 2050 | FIGURE 44: EVOLUTION OF CO ₂ EMISSIONS | 53 | |--|----| | FIGURE 45: EVOLUTION OF CO ₂ EMISSIONS BY SECTOR | 53 | | FIGURE 46: NON-CO ₂ GHGs by major sectors in EU28 2005 to 2050 | 54 | | FIGURE 47: NON-CO ₂ GHGs of the Agriculture sector in EU28 by source | 55 | | FIGURE 48: AGRICULTURE SECTOR ACTIVITY DRIVERS AND EMISSIONS OF NON-CO ₂ GHGs in EU28 | 56 | | FIGURE 49: NON-CO ₂ GHGs of the Energy sector in EU28 by source | 56 | | FIGURE 50: NON-CO ₂ GHGs of the Waste and Wastewater sector in EU28 | | | FIGURE 51: F-GAS EMISSIONS IN EU28 BY SOURCE | 58 | | FIGURE 52: NON-CO ₂ GHGs OF EU-ETS SECTORS IN EU28 | 58 | | FIGURE 53: EVOLUTION OF GHG EMISSIONS | | | FIGURE 54: EU28 LULUCF EMISSIONS UNTIL 2050 IN MT CO ₂ | 60 | | FIGURE 55: EU28 LULUCF SECTOR LAND BALANCE IN 1.000 HA UNTIL 2050 | | | FIGURE 56: EU28 HARVEST REMOVALS AND INCREMENT IN 1.000 M3 UNTIL 2050 | 6 | | FIGURE 57: DEVELOPMENT OF THE EU28 CARBON SINK IN THE FOREST SECTOR UNTIL 2050 | 62 | | FIGURE 58: EVOLUTION OF ENERGY SYSTEM COSTS | | ## **ABBREVIATIONS & UNITS** | BEV | Battery Electric Vehicle | |-----------------|---| | BGR | Federal Institute for Geosciences and Natural
Resources (Bundesanstalt für Geowissen-
schaften und Rohstoffe) | | CAPEX | Capital Expenditure | | СССТ | Combined Cycle Gas Turbine | | ccs | Carbon Capture and Storage | | CDM | Clean Development Mechanism | | СНР | Combined Heat and Power | | CIS | Commonwealth of Independent States | | CNG | Compressed Natural Gas | | CO ₂ | Carbon dioxide | | DG ECFIN | Directorate General for Economic and Financial Affairs | | EED | Energy Efficiency Directive | | ENTSO-E | European Network of Transmission System
Operators for Electricity | | EPBD | Energy Performance of Buildings Directive | | EPC | Economic Policy Committee | | ESCO | Energy Service Company | | ESD | Effort Sharing Decision | | ETS | Emissions Trading Scheme | | EU | European Union | | EU28 | European Union of 28 Member States | | EU27 | European Union of 27 Member States (before accession of Croatia) | | | | | EU15 | European Union of 15 Member States before the 2004 enlargement (Austria, Belgium, | | bn | billion | |------|---| | boe | barrel of oil equivalent | | Gpkm | giga
passenger-kilometre, or 10 ⁹ passenger-kilometre | | Gtkm | giga tonne-kilometre, or 10 ⁹ tonne-kilometre | | GWh | gigawatt-hour or 10 ⁹ watt-hours | | km | kilometre | | ktoe | 1000 toe | | Mt | million metric tonnes | | Mtoe | million toe or 10 ⁶ toe | | MW | megawatt or 10 ⁶ watt | | MWh | megawatt-hour or 10 ⁶ watt-hours | | p.a. | per annum | | pkm | passenger-kilometre (one passenger transported a distance of one kilometre) | | t | metric tonne | | toe | tonnes of oil equivalent | | tkm | tonne-kilometre (one tonne transported a distance of one kilometre | | | | | Denmark, Finland, France, Germany, Gi
Ireland, Italy, Luxembourg, Netherlands,
tugal, Spain, Sweden, United Kingdom) | | |---|---------------| | EU12 Member States joining the European Unafter 2004, excluding Croatia (Bulgaria, prus, Czech Republic, Estonia, Hungary via, Lithuania, Malta, Poland, Romania, venia, Slovak Republic) | Cy-
, Lat- | | EUROSTAT Statistical Office of the European Union | | | Electrically chargeable Vehicle | | | GDP Gross Domestic Product | | | GHG Greenhouse Gas | | | GIC Gross Inland Consumption | | | HDV Heavy Duty Vehicle (HGVs and buses) | | | HGV Heavy Goods Vehicle | | | International Air Transport Association | | | ICE Internal Combustion Engine | | | IEA International Energy Agency | | | International Energy Agency World Ener
Outlook | gy | | IPPC Integrated Pollution Prevention Control | | | Light Commercial Vehicle | | | Light Duty Vehicle (LCVs and passenge cars) | r | | Liquefied Natural Gas | | | Liquefied Petroleum Gas | | | LULUCF Land Use, Land Use Change and Fores | try | | MS Member State | | | NREAP National Renewable Energy Action Plan | | | | | | Net Transfer Capacities | | | NTC Net Transfer Capacities Organisation for Economic Cooperation Development | and | | OFCD Organisation for Economic Cooperation | and | | OFCD Organisation for Economic Cooperation Development | and | ## EU ENERGY, TRANSPORT AND GHG EMISSIONS TRENDS TO 2050 | RES | Renewable Energy Sources | |---------|--| | RES-E | Renewable Energy Sources for Electricity | | RES-H&C | Renewable Energy Sources for Heating and Cooling | | RES-T | Renewable Energy Sources for Transport | | RP | Resource-Production | | TEN-T | Trans-European Transport Network | | TYNDP | Ten-Year Network Development Plan (adopted by ENTSO-E) | | USGS | United States Geological Survey | #### 1. Introduction #### Purpose of the publication This report is an update and extension of the previous trend scenarios for development of energy systems taking account of transport and GHG emissions developments, such as the "European energy and transport - Trends to 2030" published in 2003 and its 2005, 2007 and 2009 updates¹. The purpose of this publication is to present the new "EU Reference scenario 2013" ("Reference scenario" later in the text). This Reference scenario was finalised in July 2013. It focuses even more than previous ones on the energy, transport and climate dimensions of EU developments and the various interactions among policies, including now also specific sections on emission trends not related to energy. Its time horizon has been extended up to 2050. It reports for the first time on EU28 including Croatia. Moreover, the modelling process has included four rounds of consultation of Member States experts on Member State specific assumptions and draft modelling results. The responsibility for the results rests, however, with the authors of the scenario who were commissioned to do this work by Directorate General for Energy, Directorate General for Climate Action and Directorate General for Mobility and Transport. This new update is based on the latest available statistical year from EUROSTAT at the time of the modelling (the year 2010). In comparison to the previous version, the newest macro-economic data already shows the statistical effects of the on-going EU's economic downturn in activity of different sectors as well as energy consumption and GHG emissions. The demographic and economic forecasts reflect recent projections by EUROSTAT and the joint work of the Economic Policy Committee and the European Commission (DG ECFIN) respectively. The "Ageing Report 2012" has been the starting point of this ex- The Reference scenario was elaborated by a consortium led by the National Technical University of Athens (E3MLab), using the PRIMES model for energy and CO₂ emission projections, the GAINS model for non-CO₂ emission projections and the GLOBIOM-G4M models for LULUCF emission and removal projections, supported by some more specialised models (e.g. GEM-E3 model that has been used for projections for the value added by branch of activity, PROMETHEUS model that has been deployed for projections of world energy prices and CAPRI model for agricultural activity projections). Please see more information about these specialised models in the section on total GHGs emissions. The scenarios are available for the EU and each of its 28 Member States simulating the energy balances and GHG emission trends for future years under current trends and policies as adopted in the Member States by spring 2012. The PRIMES model is a modelling system that simulates a market equilibrium solution for energy supply and demand in the EU28 and its Member States. The model determines the equilibrium by finding the prices of each energy form such that the quantity producers find best to supply matches the quantity consumers wish to use. The market equilibrium is achieved for each time period and the simulation is dynamic over time. The model is behavioural but also represents in an explicit and detailed way the available energy demand and supply technologies and pollution abatement technologies. The system reflects considerations about industry economics, structure, gy/environmental policies and regulation, which are conceived so as to influence market behaviour of energy system agents. The modular structure of PRIMES reflects a distribution of decision making among agents that act individually about their supply, demand, combined supply and demand, and prices. The market integrating part of PRIMES subsequently simulates market clearing. In this exercise the more detailed PRIMES-TREMOVE transport model was also used to develop the transport projections; this model is now fully integrated with the main PRIMES model. PRIMES is a general purpose energy model; it is conceived for designing projections to the future, scenario building and policy impact analysis. It covers a medium to long-term horizon. Its modular structure allows either for integrating model use or for partial use. ¹ Please see: http://ec.europa.eu/energy/observatory/trends_2030/ ² Please see: $[\]label{lem:http://ec.europa.eu/economy_finance/publications/european_economy/2012/2012-ageing-report_en.htm.$ ercise giving long term population and GDP growth trends up to 2060 while the short and medium term GDP growth projections were taken from DG ECFIN. The recent boom in shale gas development and exploration of unconventional oil reserves are increasing the fossil fuel reserve basis and thus changing the projections about the developments of international fuel prices. The fuel prices have been updated in the new scenario to take into account the recent developments. Significant progress has been made towards the achievement of the targets set out in the EU Energy and Climate Package, and new legislative measures, most notably the Energy Efficiency Directive³, have been adopted at EU level. Several changes have occurred at national levels as well. This report focuses on trend projections understood in the sense of a Reference scenario. Similar to the Reference scenario latest update from 2009, this Reference scenario starts from the assumption that the legally binding GHG and RES targets for 2020 will be achieved and that the policies agreed at EU level by spring 2012 (notably on energy efficiency) as well as relevant adopted national policies will be implemented in the Member States. Following this approach the Reference scenario can help enlightening the debate on where currently adopted policies might lead the EU and whether further policy development, including for the longer term, would be needed. This Reference scenario can therefore also serve as benchmark or reference for assessing the impacts of envisaged policy initiatives at EU level in the areas of energy, transport and climate. Some technology development forecasts have changed since the latest update in 2009 both in positive way: faster than expected development for solar PV technology and negative: slower than expected developments for CCS and remote off-shore wind technologies. Furthermore, international events, such as the Fukushima nuclear accident of March 2011, have changed $^{\rm 3}$ For precise references to legislation, please see Table 2. the perception related to nuclear power generation and tightened the security requirements for nuclear technologies. In the context of climate change policies, specific Copenhagen/Cancun pledges for 2020 have been also set in other world regions, which have been considered in the world energy price modelling part of this exercise. #### EU Reference scenario 2013 The new Reference scenario determines as core element the development of the EU energy system under current trends and adopted policies. It includes current trends on population and economic development including the latest 2010 statistics and takes into account the highly volatile energy import prices environment of recent years. It portrays economic decisions, which are driven by market forces and technology progress in the framework of concrete national and EU policies and measures adopted until spring 2012
and which are or will be implemented over the next years. The Reference 2013 scenario includes all binding targets set out in EU legislation regarding development of renewable energies and reductions of greenhouse gas (GHG) emissions, as well as the latest legislation promoting energy efficiency. These assumptions together with the current statistical situation derived from the EUROSTAT energy balances represent the starting point for projections which are presented from 2015 onwards in 5 years' steps until 2050. The Reference 2013 scenario benefited from the comments of Member States experts. Many comments and additional information communicated by the Member States were accommodated in revising the draft Reference scenario, while preserving a harmonised approach to EU energy system modelling. The modelling has involved Member States experts at various stages starting from responses to a very detailed policy questionnaire and the Member States' comments on macro-economic and sectorial economic projections. As a second step, detailed transport activity modelling took place on the basis of these consulted/revised economic trends, which, in turn, were consulted with Member States' experts in autumn 2012. The third modelling step consisted in energy system and economy modelling with PRIMES based on the revised economic and transport results from stages 1 and 2. The draft outcome of the energy modelling was again consulted with experts from the Member States. This step included also the modelling of energy related and industrial CO₂ emissions. The final step was the modelling and consultation of non-CO₂ GHG trends, including energy related ones, and of CO2 emissions and removals related to land use, land use change and forestry (LULUCF). The macroeconomic assumptions and the results of the energy modelling were important drivers for such GHG emissions, which were also based on modelling of other areas such as agriculture and forestry. Member States comments have been accommodated as far as possible while striving to provide a consistent EU Reference scenario based on harmonised assumptions on e.g. GDP and world energy prices as well as EU and national policies and making sure that imports and exports of energy among Member States match. It needs to be, however, noted that the responsibility for these results lies with the consultants and the Commission services. In any case, the comments from Member States have helped a lot to improve the quality of the projections, on which this report gives an account, focusing on EU28 results. In addition to its role as a trend projection, the Reference scenario is a benchmark for scenarios featuring alternative policy approaches or framework conditions (e.g. higher energy import prices, more ambitious renewables and climate policies). All numbers included in this report, except otherwise stated, refer to European Union of 28 Member States. #### 2. Main assumptions #### Macroeconomic and demographic scenario The Reference 2013 scenario builds on macroeconomic projections of GDP and population which are exogenous to the models used. The historical time series from 1995 to 2010 were entirely updated using the time series from EUROSTAT. The economic indicators therefore fully reflect the economic downturn as it occurred in recent years up to 2010. GDP and population projections by MS are considered as given. The scenario mirrors the recent DG ECFIN projections for the short and medium term (following the agreement reached in the Economic Policy Committee (EPC)) and the EPC/DG ECFIN Ageing Report 2012 (from first quarter 2012) for the long-run. The GEM-E3 model is used to project the structure of the economy and gross value added generated by different sectors, consistently with the given GDP projection. The macroeconomic scenario comprises numerical projections of GDP (volume), households' income, population and sectorial activity (using gross value added in volume as a proxy) for 22 sectors, in each EU Member State. The 22 sectors comprise: 10 energy intensive industries, 6 non energy intensive industries, 3 service sectors, construction, agriculture and the energy supply sector (the value added of which is not used as input to the energy model given that it simulates the energy markets by considering all relevant drivers for energy demand and supply). The population projections are based on EUROSTAT population projection for the period 2010 to 2050. This projection assumes fertility rates rising slightly, further life expectancy gains, and continued, but decelerating inward net migration to the EU. As a result, the EU population is projected to increase up to 2040 and decline slightly thereafter (see Figure 1). It is projected that the population undergoes significant changes in its age structure: the projections point to a significant reduction in the population aged 15-64 and an increase in persons aged 65 or more. FIGURE 1: POPULATION OF EU28⁴ The GDP projection assumes a recovery from the current economic crisis, followed by steady GDP growth rates in the medium term (avg. 1.6% pa over the period 2015-2030, down from the 2.2% pa during 1996-2007), see Figure 2. In the longer term, lower growth rates are assumed (avg. 1.4% pa over the period 2030-2050). GDP/capita is projected to increase by a factor of 1.7 between 2010 and 2050. Labour supply is linked to slowly growing and then declining population as well as its ageing; this combined with assumptions on productivity trends from the Ageing report explain rather low potential GDP growth rates for the EU. FIGURE 2: GDP of THE EU27⁵ The highest GDP growth rate is projected in the period 2015-2030 whereas declining labour force and slowdown in productivity growth lead to lower growth ⁴ Due to lack of consistent data for Croatia data is shown from 2007 onwards ⁵ GDP is shown for the EU27 only as past consistent data for Croatia is only available from 2010 onwards. pace in the long term. Nevertheless, the slowdown in population growth allows for steady growth of GDP per capita in the long term. In this respect, the convergence is shown in the EPC/DG ECFIN Ageing Report 2012, which materialises through higher growth rates of the new Member States and, in the longer term, lower dispersion of GDP per capita among all the Member States (see Figure 3). FIGURE 3: AVERAGE ANNUAL GROWTH RATE OF GDP PER CAPITA The impact of the current debt crisis is significant in several EU countries, which will struggle to return to growth in the short term; on the other hand, several countries with lower GDP/capita are likely to see their relative position improved. FIGURE 4: GINI INDEX FOR THE EU28 MEMBER STATES⁶ The Reference scenario projection sees a continuation of trends towards higher share of services in GDP, which generate 78% of total value added by 2050. The projection also shows a recovery of activity in industry after the current crisis with industry being projected to grow predominantly through shifting towards higher value added products, rather than higher amounts of products. For energy intensive industries recovery and then slow growth pace is projected. Non energy intensive industries see a more significant growth. The remaining sectors - construction, agriculture and energy sector - see a rather slow growth of activity. For basic metals (ferrous and non-ferrous) global projection shows steady growth of world consumption of basic metals, with very slow decoupling from world GDP growth. Faced with the global competition and demand growth mainly in other world regions, the EU's share in global market steadily declines, continuing past trends. Activity is, however, projected to remain in the EU, thanks to shifting production to high quality _ ⁶ An improvement of the GINI coefficient by -13.9% means that in 2050 there is a better cohesion than in 2010 (lower inequality among incomes in MS). The main improvement of the GINI index comes from the lowest classes of income frequency distribution which means that poorer countries tend to grow faster than richer countries in the EU. The calculation of the GINI coefficient includes Croatia. products and to the tight links with equipment goods industry also located in the EU. EU production of pig iron and primary aluminium is projected to increase more slowly than growth of the basic metals industry, which include electric arc and recycled metals. - For energy intensive chemicals, the recovery from crisis is slow and followed by slow growth. The EU production of fertilisers and petrochemical products is projected to stabilise and slightly decline in the long term as a result of weakening of EU competitiveness and low demand in the internal market. Other chemicals, particularly pharmaceutical and cosmetics, are projected to grow slightly faster. - The non-metallic minerals sector cement, ceramics, glass - is characterised by slow recovery from crisis followed by a slower growth pace than before the crisis. Slower growth is related to lower demand due to slowdown of construction activity linked to demographic change. - For the paper and pulp industry there is significant recovery from crisis and sustained growth, although pulp production grows much less than the entire paper sector. Nonetheless there is a slow decline of EU share in global trade of paper and pulp. - The equipment goods industry (engineering) is projected to remain the most dynamic sec- - tor in the EU industry, growing at steady pace, albeit slightly more slowly than in the period before the crisis. - Other industries (food products, wood products, etc.) also see steady growth with the exception of textile industry, which is projected to decline, due to competition from other world regions. The macro-economic and sectorial projections are available by Member State (see Appendix 1). #### World fossil fuel prices The world fossil fuel price projections have undergone substantial revisions of key assumptions compared to the
previous Reference scenario exercise: "Trends to 2030 - Update 2009" including on reserves notably of shale gas and other unconventional hydrocarbons, world economic developments and the reflection of Copenhagen/Cancun pledges. Prices are projected to develop along new trajectories rather different from the past ones, particularly for gas. The projection has been developed independently with the PROMETHEUS model (stochastic world energy model) and was finalised in January 2012. The International Energy Agency World Energy Outlook (IEA WEO) for 2011 was published while work on the PROMETHEUS projections for the Reference scenario was already in progress, consequently an effort was made to harmonise some of the assumptions but otherwise the results have been arrived at inde- FIGURE 5: STRUCTURE OF THE ECONOMY IN EU28 pendently. Large upward revisions for conventional gas and oil resources availability (following USGS, BGR, IEA) have been implemented as well as the inclusion of worldwide estimates of unconventional gas resources (tight sands, shale gas and coal bed methane) based on estimates from IEA. The change implies that the natural gas resource base increases more than 2.5 times with important implications on prices. FIGURE 6: FOSSIL FUEL IMPORT PRICES Regarding economic drivers, overall higher GDP growth is projected than in the previous exercise: major upward revisions were undertaken for China, India and Middle East and North Africa regions. For Europe DG ECFIN Ageing reports were used, whereas other regions basically follow IEA projections. For the overall projection, the Copenhagen-Cancun pledges are expected to be respected through carbon prices as well as dedicated policies and measures. China, India and the CIS meet their pledges through "lack of ambition", whereas OECD Western Pacific fall considerably short because of high ambition compared to track record so far. Apart from the EU, no additional climate related policies are assumed for the period beyond 2030. Up to 2035, the projections result in oil prices which are broadly in agreement with IEA-WEO 2011 and 2012 update (reporting up to that time horizon). For the shorter term, higher prices reflect failure of productive capacity to grow in line with demand (fuelled by economic recovery in the EU and US and persistent growth in emerging regions). The situation eases somewhat around 2020 before declining resource- production (RP) ratios result in resumption of upward trend in prices. In the longer term, gas prices do not follow the upward trend of oil price. This is mostly due to the very large additional undiscovered resources that were factored in, including unconventional gas. More importantly, natural gas prices stabilise at a level that is still high enough to ensure economic viability of unconventional gas projects. The downward revision of gas prices compared with the 2009 Baseline had also impacts on coal prices given that both fuels are competing in power generation. FIGURE 7: RATIO OF GAS TO COAL AND GAS TO OIL PRICES #### Energy technology progress The EU Reference Scenario 2013, as the previous Reference scenarios, deals explicitly with the penetration of new technologies notably in power generation and transport and specifically with progress in renewable technologies including further technology learning. As analysed in the part on results, the penetration of new technologies leads to changes in the energy mix, alongside other drivers such as relative prices and costs, policies to promote energy efficiency, renewables and new technologies and broader market trends regarding economic efficiency and better use of resources. These interdependent developments also bring about energy efficiency improvements on both the demand and supply side. They also result in energy technology changes, which in the modelling are represented by an uptake of specific energy technologies from a broad portfolio of different technologies that change over time. The technology portfolio in the Reference Scenario includes the following categories: - End-use energy efficiency (thermal integrity of buildings, lighting, electric appliances, motor drives, heat pumps, etc.). - Renewable energy in centralized and decentralized power generation, in direct heating and cooling applications, as well as for blending with petrol or diesel oil. - Supercritical coal plants, advanced gas combined cycle plants and CHP. - CO₂ carbon capture and storage (CCS). - Nuclear energy including 3rd and 4th generation. - Advanced transmission and distribution grids and smart metering. - Plug-in hybrid and battery/full electric vehicles, both for passenger and freight road transportation (light commercial vehicles). - Improvements in conventional engines in transport. Although the key features of the technologies in the portfolio are known today, the projected evolution of their technical and economic characteristics presupposes that substantial industrial research and changed considerably and these have been taken into account in the PRIMES model. The changes include: - Solar photovoltaics (PVs): techno-economic improvements in the solar PV industry have surpassed previous expectations and costs have changed already for the short term. The development of PVs starts from lower costs, than previously expected and has a positive learning curve throughout the projection period. - Remote offshore wind: in the previous exercise, following the review of available literature assumptions, the assumptions about remote offshore wind were very positive, including strong cost reductions. Following the latest literature review, assumptions about techno-economic developments have been revised upwards. Capital costs for remote offshore wind developments are now expected to be significantly higher and the costs to reduce more slowly. - Nuclear: since the Fukushima accident in March 2011 security standards for nuclear FIGURE 8: DEVELOPMENT OF CAPITAL COSTS OVER TIME FOR POWER GENERATION TECHNOLOGIES demonstration takes place enabling deployment at a wide scale. Compared to the 2009 Reference exercise the development prospects of certain technologies have power plants have been tightened, leading to higher costs for their construction and testing requirements. Costs for nuclear power plants are therefore increased. With the new risk assessment, financing conditions for nuclear power plants have also worsened and this is also reflected in the modelling. - CCS: the construction of power plants equipped with carbon capture technologies has been developing at a much slower pace than expected at the time of development of the 2009 Reference exercise. Development of CCS is also hampered and delayed due to public acceptance issues over building of the storage capacities. The new difficulties and the delays in the development of CCS are taken into account in this new exercise. - Demand side technologies have been updated where is was found necessary following latest literature review which includes the most up to date preparatory studies for the preparation of eco-design regulations and the amendment of CO₂ from light duty vehicles regulation. The modelling also assumes that learning curves apply for specific technologies, thus reflecting decreasing costs and increasing performances as a function of cumulative production. The steepness of the learning curve differs by technology, depending also on their current stage of maturity. TABLE 1: EXAMPLES OF COSTS AND EFFICIENCIES OF DEMAND SIDE TECHNOLOGIES | TABLE IT EXAMINE LEG OF COOLS AND ENTISIES OF DEMAND SIDE TESTINGLOSIES | | | | | | | |---|-------------|----------------|-----------|----------|----------|------| | Appliance/Equipment | | Unit | Base case | Improved | Advanced | Best | | Domestic Dishwashers | Consumption | kWh/hour | 1.05 | -5% | -10% | -20% | | Domestic Dishwashers | Costs | EUR'10/appl | 349 | 29% | 80% | 130% | | Danis and Linksin a | Consumption | kWh/hour | 0.03 | -26% | -80% | -82% | | Domestic Lighting | Costs | EUR'10/appl | 4 | 34% | 130% | 165% | | Daniela AC (Flanksish.) | Efficiency | СОР | 2.50 | 21% | 47% | 52% | | Domestic AC (Electricity) | Costs | EUR'10/kW | 415.7 | 20% | 61% | 85% | | Domestic boiler -Dwelling size (natural gas) | Efficiency | (Useful/Final) | 0.68 | 9% | 23% | 30% | | | Costs | EUR'10 | 3342 | 15% | 49% | 71% | | Mater besting beiler (netural ces) | Efficiency | (Useful/Final) | 0.64 | 21% | 42% | 47% | | Water heating boiler (natural gas) | Costs | EUR'10 | 700 | 40% | 101% | 131% | For power generation technologies the Reference scenario takes an optimistic view about the future, without however assuming breakthroughs in technology development. All power technologies known today are projected to improve in terms of unit cost and efficiency. Taking into account the technology portfolio available, energy efficiency gains in the scenarios are driven by microeconomic decisions, reflecting the market agents' aim of minimizing costs and maximizing economic benefits operating in the context of public policies that promote energy efficiency. Similarly, renewables and CHP development are driven by private economic considerations also taking into account supportive policies which are assumed to continue in the Reference scenario and gradually decrease in the longer term (see policy assumptions). The techno-economic characteristics of existing and new energy technologies used in the demand and the supply sectors of the energy system evolve over time and improve according to exogenously specified trends including learning rates. At any given time, several technologies are competing with different performance and costs as presented by examples in Table 1. Following the logic developed in the previous PRIMES versions, consumers and suppliers are generally hesitant to adopt new technologies before they become sufficiently mature. They behave as if
they perceive a higher cost (compared to engineering cost evaluations for the operation of such equipment) when deciding upon adoption of new technologies. Public policies at EU and national level, through in- formation campaigns, industrial policy, R&D support, taxation and other means, aim at pushing more rapid adoption of new technologies by removing or compensating uncertainties associated with their use. In this way, the technologies themselves reach maturity more rapidly as a result of "learning-by-doing" effects and economies of scale. Supportive policies for the adoption of new technologies thus lead to modifications in the perception of technologies. In the end, agents adopt new technologies because they aim at reducing the costs of energy services, which represent an important household budget/company balance sheet item. On macro-economic level, GDP growth is therefore associated with continuous improvement of the technological basis leading to improved energy intensity, which is also supported by the effects from structural change in the economy. Last but not least, the deployment of some of the new technologies depends on the development of new infrastructure and regulations, which are partly driven by government. This is the case, for example, for interconnectors and grid expansion, CCS regarding the transportation and storage of captured CO_2 and for the electrification of transportation which depends on TSOs and DSOs undertaking grid and control systems investments. Technology assumptions are based on extensive literature review by the PRIMES team and have additionally been checked by the Commission Services, notably the Joint Research Centre of the European Commission. #### Policy assumptions The Reference scenario 2013 includes policies and measures adopted in the Member States by April 2012 and policies, measures and legislative provisions (including on binding targets) adopted by or agreed in the first half of 2012 at EU level in such a way that there is almost no uncertainty with regard to their adoption. This concerns notably the Energy Efficiency Directive, on which political agreement was reached by that time. The policies and measures reflected in the Reference 2013 scenario are described in Table 2. TABLE 2: EU AND OTHER POLICIES INCLUDED IN THE REFERENCE SCENARIO 2013 #### **EU LEVEL POLICIES** | | Energy Efficiency | | | | |----|--|---|--|--| | 1 | Ecodesign Framework Directive | Directive 2005/32/EC | | | | 2 | Stand-by regulation | Commission Regulation (EC) No 1275/2008 | | | | 3 | Simple Set-to boxes regulation | Commission Regulation (EC) No 107/2009 | | | | 4 | Office/street lighting regulation | Commission Regulation (EC) No 347/2010 | | | | 5 | Lighting Products in the domestic and Tertiary Sectors | Commission Regulation (EU) No 347/2010 | | | | | regulations | Commission Regulation (EC) No 859/2009 | | | | | | Commission Regulation (EC) No 244/2009 | | | | | | Commission Regulation (EC) No 245/2009 | | | | 6 | External power supplies regulation | Commission Regulation (EC) No 278/2009 | | | | 7 | TVs regulation (+labelling) regulation | Commission Regulation (EC) No 642/2009 | | | | 8 | Electric motors regulation | Commission Regulation (EC)No 640/2009 | | | | 9 | Freezers/refrigerators regulation | Commission Regulation (EC) No 643/2009 | | | | 10 | Household washing machines regulation | Commission Regulation (EU) No 1015/2010 | | | | 11 | Household dishwashers regulations | Commission Regulation (EU) No 1016/2010 | | | | 12 | Industrial fans regulation | Commission Regulation (EU) Regulation No 327/2011 | | | | 13 | Air conditioning and comfort fans regulation | Commission Regulation (EU) No 206/2012 | | | | 14 | Circulators regulation | Commission Regulation (EC) No 641/2009 | | | | 15 | Energy Labelling Directive | | | | | | and delegated Regulations covering: | Directive 2010/30/EU | | | | | lamps and luminaires, | supplemented by Delegated Regulations and | | | | | | O | |----|--|---| | | household tumble driers | Commission directives | | | air conditioners | | | | televisions | | | | household washing machines | | | | household refrigerating appliances | | | | household dishwashers | | | | and Commission Directives covering: | | | | household electric ovens | | | | household combined washer-driers | | | | household electric tumble driers | | | 16 | Labelling of tyres regulations | Regulation (EC) No 1222/2009 | | | | Commission Regulation (EU) 228/2011 | | | | Commission Regulation (EU) 1235/2011 | | 17 | Directive on end-use energy efficiency and energy ser- | Directive 2006/32/EC | | | vices | | | 18 | Energy Performance of Buildings Directive | Directive 2010/31/EU and Commission Dele- | | | | gated Regulation (EU) No 244/2012 | | 19 | Energy Efficiency Directive | Directive 2012/27/EU | | | Power generation and ener | gy markets | | 20 | Cogeneration Directive | Directive 2004/8/EC | | 21 | Completion of the internal energy market (including | Directive 2009/73/EC | | | provisions of the 3 rd package). | Directive 2009/72/EC | | | Since March 2011, the Gas and Electricity Directives of | Regulation (EC) No 715/2009, | | | the 3 rd package for an internal EU gas and electricity | Regulation (EC) No 714/2009 | | | market are transposed into national law by Members States and the three Regulations: | Regulation (EC) No 713/2009 | | | - on conditions for access to the natural gas transmis- | | | | sion networks | | | | - on conditions for access to the network for cross- | | | | border exchange of electricity | | | | - on the establishment of the Agency for the Coopera- | | | | tion of Energy Regulators (ACER) | | | | are applicable. | | | 22 | Energy Taxation Directive | Directive 2003/96/EC | | 23 | Regulation on security of gas supply | Regulation (EU) 994/2010 | | 24 | Regulation on market integrity and transparency (RE- | Regulation (EU) 1227/2011 | | | MIT) | | | 25 | Nuclear Safety Directive | Council Directive 2009/71/Euratom | | 26 | Nuclear Waste Management Directive | Council Directive 2011/70/Euratom | | 27 | Directive on the promotion of the use of energy from renewable sources ("RES Directive") | Directive 2009/28 EC | | (Cross-sectoral) Climate policies | | | | |-----------------------------------|--|---|--| | 28 | EU ETS directive | Directive 2003/87/EC as amended by Directive 2004/101/EC, Directive 2008/101/EC and Directive 2009/29/EC and implementing Decisions, in particular 2010/384/EU, 2010/634/EU, 2011/389/EU (cap), 2011/278/EU, 2011/638/EU (benchmarking and carbon leakage list) | | | 29 | Directive on the geological storage of CO ₂ | Directive 2009/31/EC | | | 30 | GHG Effort Sharing Decision | Decision 406/2009/EC | | | 31 | F-gas Regulation | Regulation (EC) No 842/2006 | | | | Transport related po | licies | | | 32 | Regulation on CO ₂ from cars | Regulation (EC) No 443/2009 | | | 33 | Regulation EURO 5 and 6 | Regulation (EC) No 715/2007 | | | 34 | Fuel Quality Directive | Directive 2009/30/EC | | | 35 | Regulation Euro VI for heavy duty vehicles | Regulation (EC) No 595/2009 | | | 36 | Regulation on CO ₂ from vans | Regulation (EU) No 510/2011 | | | 37 | Eurovignette Directive on road infrastructure charging | Directive 2011/76/EU | | | 38 | Directive on the Promotion of Clean and Energy Efficient Road Transport Vehicles (in public procurement) | Directive 2009/33/EC | | | 39 | End of Life Vehicles Directive | Directive 2000/53/EC | | | 40 | Mobile Air Conditioning in motor vehicles Directive | Directive 2006/40/EC | | | 41 | Single European Sky II | COM(2008) 389 final | | | 42 | Directive on inland transport of dangerous goods | Directive 2008/68/EC | | | 43 | Third railway package | Directive 2007/58/EC | | | 44 | Directive establishing a single European railway area (Recast) | Directive 2012/34/EU | | | 45 | Port state control Directive | Directive 2009/16/EC | | | 46 | Regulation on common rules for access to the international road haulage market | Regulation (EC) No 1072/2009 | | | 47 | Directive concerning social legislation relating to road transport activities | Directive 2009/5/EC | | | 48 | Regulation on ground-handling services at Union airports | Part of "Better airports package" ⁷ | | | 49 | Regulation on noise-related operating restrictions at Union airports | Part of "Better airports package"8 | | | 50 | Directive on the sulphur content of marine fuels | Directive 2012/33/EU | | Council agreement on general approach (22 March 2012), European Parliament vote (16 April 2013) Council agreement on general approach (7 June 2012), European Parliament vote (11 December 2012) | Infrastructure, innovation and RTD and funding | | | | | |--|--|--|--|--| | 51 | TEN-E guidelines | Decision No 1364/2006/EC | | | | 52 | EEPR (European Energy Programme for Recovery) and NER 300 (New entrants reserve) CCS and innovative renewables funding programme | Regulation (EC) No 663/2009, ETS Directive
2009/29/EC Article 10a(8), further developed through Commission Decision 2010/670/EU | | | | 53 | EU research, development RTD and innovation support (7 th framework programme) - theme 6 and its expected continuation under Horizon 2020, Competitiveness and Innovation Programme, e.g. Sustainable Industry Low Carbon scheme SILC I (2011-2013) | | | | | 54 | EU Cohesion Policy – ERDF, ESF and Cohesion Fund | | | | | 55 | TEN-T guidelines | Decision 884/2004/EC and expected continuation – 30 May 2013 trilogue agreement on revised TEN-T guidelines ⁹ supported by the Connecting Europe Facility | | | | Environment and other related policies | | | | | | 56 | State aid Guidelines for Environmental Protection and 2008 Block Exemption Regulation | Community guidelines on state aid for envi-
ronmental protection | | | | 57 | Landfill Directive | Directive 99/31/EC | | | | 58 | EU Urban Wastewater Treatment Directive | Directive 91/271/EEC | | | | 59 | Waste Framework Directive | Directive 2008/98/EC | | | | 60 | Nitrate Directive | Directive 91/676/EEC | | | | 61 | Common Agricultural Policy (CAP) | e.g. Council Regulations (EC) No 1290/2005,
No 1698/2005, No 1234/2007 and No.
73/2009 | | | | 62 | Industrial emissions (Recast of Integrated Pollution and Prevention Control Directive 2008/1/EC and Large Combustion Plant Directive 2001/80/EC) | Directive 2010/75/EU | | | | 63 | Directive on national emissions' ceilings for certain pollutants | Directive 2001/81/EC | | | | 64 | Water Framework Directive | Directive 2000/60/EC | | | | 65 | Substances that deplete the ozone layer | Relevant EU legislation implementing the Montreal protocol, e.g. Regulation (EC) No 1005/2009 as amended by Commission Regulation (EU) 744/2010 | | | ⁹ Source: http://europa.eu/rapid/press-release_IP-13-478_en.htm #### **NATIONAL MEASURES** | 66 | Strong national RES policies | National policies on e.g. feed-in tariffs, quota systems, green certificates, subsidies, favourable tax regimes and other financial incentives are reflected. | |----|-------------------------------------|--| | 67 | National Energy Efficiency policies | National policies promoting energy efficiency implementing EU directives and policies, as well as specific national policies are fully taken into account | | 68 | Nuclear | Nuclear, including the replacement of plants due for retirement, is modelled on its economic merit and in competition with other energy sources for power generation but also taking into account the national policies, including legislative provisions in some MS on nuclear phase out. Several constraints are therefore put on the model such as decisions of Member States not to use nuclear at all (Austria, Cyprus, Denmark, Estonia, Greece, Ireland, Italy, Latvia, Luxembourg, Malta and Portugal). The nuclear phase-out in Belgium and Germany is respected while lifetime of nuclear power plants was extended to 60 years in Sweden. Nuclear investments are possible in Bulgaria, the Czech Republic, France, Finland, Hungary, Lithuania, Poland, Romania, Slovakia, Slovenia and Spain. For modelling the following plans on new nuclear plants were taken into account: Finland (1720 MW by 2015), France (1600 MW by 2020), Lithuania (1400 by 2025), Poland (1600 MW by 2025), Slovakia (940 MW by 2015). Member States experts were invited to provide information on new nuclear investments/programmes in spring 2012 and comments on the PRIMES Reference scenario results in winter 2013, which had a significant impact on the modelling results for nuclear capacity. | #### OTHER SUPRA-NATIONAL LEVEL POLICIES | 69 | Energy Star Program (voluntary labelling program) | | |----|---|--| | 70 | International Maritime Organisation (IMO) International convention for the prevention of pollution from ships | | | | (MARPOL), Annex VI | volution of 7th 1 official month office) | | 71 | WTO Agreement on trade with agricultural products | | | | from Uruguay round fully respected | | | 72 | Voluntary agreement to reduce PFC (perfluorocarbons, | | | | potent GHG) emissions in the semiconductor industry | | | 73 | International Civil Aviation Organisation (ICAO), Con- | | | | vention on International Civil Aviation, Annex 16, Vol- | | | | ume II (Aircraft engine emissions) | | | 74 | IMO, Inclusion of regulations on energy efficiency for | IMO Resolution MEPC.203(62) | | | ships in MARPOL Annex VI | | #### Further assumptions #### Discount Rates The PRIMES model is based on individual decision making of agents demanding or supplying energy and on price-driven interactions in markets. The modelling approach is not taking the perspective of a social planner and does not follow an overall least cost optimization of the entire energy system in the long-term. Therefore, social discount rates play no role in determining model solutions. Social discount rates can however be used for ex post cost evaluations. On the other hand discount rates pertaining to individual agents play an important role in their decision-making. Agents' economic decisions are usually based on the concept of cost of capital, which is, depending on the sector, either weighted average cost of capital (for larger firms) or subjective discount rate (for individuals or smaller firms). In both cases, the rate used to discount future costs and revenues involves a risk premium which reflects business practices, various risk factors or even the perceived cost of lending. The discount rate for individuals also reflects an element of risk averseness. The discount rates vary across sectors and may differ substantially from social discount rates (typically 4-5%) which are used in social long-term planning. In the PRIMES modelling, the discount rates range from 8% (in real terms) applicable to public transport companies or regulated investments as for example grid development investments (in the form of weighed average cost of capital) up to 17.5% applicable to individuals (households and private passenger transport, following extensive literature review on discount rates of private consumers). Additional risk premium rates are applied for some new technologies at their early stages of development impacting on perceived costs of technologies. More specifically, for large power and steam generation companies the cost of capital are 9%. In industry, services and agriculture the discount rate amounts to 12%. Households have an even higher discount rate of 17.5%. For transport, the discount rate depends on the type of operator. Private passenger transport investments (e.g. for cars) are based on a discount rate of 17.5%, while for trucks and inland navigation ships, which are considered as investment goods the rate is 12%. Public transport investment is simulated with an assumed discount rate of 8% for the whole projection period reflecting the acceptance of longer pay-back periods than those required in industry or private households. All these rates are in real terms, i.e. after deducting inflation. The decision-making environment of businesses and households on energy consumption is expected to change because of the implementation of the Energy Efficiency directive (EED). The EED will bring about higher market penetration of Energy Service Compa- nies (ESCOs) or similar institutions as well as the reduction of associated risks as perceived by potential clients through quality controls and certifications. This will entail lower perceived discount rates and is reflected in the new Reference scenario. The implementation of the EED and the widespread penetration of ESCOs is mirrored by the reduction of discount rates by up to 2 percentage points in services and up to 5.5 percentage points in households. Discount rates are assumed to decline linearly from their standard levels in 2010 to reach the policy driven values by 2020 and they remain at these levels throughout the remaining projection period. Thus the discount rates for households are reduced in the context of the Reference scenario to 14.75% in 2015 and 12% from 2020 onwards throughout the entire projection period. For services the discount rate was progressively decreased to 11% in 2015 and 10% from 2020 onwards (see Figure 9). FIGURE 9: DISCOUNT RATES USED IN PRIMES | Discount rates | Standard discount rates of PRIMES | Modified discount rates due to EED | | | |------------------------------|-----------------------------------|------------------------------------|-------------|--| | (in real terms) | | 2015 | 2020 - 2050 | | | Power generation | 9% | 9% | 9% | | | Industry | 12% | 12% | 12% | | | Tertiary | 12% | 11% |
10% | | | Public transport | 8% | 8% | 8% | | | Trucks and inland navigation | 12% | 12% | 12% | | | Private cars | 17.5% | 17.5% | 17.5% | | | Households | 17.5% | 14.75% | 12% | | #### Degree days The degree days, reflecting climate conditions, are kept constant at the 2005 level, which is higher than the long term average without assuming any trend towards further warming. The degree days in 2000 were fairly similar to the ones in 2005. The year 2010 was not considered to be representative in terms of degree days. Such an approach facilitates comparison of statistics with the projection figures that are based on climate conditions at the beginning of this century. This simplification can be also justified by consistency reasons given the status of model development. A selective inclusion of global warming trends only for some modelling parts where this would be feasible (heating degree days) and not for others (e.g. water supply conditions for power generation, impacts on agriculture) could lead to misleading results. Further research and modelling work is needed for an inclusion into a reference scenario. #### Exchange rates All monetary values are expressed in constant prices of 2010 (without inflation). The dollar exchange rate for current money changes over time; it starts at the value of 1.39\$/€ in 2009 and is assumed to decrease to 1.30 \$/€ by 2012, at which level it is assumed to remain for the remaining projection period. # 3. Results for the EU Reference scenario 2013 The Reference 2013 scenario reflects current trends in developments in the EU energy system and in the global energy supply and demand, as described in detail in section 2, as well as the consequences of adopted policies presented in the Table 2. In this section, the main effects of these trends and of the implementation of policies listed above are presented, notably on energy demand, power generation and emissions developments for the EU28. The projections were performed by the PRIMES model and its satellite models: PRIMES-TREMOVE transport model and PRIMES biomass supply model. The horizon of the projection is 2050 and results are available in five-year time steps, for each Member State and for the EU28.¹⁰ Considering the timeframes of the policies included in the Reference 2013 scenario, the results are presented distinguishing between three time periods, up to 2020, 2020-30 and 2030-50. Up to 2020 the main driver of developments is the achievement of the targets of the 20-20-20 Climate and Energy Package and the EED. This period is characterised by increased penetration of RES and by strong energy efficiency improvements. In parallel, until 2020, increasing international fossil fuel prices have considerable implications on energy demand. Moreover, the reader should keep in mind that the period 2010-2015 is characterised by increased growth rates in energy demand, as the economy is projected to be recovering from the recent economic crisis (see the macroeconomic data in Appendix 1). In the decade 2020-30, the Reference scenario 2013 does not incorporate further targets with regard to RES, but market dynamics, the on-going enabling policies (such as streamlined authorisation procedures) and technology cost reductions allow for further penetration, albeit at lower growth rates. Also energy efficiency measures implemented up to 2020 continue to deliver improvements in this period (as the lifetime of new appliances, renovated buildings etc. extends beyond the lifetime of the policies). As with renewables, the improvement rates slow-down in the absence of specific new policy measures. International fossil fuel prices are high but more stable in comparison to the previous decade. The ETS Directive continues to influence the energy system, as the number of EU-ETS emissions allowances, continues decreasing linearly at 1.74% p.a. as specified in the directive. This drives strong emission reductions in particular in the power generation sector, including in the longer term – up to 2050. # Overview of the implications of energy efficiency policies and measures The Reference 2013 scenario reflects all the policies that have been adopted in recent years regarding energy efficiency in the EU and in MS, including the Energy Efficiency Directive (EED) (see Table 2). In the following, we discuss these measures and provide a general overview of their effects on the energy system, as well as their reflection in the PRIMES model. First of all, the EED (via its energy savings obligation) and the Energy Performance of Buildings Directive (EPBD) provisions bring about energy efficiency improvements in buildings through energy-related renovations of the existing building stock as well as improvements of the energy performance characteristics in new constructions. Renovations lead to better insulation of the buildings (e.g. through window replacement, better façade insulation, roof insulation) or changes in heating devices, resulting therefore in energy savings at a building level. After 2020, further energy savings are induced as new households are built following regional passive house standards. Regarding heating systems, in the context of the Reference 2013 scenario, the replacement of equipment is accelerated, as the energy efficiency measures incorporated induce a more rapid uptake of advanced technologies, whereas in the absence of such energy efficiency measures, replacement with new, more efficient technologies would occur only at the normal end of lifetime of the heating equipment. Energy efficiency improvements in heating systems are accelerated further through synergies of the different efficiency measures, such as increased technology $^{^{\}rm 10}$ Summary results for EU28 and for each country are presented in the Appendix. transparency (labelling), efficiency standards (ecodesign), highly efficient technical building systems (EPBD), professional support through energy service companies (ESCOs) and energy efficiency obligations on energy distributors and/or retail sellers which are therefore obliged to achieve significant energy savings at their customer sites, etc. The same efficiency improvements apply for cooling/ventilation, water heating and lighting. The PRIMES model can simulate different energy efficiency policies with different modelling techniques. The model-specific instruments used affect the context and conditions under which individuals, in the modelling represented by stylized agents per sector, make their decisions on energy consumption and the related equipment. An example of such modelling instruments is the modification of model parameters in order to mirror technology performance or the effects of building codes that are determined jointly in the process of calibrating the interdependent model output to the observations from the relevant statistical year (in this exercise: 2010). Another technique is modification of assumptions about technical and economic performance of future technologies that are available for future choices by consumers within the model projection. Furthermore, there are specific modelling instruments for capturing the effects of measures that promote or impose efficiency performance standards (BAT, ecodesign) and become increasingly important over time as new items penetrate the market while old items are getting out of use. Such modelling instruments relate to individual technologies or groups of technologies and modify the perception of associated costs by the modelled agents or influence the portfolio of technologies that will be available for consumer choice. Another type of measures are those which improve consumer information through education, labelling, correct metering and billing, energy audits and technology support schemes aiming at inciting consumers to select more efficient technologies. Such measures are dealt with through the modelling instruments discussed in this section or are directly reflected in the modelling mechanisms, where economic agents are per se informed correctly about the prevailing and to some extent future prices., depending on the sector (there is less foresight in final demand sectors with shorter equipment lifetimes than in power generation). The energy efficiency policies mentioned above modify modelling parameters. This applies for example for the factors that affect perception of net energy costs (investment costs minus perceived benefits) including risk factors (e.g. risk related to maintenance costs or technical reliability of advanced technologies if chosen prior to fully established commercial maturity of such technologies). Such changes influence in turn the mix of different technologies delivering the same type of energy services. As in reality, the modelling reflects the existence of mixes of technologies and appliances for the same purpose with different energy consumption and other characteristics, for which economic actors have different perceptions regarding costs. The factors affecting perception of costs vary by equipment type. The efficiency policy induced changes in the Reference scenario for household appliances lead to perceived cost decreases in the more advanced technology options of between 12 and 20% compared to the costs that would have been perceived in the absence of the energy efficiency policies. The penetration of ESCOs as explicitly incited by the EED leads to an environment with reduced risks for the consumers engaging in energy efficiency renovations, which can include both changes in the building structure and changes in the energy equipment. This is represented in the modelling by reduced discount rates for certain sectors, mirroring the changes in the decision making conditions and constraints of e.g. households and services. Consequently, the (high) subjective discount rates which prevail in capitalbudgeting decisions when such decisions are taken solely by individuals, facing high information costs, are reduced, moving
closer to business interest rates. In fact, the involvement of ESCO and the obligation for energy distributors and retail sellers to facilitate energy efficiency investment at the premises of final customers enable individuals to make more costeffective choices thanks to the professional support of e.g. ESCOs and utilities that are obliged to achieve energy savings with their customers. In this way lower discount rates reduce the high weight that initial investment costs have compared with future energy cost savings. In addition, these measures also induce lower technical and financial risk, hence reducing the perceived costs of new technologies and saving investments, (see also point above on perception of costs). The discount rates used for the Reference scenario 2013 are reported in the introductory section. Another key modelling tool are efficiency values (EVs) reflecting a variety of broad and sometimes unspecified instruments that bring about efficiency improvements. In the most concrete form these values represent the price of hypothetical White Certificates, reflecting the marginal costs of reaching energy savings obligations, e.g. for energy distributors and retail sellers regarding energy efficiency at final customers sites. In the Reference scenario, these values represent the implementation of the EED energy savings obligations in domestic and service sectors, specific building renovation policy efforts or a large range of other pertinent measures, such as energy audits, energy management systems, good energy advice to consumers on the various benefits of energy efficiency investment and better practices, targeted energy efficiency education, significant voluntary agreements, etc. In modelling terms therefore, the PRIMES model includes a number of instruments to reflect policies leading to efficiency improvements. The EED includes specific public procurement provisions which translate into a 3% p.a. refurbishment rate in the modelling and induce multiplier effects, as the public sector assumes an exemplary role, i.e. private consumers are imitating the public sector energy efficiency actions. Moreover, energy efficiency obligations on energy distributors and retail sellers, as well as alternative policy measures (e.g. financing, fiscal, voluntary, and information measures) required by MS according to the EED, drive further investment choices in improving thermal integrity of houses and build- ings, as well as the introduction of more efficient appliances and better management of existing equipment in final energy use sectors. For the modelling of the energy savings obligation or alternative measures it has been assumed that the possible exemptions for ETS installations and transport are used. Energy efficiency improvements also occur on the energy supply side, through the promotion of investments in CHP and in distributed steam and heat networks. These investments are combined with incentives on the consumer side to shift towards heating through district heating, both in the residential and the tertiary sectors¹¹. Improvements in the network tariff system and the regulations regarding the design and operation of gas and electricity infrastructure are also required in the context of the EED; moreover, the EED requires MS and regulators to encourage and promote participation of demand side response in wholesale and retail markets. In this context, the Reference 2013 scenario assumes that intelligent metering is gradually introduced in the electricity system, enabling consumers to more actively manage their energy use. This allows for demand responses so as to decrease peak and over-charging situations, which generally imply higher losses in the power grids. Thus, efficiency is also improved as a result of the intelligent operation of the systems. Finally, some policies and measures that do not target energy efficiency directly, but for example target emissions reduction, lead to significant additional energy efficiency benefits. Among these policies are the ETS Directive (for details see section on ETS below), the Effort Sharing Decision (ESD), and the CO₂ standards for cars and vans. These policies drive energy efficiency improvements along with fuel switching as a means of achieving reduction of emissions. The ESD defines legally binding national GHG emission targets in 2020 compared with 2005 for sectors 1 ¹¹ This incurs some rebound effects, e.g. houses connected to district heating generally consume more heat than houses which use individual (non-central) heating equipment, as district heating is more cost efficient; such features are automatically integrated in this price responsive energy modelling not covered by the EU ETS, ranging between -20% and +20%, which shall lead to a EU-wide emission reduction by 10%. To achieve the targets, it also defines for each country a linear emission path between 2013 and 2020 which has to be satisfied each year but is subject to a number of important flexibility mechanisms, e.g. a carry-forward of emission allocations, transfers between Member States and use of international credits. It turned out that for the EU as a whole the -10% target is achieved without the need for modelling additional specific policy incentives. With regard to the national target trajectories, in general, flexibility both over time and between Member States via the use of transfers has been assumed to reflect the use of economically effective options to meet the targets while respecting the clear Member State indications on flexibility limitations¹². For the CO₂ standards for cars and vans, it is assumed, based on current reduction trends, that the 2020 CO₂ targets for new vehicles set out in the regulations are achieved and remain constant afterwards (for cars 95gCO₂/km, for vans 147gCO₂/km). Policies on promoting RES also indirectly lead to energy efficiency gains; in statistical terms many RES, such as hydro, wind and solar PV, have an efficiency factor of 1; thus, the penetration of RES in all sectors, in particular in power generation, induces energy savings. Other measures that foster energy efficiency are financial instruments, in particular excise type taxes (including those reflecting emissions); they are directly modelled in PRIMES allowing for the full reflection of the effects of energy taxation and other financial instruments on end user prices and energy consumption. Overall, the energy savings achieved in the Reference 2013 scenario in 2020 amount to 16.8% (Table 3) using the metric defined for the 20% energy savings target. This figure is obtained through compari- ¹² Given the projected EU-wide compliance, it has been assumed that transfers between Member States will be available at very low prices just covering administrative costs, making it economically unattractive to resort to the permitted use of international credits. The relatively small costs and benefits of these emission transfers have been included in the total system costs for 2020. son with the primary energy consumption (defined as gross inland consumption minus non-energy use) projections of the Baseline 2007 scenario, which has been used as the base for the energy savings objective of the 20-20-20 climate and energy package. The projected decrease reflects the aggregate effect on energy consumption of all the policies that are included in the Reference 2013 scenario. TABLE 3: EFFECT OF POLICIES ADOPTED IN THE REFERENCE 2013 SCENARIO ON ENERGY CONSUMPTION¹³ | | 2020 | 2030 | 2050 | |---|--------|--------|--------| | Primary energy consumption - % change from Baseline 2007* | -16.8% | -21.0% | | | Primary energy consumption - % change from Reference 2011 | -2.5% | -1.3% | 1.2% | | Gross inland consumption - % change from 2005** | -9.2% | -12.1% | -11.1% | | Primary energy consumption - % change from 2005 | -9.9% | -13.0% | -11.8% | ^{*} Time horizon of Baseline 2007 scenario was year 2030 # General overview of RES supporting measures and the evolution of RES indicators The Reference 2013 scenario starts from the assumption that the EU energy system evolves so that the legally binding targets on RES (20% share of gross final energy consumption from RES by 2020 and 10% specifically in the transport sector) are achieved. In parallel, the framework for the penetration of RES significantly improves in the projection, as the Reference 2013 scenario incorporates known direct RES aids (e.g. feed-in tariffs) and other RES enabling policies, such as priority access, grid development and streamlined authorisation procedures. Obviously, RES penetration is also facilitated by the ETS (depending on carbon prices). As indicated in the Member States' submissions to the EC, the national RES 2020 targets are generally expected to be achieved at the Member State level, including only very limited recourse to the cooperation mechanism for those few countries that have not excluded making use of it. Drawing on current Member States plans to meet their legal obligations, the Reference 2013 scenario takes into account the Member States projections on the trajectories of the RES shares by sector (RES-H&C for heat- ^{**} Year 2005 was the peak year for energy consumption in the EU ¹³ Primary energy consumption is defined as gross inland consumption minus non-energy use. ing and cooling, RES-T for transport and RES-E for electricity) as expressed in the respective National Renewable Energy Action Plans (NREAPs). The PRIMES model has included detailed modelling of Member State policies representing a variety of economic support schemes, including feed-in-tariffs. A survey has been conducted for the purpose of the Reference 2013 scenario to correctly represent current incentive schemes by Member State, including their budget limitations when these exist. The existing incentives have been then extrapolated to 2020 (if the Member State does not include provisions up to 2020)
in a conservative manner. The RES investments resulting from the overall policy and economic context as well as incentives have been projected assuming that investors evaluate project specific Internal Rates of Return including the financial incentives and decide upon investing accordingly. The projected RES investments implied directly for the financial incentives are considered as given by the market model which decides upon the remaining potentially necessary investments (among all power generation technologies) based on pure economic considerations with a view to meeting the RES obligations. Special fuel and electricity price elements (fees) are accounted for in the model to recover fully all the costs for the RES which are calculated through the incentives and the contracting obligations over time. The model further keeps track of the RES technology vintages as projected and the outstanding fee is raised throughout the economic lifetime of the thus built power capacity, therefore also beyond 2020. For Member States which do not achieve their RES target through direct incentive policies, an additional instrument is included in the modelling the so-called RESvalue which is a dual variable for RES - introduced to meet the targets by Member State. The value represents yet unknown policies to provide incentives for RES such as further legislative facilitations, easier site availability or grid access, or even direct financial incentives, etc. The costs related to investments induced through the RES-value are fully recovered through electricity prices. Overall, at the EU level, the RES share in gross final energy consumption in 2020 reaches 20.9% (Figure 10). Beyond 2020, no additional RES targets are set. However, RES enabling policies, the ETS and some direct aids (depending on technologies and Member State) continue; the direct aids are assumed to phase out at a pace depending on RES technology. These assumptions - in combination with technology progress (capital cost reduction due to learning effects) lead to further increase in RES penetration. In power generation particularly, the continuation of the ETS has a significant effect; until 2030, the share of RES in power generation reaches 43%, and 50% by 2050. In transport the increasing RES share is due to further penetration of biofuels and moderate electrification. Overall, RES in gross final energy consumption account for 24% and 29% in 2030 and 2050 respectively. Although direct incentives are phased out, in power generation the investments in RES continue beyond 2020 due to three main factors: (1) continued learning by doing of technologies including continued RDI especially for innovative RES, (2) the ETS price and (3) extensions in the grid and improvement in marketbased balancing of RES as well as streamlined authorization and priority access. The feed-in tariffs and other country specific financial incentives are assumed to be phased out beyond 2020 with the exception of incentives for innovative technologies such as tidal, geothermal, solar thermal, solar PV and remote off-shore wind where the phase out is more gradual. As to the RES-values, they steeply decrease beyond 2020, in the absence of specific RES obligations after 2020; therefore RES investments beyond 2020 are mainly driven by ETS carbon prices and are facilitated by non-financial supporting policies. The learning by doing of RES technologies continues throughout the projection period and allows for some of the RES technologies to become economically competitive already after 2020. The ETS prices, which rise considerably towards the end of the projection period (see next section), act as an incentive and as the model simulates perfect foresight, the investments are spread throughout the projection period. A further important element concerns the changes in the electricity transmission system and the power market. Through the improvements in the grid and the Ten Years Network Development Plan of EN-TSO-E the grid is better suited for up-taking higher shares of RES. Furthermore, it is assumed in the PRIMES modelling that the management of flows due to the implementation of the internal market changes. The EU target model is assumed to be successfully implemented. The Reference scenario modelling includes flow based allocation of interconnection capacities, assuming a market model purely basing trade on market forces throughout the EU internal energy market with perfectly operating market coupling across all participating countries. This market is assumed to operate successfully mainly beyond 2020. It implies that the balancing of RES occurs in a very cooperative and cost-efficient manner avoiding excessive investments in peak devices that would be resulting if national perspectives in balancing were persisting. Therefore the market improvements and the EU-wide market coupling allows for rather low balancing costs for RES, thus easing their market penetration. Due to these changes in the system, the projected penetration of RES in power generation continues beyond 2020, albeit at a decelerated pace compared to the time period before 2020, and allows the share of RES in electricity (RES-E) to reach 50% by 2050. FIGURE 10: RES INDICATORS AT THE EU LEVEL¹⁴ # Overview of the EU ETS and projections on carbon prices The EU ETS is modelled in its amended scope (third trading period from 2013 onwards), including also aviation, further industrial process emissions and certain industrial non-CO₂ GHGs. The latter are integrated based on results of GAINS non-CO2 modelling (see section on non-CO2 emission results) and PRIMES then ensures consistent modelling of the complete ETS. The annual volume of available EU ETS allowances (quoted as allowances hereafter) following the Directive provisions on the emissions cap, is assumed to decrease by 1.74% p.a. from 2013 throughout the projection period, except for aviation for which the cap remains stable from 2013 onwards at 95% of average 2004-6 emission levels. Aviation is modelled in the scope covered by EURO-STAT and therefore PRIMES based on fuels sold in the EU, which corresponds to domestic and outgoing international flights only. International credits, priced at very low levels, are expected to be used in the period until 2020, and reaching the maximum permissible amount, preliminarily estimated for the modelling as around 1750 Mt $\rm CO_2$ cumulatively. The assumed cumulative emission cap 2008 to 2050 including the permissible international credits is around 69500 Mt. The different allowance allocation rules (auctioning, free allowances based on benchmarks) for the different sectors foreseen in the legislation, and including the provisions for sectors at risk of carbon leakage, are reflected in the modelling. ETS prices are endogenously derived so as the cumulative ETS cap is met; the continuously decreasing number of available allowances combined with the significant allowance surplus which is only projected to decrease after 2020 (see below) suggest that the ETS price will follow only a slowly increasing trend until 2025 and stronger increases thereafter; it is projected to reach 10€'10/tCO₂ in 2020, 35€'10/tCO₂ in 2030 and 100€'10/tCO₂ in 2050 (Figure 11). The PRIMES model simulates emission reductions in ETS sectors as a response to current and future ETS prices (Figure 12), taking into account risk-averse behav- *32* ¹⁴ Figures calculated according to the provision of RES Directive. ior of market agents which leads to banking of allowances; perfect foresight of the carbon price progression in the period 2020-50 and that no borrowing from the future is permitted. Increasing ETS prices induce a switch in power generation towards the use of low and zero carbon fuels or technologies (e.g. RES and CCS). Moreover, the increase in the cost of energy, reflecting the increasing ETS prices, supports energy efficiency and fuel switching in the ETS sectors. Finally, increasing ETS prices indirectly influence energy efficiency in demand side sectors as well, since expenditures for ETS allowances are passed through to consumer prices, notably in electricity prices. With the current and projected low level of the ETS prices, the ETS emissions target for 2020 is achieved as there is also a large amount of additional policies implemented, particularly RES support policies but also the EED, which influence also the ETS sectors, and because the economic crisis substantially reduced the industrial production as well as power demand and thus GHG emissions. The projection of ETS prices is based on the assumptions that actors are risk-averse and have strong trust in the continuation of the ETS legislation; should this not to be the case, ETS prices would drop considerably below the projected levels in the short term. In the longer term, the trend of very low carbon prices is reversed; beginning in 2030 and throughout the period to 2050, the level of the ETS price is increasing significantly. This is the consequence of decreasing allowances supply following the implementation of the linear reduction factor that reduces the cap substantially over time and a combination of energy supply factors, namely of the delayed technology developments of CCS, public acceptance problems with nuclear energy and CO₂ storage, the updated offshore wind cost assumptions and phasing out of RES support as well as the trends in world fuel prices, where a decoupling of oil and gas prices takes place, with gas prices remaining in the longer term at relatively stable levels. FIGURE 11: PROJECTION OF THE ETS PRICE FIGURE 12: AVAILABLE ALLOWANCES¹⁵ AND ETS GHG EMISSIONS PROJECTION FIGURE 13: PROJECTION OF ALLOWANCES SURPLUS Phase II of the ETS has seen a rapid build-up of an allowances surplus which is banked into phase III, resulting from lower than expected emissions caused by the economic crisis unfolding as of 2008 and the early use of international credits. This surplus of allowances
continues to increase in the short term, although there is economic recovery in the time period up to 2020. Together with the indicated drivers and complementary policies, risk-averse behaviour contributes to further banking of allowances until 2020 ¹⁵ Allowances include the permissible use of international credits. (Figure 13)¹⁶. Beyond this time period, the gradually increasing ETS prices lead to a progressive use of previously banked allowances, which results in an almost complete exhaustion of the projected surplus by 2050. As emitters perceive the future carbon prices (perfect foresight), banked allowances are used particularly in the end of the projection period where the ETS price has increased substantially¹⁷. # Energy consumption The Reference 2013 scenario is characterized by accelerating energy efficiency improvements, in particular until 2020 and continuing throughout the remaining projection period - as demonstrated by the declining energy intensity of GDP. Gross inland consumption (GIC) and GDP growth decouple (Figure 14), a trend that is enhanced by the newly introduced legislation especially on energy efficiency and revised assumptions about economic growth. As becomes apparent in Figure 14, the shift from past increasing trends of energy consumption is occurring in the period 2005-10, where apart from relevant legislation, the economic crisis also has a downward effect on energy consumption. The downward trend on energy consumption commenced before the onset of the economic crisis, with EU energy consumption having peaked in 2006. Despite the gradual economic recovery after the crisis, GIC does not resume growth, instead it continuously decreases until 2035 and demonstrates a moderate increase thereafter, yet staying well below the 2010 level. The projection indicates a shift in the fuel mix of GIC over time towards renewable energy forms (Figure 16). This also contributes towards lower energy intensity since many RES technologies (e.g. hydro, solar, wind) have, in statistical terms, an efficiency factor of 1 thus, the penetration of RES in all sectors, in particular in power generation, induces a further reduction in GIC, given that alternative fossil fuel or nuclear technologies would operate with lower efficiencies. The main drivers of decreasing GIC are the developments in final energy demand. These reflect the implemented energy efficiency policies that include, among others, the Energy Efficiency Directive (EED), Energy Performance of Buildings Directive (EPBD), the Eco-design Directive and a host of implementing Regulations for specific products, CO₂ emissions standards for light duty vehicles etc. Following existing legislation until 2020, the assumed implementation of these measures is delivering significant energy efficiency improvements with effects going also beyond 2020. High international energy prices, as well as the relatively low growth rates projected for the energy-intensive industries, further reduce energy consumption. Beyond 2030, in the absence of additional policies on efficiency, final energy consumption follows an increasing pace, albeit slow. It is thus visible that the developments of the energy system in the decades 2010-20 and 2020-30 will have already set the ground for an economy with lower energy intensity. Finally, the ETS continues to indirectly support energy efficiency in the ETS sectors, throughout the projection period. FIGURE 14: GIC IN RELATION TO GDP ¹⁶ The absolute amount and time profile of the presented surplus is valid for the described and partly simplifying modelling assumptions taken, for example due to the cut-off date and given that the model proceeds in five year steps and the yearly data is based on interpolations and estimates. Other Commission analyses may therefore present different and more up to date results. ¹⁷ ETS back-loading is not included in the modelling as no corresponding legislation exists at the time of this analysis. FIGURE 15: ENERGY INTENSITY PROJECTIONS BY SECTOR 18 FIGURE 16: GROSS INLAND CONSUMPTION FIGURE 17: FINAL ENERGY CONSUMPTION In addition to the considerable energy savings, the projection also indicates a switch in the fuel mix of final energy consumption over time, in favour of renewable energy forms (Figure 17). This shift is driven by the binding targets on RES and energy efficiency policies until 2020 with effects continuing until 2030, and by the ETS even beyond 2030. The share of oil decreases, but remains at a relatively high level as transportation is projected to remain dominated by oil. Consumption of solid fuels declines considerably throughout the projection period. FIGURE 18: TRENDS IN ELECTRICITY DEMAND BY SECTOR In final energy demand, electrification is a persisting trend (Figure 18). This is due to two effects: a shift towards electricity for heating and cooling (due to higher demand for air conditioning and the introduction of electric heat pumps) and a continued increase of electric appliances in the residential and the tertiary sector (mainly IT, leisure and communication appliances). It is also the result of CO₂ standards for light duty vehicles and further electrification of rail – leading to higher uptake of electricity in the transport ¹⁸ The ratio between the energy use and GDP is influenced not only by energy efficiency in transport but also by the evolution of the volume of transport activity to GDP. Therefore, in Figure 24 the relationship between transport energy consumption and transport activity is presented in addition to the relationship between transport energy consumption and GDP. sector. In the period until 2020, when energy efficiency policies are being implemented, the growth rate of electricity demand is less than 0.5% per year up to 2020; thereafter, without specific energy efficiency policies the electricity demand growth rate becomes almost 1% per year. In the following section, we present in detail the trends on final energy consumption by sector. #### Industrial sector The activity of the industrial sector is projected to recover from the current crisis and follow an increasing pace in the future, with the non-energy intensive sectors growing faster. This implies that energy consumption of the sector will grow at a slower rate relative to the activity of the sector. In parallel, following the trends of previous years, energy efficiency of production processes in the sector improves over time in order for the sector to remain globally competitive, with higher gains observed in the period until 2030 (Table 4) supported by the implementation of corresponding policies. Overall, the trend on energy consumption is clearly upward for the period until 2015, following the recovery from the economic crisis; beyond 2015 and throughout the remaining projection period, energy efficiency improvements offset the effects from the growth of sectorial activity, and as a result energy consumption appears to change only moderately over time (Figure 19). These trends are accompanied by a decline in the use of coal and oil, to the benefit of renewable energy forms (biomass and waste) and to a lesser extent electricity (Figure 20). This fuel shift is driven by the mandatory emission reductions that industrial activities should achieve in the context of the Integrated Pollution Prevention and Control (IPPC) and the Large Combustion Plant Directives (LCP), as well as because of national action for complying with the binding national targets of the Effort Sharing Decision (ESD) in the short-term (concerning the non-ETS industries) and the increasing ETS prices (concerning the ETS industries) mainly in the long-term. Switch to biomass and waste is also driven by the upward trajectory of fossil fuel prices and is compatible with the need for resource-efficiency, which will be one of the drivers of global competitiveness. Finally, the provisions on cogeneration in the EED in addition to the Cogeneration Directive promote the penetration of highly efficient cogeneration and the use of waste heat for steam generation in industrial sites. TABLE 4: AVERAGE ANNUAL CHANGE OF ENERGY CONSUMPTION IN THE INDUSTRY SECTOR | CONCOMIN FIGURE THE INDUCTION CECTOR | | | | | |---|---------|---------|---------|---------| | Average annual change of energy consumption
per unit of physical industrial output (%) | | | | | | per unit of physical industrial output (%) | 2010-00 | 2020-10 | 2030-20 | 2050-30 | | Iron and steel | -1.42 | -0.93 | -0.53 | -0.30 | | Non ferrous metals | -2.02 | -0.54 | -0.40 | -0.39 | | Chemicals | -3.30 | -0.68 | -1.20 | -0.77 | | Non metallic minerals | -0.88 | -0.44 | -0.46 | -0.03 | | Paper and pulp | 0.50 | -0.79 | -0.94 | -0.54 | | Food, drink and tobacco | -0.60 | -0.57 | -0.99 | -0.52 | | Engineering | -1.40 | -0.51 | -0.71 | -0.46 | | Textiles | -3.22 | -0.17 | -0.89 | -0.51 | | Other industries | -0.98 | -0.74 | -0.87 | -0.49 | FIGURE 19: FINAL ENERGY CONSUMPTION OF THE INDUSTRIAL SECTOR FIGURE 20: FINAL ENERGY CONSUMPTION OF THE INDUSTRIAL SECTOR BY ENERGY FORM # Residential sector Energy demand in the residential sector is projected to stabilize in the short term. After 2015 and throughout the remaining projection period, final residential energy demand remains below the level of 2010. This is attributable to the fact that the portfolio of policies and regulatory provisions (notably EPBD) for the residential sector that is assumed in the Reference 2013 scenario is very rich, and drives considerable energy efficiency savings. In general, energy efficiency in the residential sector (as well as the tertiary sector) can be improved by: - using more efficient energy equipment (e.g. lighting, electric appliances, heating and cooling appliances), - upgrading energy characteristics of buildings (e.g. thermal integrity of buildings), or - inducing changes in energy consuming behaviour. In the
Reference 2013 scenario, there is a general improvement in the efficiency of energy using equipment across the EU which is related to the effects of the implementation of relevant policies. These policies include notably the EED including the savings obligation on distribution companies and retail sellers, the provision on the exemplary role of public authorities as well as all the other provisions stimulating more energy efficient behaviour. In addition, ecodesign standards as well as energy performance of buildings requirements as well as "soft" measures, such as public campaigns play a role along with measures improving transparency for allowing more energy efficient choices (Labelling Directives). Regarding the energy efficiency obligations on buildings and strict building codes (included both in the EPBD and the EED), they drive investment choices improving thermal integrity of houses and efficiency of heating appliances, with overall final energy demand for heating and cooling purposes decreasing by 8% in 2020, 12% in 2030 and 17% in 2050 relative to 2005. Energy consumed for heating purposes drops to 2000 levels already by 2020 and further decreases thereafter (Figure 22). Regarding the use of different energy forms, increased efficiency requirements drive a shift towards the use of electric heat pumps, which is partly the reason of the increasing shares of electricity consumption in the residential sector. Additionally, the use of heating oil decreases to the benefit of gas, especially beyond 2030, in part because of the relatively low natural gas prices (in comparison to oil). FIGURE 21: IMPROVEMENTS IN EFFICIENCY OF THE ENERGY EQUIPMENT IN THE RESIDENTIAL SECTOR COMPARED TO 2005 The main reason behind the continuous electrification of the sector, as demonstrated in Figure 22, is the increasing penetration of electric appliances and their quality improvements. This concerns mainly "black" appliances (mobile phones, TVs, PCs etc.). At the same time eco-design regulations drive significant energy savings in specific electricity uses; the average efficiency of appliances and lighting improves by approximately 25% in 2020 and by 45% in 2030, relative to 2005. FIGURE 22: FINAL ENERGY DEMAND IN THE RESIDENTIAL SECTOR ### Tertiary sector (services and agriculture) Projections of final energy demand in the tertiary sector follow the same trends as for the residential sector; energy consumption decline strongly between 2010 and 2020, followed by a decade of moderate decrease and a slight increase after 2030. Energy efficiency gains brought about by eco-design policies, energy efficiency policies stemming notably from obligations under the EED and policies on the energy performance of buildings, are very significant, and over-compensate the effects of increasing sectorial activity up to 2030, driving final energy demand below 2010 peak levels throughout the entire projection period. Marked efficiency progress is observed both for heating and for specific electricity consumption, in particular in the medium term (2020-30), driving energy consumption downwards in the period 2010-30, contrasting past increasing trends (Figure 23). Beyond 2030, where no additional energy saving policies are implemented, energy consumption resumes an increasing, albeit slow, pace of growth. FIGURE 23: FINAL ENERGY DEMAND IN THE TERTIARY SECTOR Electrification of the tertiary sector is very significant. The considerable increase in electricity consumption concerns primarily the use of electric appliances and the use of electricity for heating and cooling purposes (heat pumps). The use of heating oil and gas follows a decreasing trend, which is steeper in the period up to 2030, attributable to energy efficiency policies. Throughout the projection period, gas substitutes oil for heating purposes. # Transport sector The activity of the transport sector is growing significantly with the highest growth rates occurring from 2010 to 2030, driven by developments in economic activity. This concerns both passenger and freight transport. Freight transport in particular is growing at higher rates than passenger transport, following more closely the GDP developments. Beyond 2030, the activity of passenger transport continues to grow albeit at slow rates, as a result of stagnant and after 2040 decreasing population, deceleration in GDP growth and saturation of passenger car demand. Freight transport follows a similar trend to passenger activity after 2030, resulting from the slow-down of GDP growth as well as from the shift of economic activities towards services and limits to distant sourcing and off-shoring. Road transport is expected to maintain its dominant role in passenger transport by 2050, despite growing at lower pace relative to other modes (0.6% p.a.). Passenger cars alone would represent about 67% of total passenger transport activity in 2050 although their modal share would decrease by about 7 percentage points between 2010 and 2050. As previously mentioned, the growth slowdown for passenger cars activity could be explained by the car ownership which is close to saturation levels in many EU15 Member States but also by the high congestion levels, the increase in fossil fuel prices and the ageing of the EU population. Transport activity of buses and coaches and powered 2-wheelers would grow at slightly higher rates than passenger cars activity by 2050, 0.7% p.a. and 1.1% p.a., respectively. Overall, the share of road transport (including buses and coaches and powered 2-wheelers in addition to passenger cars) in total passenger transport activity would go down from about 84% in 2010 to 76% in 2050. Air transport is projected to be the highest growing of all passenger transport modes, going up by 133% between 2010 and 2050 (2.1% p.a.), mainly due to the large increase of international trips (e.g. to emerging economies in Asia). Higher potential for air traffic growth (3.1% p.a. for 2010-2050), including for international holiday trips, is expected in EU12 MS due to their less mature markets and faster growing GDP per capita. Aviation activity in EU15 would increase at a lower rate compared to EU12 due to weaker growth of GDP per capita and the available capacity at the airports. Overall, air transport is expected to increase its modal share by about 5 percentage points, from 8% in 2010 to 13% in 2050, and become the second most important passenger mode after road transport. Passenger rail activity is projected to increase by 79% during 2010-2050 (1.5% p.a.) and expand its modal share by 2 percentage points (from 8% in 2010 to 10% in 2050), driven in particular by the completion of the TEN-T core network by 2030 and of the comprehensive network by 2050. High-speed rail sees a significant increase in terms of volume (2.5% p.a. during 2010-2050) and share as a result of the infrastructure build-up and the upgrade of existing railway lines. About 37% of passenger rail traffic, expressed in passenger-kilometres, would be carried by high-speed rail by 2050. Passenger rail competes with both road and air transport. In EU15 a relatively important share of additional demand would be covered by rail (in most cases high-speed rail where investments are foreseen), considering the saturation of passenger car demand. The increase of fossil fuel prices also shifts part of the passenger road traffic to rail. In addition, high-speed rail attracts demand from short-haul air travel. Inland navigation¹⁹ holds a small share of total passenger transport activity and projections show a moderate increase at EU level (0.7% p.a. between 2010 and 2050). Freight transport activity showed steady growth between 2005 and 2007, continuing the 1995-2005 trend. However, the economic crisis led to a reduction of activity in the subsequent years resulting in lower levels in 2010 compared to 2005. The projections show an increase in the total freight transport activity by about 57% (1.1% p.a.) between 2010 and 2050. Notably, the strong growth in activity (1.7% p.a.) in the short-term (up to 2015), driven by GDP developments, allows the recovery of freight transport activity to pre-crisis levels. Freight traffic shows strong correlation with GDP growth until 2030. The completion of the TEN-T core network by 2030 and of the comprehensive network by 2050 is expected to provide more adequate transport infrastructure coverage and support a concentration of trans-national traffic and long-distance flows. It is also expected to provide support for logistic functions and improve inter-modal integration (road, rail, and inland navigation), through the innovative information management systems which are part of the network, and reduce the time losses caused by road congestion. As already mentioned, beyond 2030, weaker growth prospects together with shifts in GDP composition towards services and information activities and limits to distant sourcing and off-shoring contribute to a certain weakening in freight transport activity. Road freight traffic is projected to increase by about 55% between 2010 and 2050 (1.1% p.a.), but growth is unevenly distributed between the EU15 and EU12. The highest growth in road freight transport activity would take place in the EU12 (72% for 2010-2050, equivalent to 1.4% p.a.) where a strong correlation with GDP growth can be observed. Overall, road freight sees a slight reduction in its modal share, from 71% in 2010 to 70% in 2050. By 2050, rail freight features the highest growth among the freight transport modes (79%, equivalent to 1.5% p.a.) and increases its modal share from almost 16% in 2010 to 18% in 2050. The significant increase in rail freight transport activity is mainly driv- - ¹⁹ Inland navigation includes inland waterways and national maritime transport. en by the completion of the TEN-T core and comprehensive network; thus improving the competitiveness of the mode. Inland navigation traffic also benefits from the recovery in GDP growth
and the completion of the TEN-T core and comprehensive network, including support for the logistic functions and improved inter-modal integration, and is thus projected to grow by 41% between 2010 and 2050 (0.9% p.a.). However, the relatively stronger growth in road and rail traffic leads to a slight decrease in its modal share, from about 13% in 2010 to 12% in 2050. Historically, final energy demand in the transport sector has grown in line with the transport activity. However, despite the projected upward trends in transport activity beyond 2010, final energy demand stabilizes by 2050 to levels marginally lower than those observed in 2010. The projections show some weak growth in energy demand (0.3% p.a.) in the short-term (up to 2015), mainly driven by the strong recovery in the freight transport activity following the crisis. Beyond 2015 however, energy demand is decoupling from transport activity (Figure 24). FIGURE 24: TRENDS IN TRANSPORT ACTIVITY AND ENERGY CONSUMPTION The main driver of low final energy demand from transport relative to transport activity is the improvement in fuel efficiency driven by policies, in particular for passenger cars and light commercial vehicles (Figure 26) and the uptake of more efficient technologies for other transport means. In order to comply with the regulations on CO₂ emissions standards for Light Duty Vehicles (LDVs), covering passenger cars and light commercial vehicles (LCVs), manufacturers have to introduce more fuel efficient LDVs into the market. In particular, in passenger road transport energy efficiency of vehicles improves by 21% in 2020 and 35% in 2030 relative to 2005 (Figure 26), leading to a decline in energy demand in passenger road transport by 2030. Beyond 2030, energy demand of passenger road transport stabilizes. Efficiency gains, driven by increasing fuel prices and techno-economic developments, evolve at slower pace in lack of more stringent CO₂ emissions regulations. FIGURE 25: FINAL ENERGY DEMAND IN TRANSPORT Other passenger transport modes also contribute to the decoupling between activity and final energy demand. However this contribution is more apparent in the longer term, from 2030 onwards. Aviation activity increases considerably throughout the projection period leading to increased energy demand. Nonetheless, energy demand grows less than activity as aviation experiences high efficiency gains owing to the introduction of more energy efficient aircrafts and the renewal of the fleet²⁰. Efficiency improvements in aviation amount to 12% in 2020 relative to 2005, and 31% by 2030. Passenger rail features some relatively lower rates of improvement in efficiency by 2030 compared to road and aviation. In addition to the currently high efficiency of rail relative to other transport means, the long lifetime of the rolling stock delays its renewal and therefore the improvements in efficiency. $^{^{20}}$ The International Air Transport Association (IATA) has set ambitious targets to curb fuel consumption and mitigate GHG emissions from aviation in its Carbon Neutral Growth initiative, according to which the aviation industry has committed to an average improvement in fuel efficiency of 1.5% per year by 2020 and a cap on aviation CO_2 emissions from 2020 (carbon-neutral growth). By 2050 the CO_2 emissions from aviation should be reduced by 50% relative to 2005 levels. Source: $[\]label{lem:http://www.iata.org/pressroom/facts_figures/fact_sheets/pages/environment.aspx.$ The improvements would be mainly attributed to fuel substitution; in particular switching from diesel to electricity in areas where electrification is an economically viable option and in line with the provisions of specific initiatives by MS. FIGURE 26: TRANSPORT EFFICIENCY IMPROVEMENT Efficiency improvements also take place in freight transportation, and moderate the effect of the increasing activity (which is growing stronger than for passenger transport) on energy demand. Heavy goods vehicles (HGVs), which throughout the projection period account for more than 80% of energy consumed in freight transport, undergo improvements in specific fuel consumption driven in particular by the increasing fossil fuel prices. Fuel costs represent a considerable part of operational costs of HGVs and their minimization is among the main objectives of HGV manufacturers and fleet operators. Improvements in technology, related among others to vehicle design or vehicle powertrain, aim to reduce vehicle specific fuel consumption. The reductions in vehicle specific energy consumption of HGVs become more apparent in the long term, as the renewal rate of the HGV fleet is slow. LCVs on the other hand, show high efficiency gains already by 2020 as a result of CO2 emissions regulations, but their effect on energy demand of freight road transportation is not significant due to their small share in energy demand. Overall, fuel consumption in road freight transport per Mtkm is projected to decrease by 6% in 2020, 15% in 2030 and 22% in 2050 relative to 2005. Freight rail follows similar developments as passenger rail; it sees moderate improvements in specific energy consumption, partly driven by the substitution of diesel by electricity. However, by 2050 the efficiency gains in rail freight are somewhat higher than for road freight, in lack of specific policies for CO₂ emissions reduction or energy efficiency of newly registered HGVs. By 2050, improvements in specific fuel consumption for inland navigation amount to 24% relative to 2005, slightly lower than those achieved in rail freight. The obligation to meet CO2 standards for LDVs is reflected in the change of the transport fuel mix (Figure 27). Emissions performance standards for vehicles together with favourable taxation of diesel by some Member States result in wide scale substitution of petrol with diesel in conventional passenger cars, and favor the introduction of diesel hybrid vehicles (Figure 28)²¹. Consumption of petrol declines considerably until 2030 and stabilizes from thereon to 2050, as no more stringent requirements for fuel-efficiency are introduced. Consumption of diesel increases by 2015 and stabilizes in the period 2015 to 2050, becoming the dominant fuel in passenger cars and continuing to be the primary fuel for heavy duty vehicles (HGVs, buses and coaches). Heavy duty vehicles have little potential to switch to alternative fuels such as LNG as this would require significant investments in infrastructure build-up across the EU, which is not assumed to be the case in the Reference 2013 scenario²². Consumption of jet fuels in aviation increases steadily by 2050 due to the increase in transport activity and despite improvements in efficiency; fossil fuels continue to dominate, and only after 2035 biofuels (biokerosene) slowly start penetrating the aviation fuel mix - driven by high ETS prices. ²¹ Despite the relatively higher carbon intensity of diesel, dieselfueled vehicles are more fuel economic than gasoline-fueled vehicles. ²² The Clean Power for Transport package, adopted by the European Commission in January 2013, is not reflected in the Reference scenario 2013. Biofuels in general, make significant inroads in transport by 2020, driven by the legally binding target of 10% renewable energy in the transport sector (RES-T target). In parallel with the shift towards diesel vehicles, the share of biodiesel consumption increases, also driven by its uptake in road freight transport. Beyond 2020, with no further tightening of the RES-T target, biofuels maintain their share as a result of improved economics of the biofuel supply side and the increasing fossil fuel prices. FIGURE 27: FINAL ENERGY DEMAND IN TRANSPORT BY FUEL TYPE Electricity consumption in transport sees a steady increase as a result of rail electrification and the penetration of alternative electric powertrains in road transport. Electrically chargeable vehicles (EVs), in particular in the segment of passenger cars and LCVs, emerge around 2020 as a result of EU and national policies as well as incentive schemes aiming to boost their penetration. Plug-in hybrids (PHEVs) hold the largest share among EVs due to their ability to use both power-trains alternatively (internal combustion engine or electric motor) and they would represent two thirds of EVs in 2050. Some improvements in battery costs are assumed to occur allowing for a decrease in capital costs together with slow increase in infrastructure availability. The penetration of electric vehicles occurs mainly in niche markets, in urban areas for urban commuting and municipal fleets, due to limited range of vehicles, which is assumed to persist. By 2050 the share of electric vehicles in the total stock of cars reaches approximately 8% (Figure 28). Finally, other energy forms such as LPG and natural gas maintain a rather small share in the final energy demand of the transport sector. Passenger cars running on LPG and CNG see a moderate increase especially stemming from countries with re-fuelling infrastructure already in place; in Member States where such infrastructure is currently not in place the uptake of CNG and LPG vehicles on a commercial basis is limited in the Reference 2013 scenario. FIGURE 28: STRUCTURE OF PASSENGER CARS FLEET AND FUEL CONSUMPTION #### Power generation Developments in power generation in the Reference 2013 scenario are driven by the implementation of RES policies to the horizon of 2020 and by growing ETS carbon prices – also in the longer term, especially after 2030. Both induce high level of RES penetration in power generation throughout the projection period, in particular variable RES, which are demanding in terms of balancing services and system reserves. In order to support the penetration of RES, the requirements for capacity back-up by thermal plants are high, and are met in the projection by investments on flexible gas plants and by extensions of lifetime of old (typically
open cycle) plants. In the short term, in particular up to 2020, developments are characterized by two main aspects: 1) the necessity to achieve the RES targets, and 2) planned investments in existing and new power plants. The first necessity stimulates RES growth whereas the second determines to a large extent the developments in conventional power plants. Considering the very long lead times for large (in particular) conventional plants, investments that will take place up to 2020 are already known today. The PRIMES model fully includes in its database all currently known planned investments, including lifetime extensions as well as planned decommissioning, based on commercial databases (e.g. Platts) and plans of large companies in all the Member States. The projections of large investments in this decade are strongly determined by such known investments and decommissioning plans. The Reference 2013 scenario also considers country specific potentials for RES penetration in addition to the specificities by Member States in policies regarding nuclear and CCS options. Moreover, the scenario assumes completion of the internal energy market and the successful implementation of the 10-year network development plan of ENTSO-E (TYNDP), which entails considerable investments in electricity transmission systems. These infrastructure developments include refurbishment or construction of transmission and distribution power lines, the extension of the grid, enabling capacity additions and supporting the integration of the high levels of intermittent RES in the system. Moreover, they allow for a general increase of net transfer capacities (NTC) values. thus leading to a higher potential for trade within the internal energy market. The possibility to make more extensive use of interconnectors and new transmission grids allows for use of sites with lower costs, even when these are far away from consumption centres. As a result the fully interlinked system allows for better optimisation of resources and capacity expansion. Regarding carbon capture and storage (CCS) the PRIMES model has been updated to take into account the difficulties that this technology has been encountering over the past years related to the development of demonstration plants and storage facilities. The cost of CCS power plants construction has been revised accordingly making the technology more expensive, in particular the storage cost-supply curves as well as the technology itself. In countries (e.g. Austria) with stringent legislation, the storage costs are extremely high, making investments in CCS storage uneconomical throughout the projection period. Also the assumptions on nuclear have radically changed compared to previous projections based on recent policy developments, changed economic situation and detailed surveys into the possibilities of extending the lifetime of existing power plants. The possibilities of extension of lifetime for power plants have been analytically assessed through a plant by plant survey based on the age, construction type (generation) of the power plant and national legislation. The construction of new power plants on new sites (i.e. in locations where there are currently no power plants) has become considerably more expensive based also on issues related to public acceptance. The construction of new power plants on existing nuclear sites is limited based on surveys which assess the possibilities (e.g. based on spatial limitations) of expansion in existing locations. The model updates concerning limitations, the new national legislation and the higher costs lead to lower perspectives for nuclear than in past projections. ### Electricity generation In the short term, the set of EU and national specific policies that promote RES (notably implementation of supportive financial instruments such as feed-intariffs) drive significant penetration of RES in power generation. The binding short-term RES targets are assumed to be achieved in the Reference 2013 scenario. RES expansion is also facilitated by the assumed developments of grids and new equipment for controlling grid operation, especially in the case of smart grids. Up to 2020, the share of RES in electricity generation (RES-E indicator²³) reaches 35%, a significant increase from the 20% in 2010. Beyond 2020, no binding targets on RES are currently set, however the share of RES in electricity generation continues to increase attaining 43% in 2030 and 50% in 2050, driven by the increasing ETS prices, along with the continuation of some direct support schemes²⁴ and a continuation of enabling policies, such as streamlined authorization procedures, priority - $^{^{\}rm 23}$ Calculated according to the definitions of the RES Directive used also for the pertinent provisions of EUROSTAT statistics After 2020, feed-in tariffs or equivalent support schemes are substantially reduced depending on the maturity of the technology and the MS. access, where applicable, and the benefits that local population may have from investing in local RES. FIGURE 29: ELECTRICITY GENERATION BY FUEL AND BY PLANT TYPE While RES provide growing shares in electricity generation (up to 50% in 2050), the contribution of variable RES (solar, wind as well as tidal/wave in the definition used here) remains significantly lower. These variable RES combined account for 19% of total net electricity generation in 2020, up from only 5% in 2010. Their share is rising to 28% in 2030 and 35% in 2050. Wind provides the largest contribution from RES supplying 15% of total net electricity generation in 2020, rising to 22% in 2030 and 26% by 2050. A share of 30% of total wind generation is produced from wind off-shore capacities from 2020 onwards. Total wind capacities increase to 205 GW in 2020, 305 GW in 2030 and 413 GW in 2050, up from 85 GW in 2010, of which around a quarter is installed off-shore in 2020 and beyond; higher full load hours of off-shore wind allow for the higher share in generation compared with capacity for off-shore wind. Generation from PV contributes 4% in net generation by 2020. Beyond 2020, PV generation continues to increase up to 6% in 2030 and 9% in 2050; PV capacity is projected to reach 110 GW in 2020, up from 30 GW in 2010. Investment is mostly driven by support schemes and the decreasing costs of solar panels. While support schemes are being reduced, costs continue to fall and total PV capacities reach 149GW in 2030 and 231GW in 2050. The use of biomass and waste combustion for power generation also increases over time, both in pure biomass plants (usually of relatively small size) and in co-firing applications in solid fuel plants; biomass attains a share in fuel input in thermal power plants of 16% in 2020, 19% in 2030 and 26% in 2050²⁵. Biomass also becomes very significant in CHP, in which it contributes 33% in 2020, reaching 35% in 2030 and 41% in 2050. Biomass plant capacities reach 35 GW in 2020, up from 25 GW in 2010, 39GW in 2030 and 66 GW in 2050. Above 50% of biomass power plants use solid biomass; biogas use increases in the short term and reaches a share of approximately 25% by 2020, with a slight increase in the remainder of the projection period. The relative contribution of hydro generation remains rather constant at 10-11% of total net generation, with small hydro slightly increasing. The share of geothermal electricity generation rises from 0.2% in 2020 to reach 0.6% in 2050. Tidal and wave, which mainly develop after 2020 in a few MS with such resources, represent 0.2% of total EU net generation by 2030, reaching 0.4% at the end of the projection period. Generation from conventional thermal plants decreases continuously up to 2030 and stabilises thereon, supported by the introduction of CCS. The introduction of CCS starts with the demonstration plants . . $^{^{25}}$ Calculated following EUROSTAT definitions, i.e. excluding energy consumed by Industrial sectors and refineries for on site CHP steam generation. built up to 2020, 26 but only minor additions occur in the projection until 2030. CCS develops mainly after 2030 reaching 1.7% of gross electricity generation in 2035 and rising further to 7% by 2050. In 2050, total net CCS generation capacity amounts to 38 GW. CCS power generation in this scenario requires a cumulative storage capacity of approximately 670Mt CO_2 up to 2050. The distribution of CCS by country is very uneven as the analysis is considering the specific policies as well as the availability of storage sites by MS^{27} . Generation from solid fuels declines significantly throughout the projection period, in particular in the period 2030-50, as ETS prices increase considerably. Investment in non-CCS solid fuel plants after 2020 amount to 33.6 GW, whereas 32.4 GW are added in the decade 2011-20. Phasing out of solid generation is very intense, as availability of CCS technologies is relatively limited. By 2050, more than half of solid-fuelled generation is produced from facilities with installed CCS technologies. Gas-fired generation slightly decreases until 2020, but increases thereafter, in 2050 reaching the same levels as in 2010. Total investment in gas-fired plants in the period 2011-50 amounts to net 335 GW (225 GW gas plants are operating in 2010). This strong increase in gas capacity despite rather stagnant generation from gas highlights the key role that gas is increasingly playing as a back-up technology for variable RES. The interplay of continuously declining ETS allowance supply, RES policies and the demand levels stemming from the level and structure of energy consumption entails only limited gas investment given the existing plants and new investments (notably for coping with RES targets) and the effects of energy policies, especially on energy efficiency. The power plant investments have been modelled in each period taking account of all relevant factors, in particular of the ETS price, while the ETS price in turn is influenced by
such investments. The increase in ETS prices therefore counteracts the increasing effect on emissions that would otherwise occur from the relatively low natural gas price. Gas plays a crucial role in the context of emission reduction targets and increased penetration of intermittent RES. As a fuel it is less CO2 emissions intensive relative to other fossil fuels, and gas units are flexible enough to serve the increased balancing requirements of RES. Overall, generation from gas power capacities provides around 20% of total net generation up to 2040, falling only 1 percentage point in the decade to 2050. The contribution of gas to total net thermal generation ranges between 45% and 55% throughout the projection period. Generation from CCGT in particular constitutes 35% and 42% of total thermal generation in 2020 and 2030 respectively, reaching 45% in 2050. Industrial gas technologies serve CHP purposes, while gas peak devices reach 7% of total thermal generation at the end of the projection period. Cogeneration develops significantly in the Reference 2013 scenario, driven by the corresponding provisions of the EED. The share of gross electricity produced by CHP plants attains a level around 16% throughout the period from 2020 until 2050, significantly up from 13% in 2010. Specific nuclear phase-out policies that have been adopted by some EU MS (Germany and Belgium), along with the higher cost induced by increased security requirements, drive electricity generation from nuclear downwards in the short term (up to 2025). Thereon, the projected level of investments surpasses decommissioning of nuclear capacity and by the end of the projection period installed nuclear capacities are almost equal to 2010 levels. Participation of nuclear in the generation mix remains, however, lower than today, reflecting rising electricity generation volume. The projected investments in nuclear capacity mainly occur on existing sites or are lifetime extensions through retrofitting; there are very few projected investments in nuclear capacities on new sites. Out of _ ²⁶ The included power plants are: UK (White Rose) 0.4478GW net capacity, coal CCS; Netherlands (Rotterdam Capture and Storage Demonstration Project-ROAD) 0.227GW net capacity, coal CCS; Poland (Belchatow) 0.2294 GW net capacity, coal CCS. $^{^{27}}$ In PRIMES it is assumed that no cross-border trade of $\mathrm{CO_2}$ is possible therefore the $\mathrm{CO_2}$ captured in a country must also be stored in the same country. the 176GW of capacity additions, only 12GW are capacities constructed on new sites. Considering the cumulative investments in the period 2011-50, retrofitting investments constitute approximately one third of overall investments. As the share of non-dispatchable generation (variable RES) in the system is increasing, profit margins of conventional generation are diminishing²⁸ thus undertaking large new investments in dispatchable capacities risks becoming increasingly uneconomic. Retrofitting investments, where possible, are desirable from an economic perspective, despite their short lifetime, due to their low capital intensity compared to the construction of new plants. Following the retirement of obsolete thermal capacity and strong investment in modern thermal power plants there is an on-going trend towards higher efficiency of thermal electricity generation. This happens despite an increasing share of CHP, which optimises the combined generation of electricity and heat from the same input fuel. Overall, CHP contributes to greater energy efficiency. This feature is not present for CCS, which actually requires more energy for the same output, but delivers this electricity output almost carbon free. As can be seen from Table 5 the shares of zero (RES, nuclear), and low carbon technologies (here: CCS) are rising or at least remaining stable after 2020 (nuclear). Finally, in the context of high intermittent RES power generation, the projection shows increasing volumes of electricity trade over time to cover balancing requirements (Table 6). This is possible under the assumption of higher potential of trade in the internal energy market, induced by the successful development of the TYNDP. FIGURE 30: INSTALLED POWER CAPACITIES FIGURE 31: PROJECTED CAPACITY ADDITIONS ^{*} capacity additions minus decommissioned capacity ²⁸ Reflecting, among other things, lower wholesale prices following substantial supply from capacity with close to zero marginal costs over large parts of a typical day including around a noon peak of demand. **TABLE 5: INDICATORS OF POWER GENERATION** | | 2010 | 2020 | 2030 | 2050 | |---|------|------|------|------| | Efficiency for thermal electricity production (%) | 38.4 | 40.8 | 42.7 | 44.6 | | CHP indicator
(% of electricity from CHP) | 12.6 | 15.8 | 16.1 | 16.2 | | CCS indicator (% of gross electricity from CCS) | 0.0 | 0.2 | 0.5 | 6.9 | | Non-fossil fuels in electricity generation (%) | 48.5 | 58.0 | 66.3 | 72.8 | | - nuclear | 27.5 | 21.9 | 21.8 | 21.3 | | - renewable energy forms
and industrial waste | 21.0 | 36.1 | 44.5 | 51.6 | TABLE 6: VOLUME OF ELECTRICITY TRADE²⁹ | Sum of all export and import flows of electricity as simulated by the model | | | | | |---|-------|-------|-------|-------| | 2010 2020 2030 2050 | | | | | | Nordic | 21.6 | 45.4 | 57.8 | 93.6 | | | | | | | | British islands | 5.2 | 22.9 | 16.1 | 14.6 | | North-West EU | 54.8 | 94.4 | 137.2 | 110.9 | | Iberian | 12.1 | 11.0 | 14.9 | 33.2 | | Central-South EU | 60.4 | 63.8 | 62.9 | 93.8 | | Central-East EU | 27.3 | 20.6 | 30.1 | 36.1 | | Baltic States | 11.4 | 4.0 | 7.9 | 12.1 | | South East Europe | 32.0 | 44.8 | 62.2 | 81.0 | | with outside Europe | 23.4 | 10.7 | 15.5 | 9.9 | | Total | 248.1 | 317.6 | 404.8 | 485.3 | ### Steam and heat supply Steam and heat demand continues to grow in the EU28 till 2020 and then stabilises. Main sources of demand are industry and households. On the supply side, as explained above, the role of cogeneration develops significantly in the Reference 2013 scenario, driven by the corresponding provisions of the EED. While electricity generation from CHP plants increases throughout the projection period, steam output increases up to 2020 and remains almost constant throughout the projection period. The role of cogeneration in steam and heat supply grows from 73% in 2010 to 76% in 2030 and 80% in 2050. Production of steam from district heating units consequently decreases over time. Industrial boilers and industrial CHP plants decrease only slightly over the projection period due to increasing efficiency their steam output increases slightly. ²⁹ The modelling results for the statistical year 2010 appear to be lower than the corresponding published data from ENTSO-E. This is attributed to the limited time resolution of the load curves assumed in the model. The figures in Table 5 should be read as an indication of the trend that trade flows will follow, rather than as projections of their absolute level. In terms of district heating fuel input, the share of solids and oil decreases considerably and the share of gas decreases as well but at a slower rate and only till 2030. Biomass is used increasingly representing almost 50% of fuel input in 2020 and 57% in 2050 (in comparison to 26% in 2010). FIGURE 32: FUEL INPUT FOR STEAM GENERATION ### Electricity costs and prices The developments in the EU28 power sector have significant impacts on energy costs and electricity prices, in particular in the short term. Power generation costs significantly increase by 2020 relative to 2010, mainly as a consequence of higher investments due to the need for significant capital replacement and higher fuel costs (because of the large increase in international fossil fuel prices). Grid costs also increase to recover high investment costs in grid reinforcements and interconnectors, which are fully consistent with the provisions of the ENTSO-E TYNDP as well as the achievement of the RES 2020 target. Smaller components of the cost increase are national taxes and ETS allowance expenditures. In addition, there are the arithmetic effects of successful energy efficiency policies, which through curtailing electricity demand reduce the denominator for sharing out the electricity costs while the numerator is less affected due to the high share of fixed costs in electricity generation and supply. As a result, average electricity price in the period 2010-20 increases by 31% (Table 7). TABLE 7: EVOLUTION OF COST COMPONENTS OF ELECTRICITY PRICE IN 2010-20 | €/MWh | diff. 2010-20 | % contribution | |---|---------------|----------------| | Fixed and capital costs | 14.2 | 34.5 | | Variable and fuel costs | 4.5 | 11.1 | | Tax on fuels and ETS payments | 3.8 | 9.1 | | Transmission, distribution and sales costs | 7.5 | 18.3 | | Other costs (imports, recovery for RES*) | 8.4 | 20.6 | | Excise and VAT taxes | 2.6 | 6.4 | | Average price of electricity for final demand sectors (after tax) | 41.0 | | ^{*}RES supporting costs passed on to consumers FIGURE 33: COST COMPONENTS OF AVERAGE ELECTRICITY PRICE FIGURE 34: PRICE OF ELECTRICITY (PRE-TAX) BY SECTOR Beyond 2020, average electricity prices remain broadly stable up to 2035 and then are projected to moderately decrease up to 2050 (Figure 33 and Figure 34), as the benefits, in terms of fuel cost savings, resulting from the enormous restructuring invest- ### Calculation of electricity prices in PRIMES The electricity prices in PRIMES are calculated in order to recuperate all costs including those related to renewables including feed-in-tariffs, grid costs, and investment costs including stranded investments, back-up and reserve costs, etc., and including some profit margin. The process to determine the electricity prices in PRIMES can be divided
into four steps: i) Determination of total system costs under least cost unit commitment and least cost expansion conditions mimicking well-functioning markets. ii) Simulation of wholesale markets by country and estimation of marginal system prices reflecting long run marginal costs. iii) Matching of load profiles of customer-types with the duration curve of long term marginal prices with customers sorted in descending order of their load factor mimicking bilateral contracting. iv) Calculation of prices by sector based on price levels by customer type calculated in step (iii) and the recovery of total system budget including variable generation costs and annuity payments for capital costs, recovery of additional costs for RES and cost of grid differentiated by voltage type. Grid cost recovery is based exclusively on load payments at average grid tariffs determined as levelised costs of regulated asset basis. The pricing approach corresponds to the Ramsey-Boiteux methodology and allows for the differentiation of electricity prices by sector. ments in electricity supply come increasingly to the fore. In addition, lower technology costs from technology progress and learning over time help contain electricity prices together with deceleration of gas price increase. Over time, the structure of costs slightly changes; capital intensive investments (RES and CCS) and increasing grid costs bring a decrease of the share of variable cost components and a corresponding increase in the capital cost components. ### Primary energy supply and import dependency The trend in total primary energy supply is downward throughout the projection period, with a moderate increase after 2035; energy efficiency gains in final energy demand are the main factors behind this trend. In parallel, there is a shift in primary energy supply towards RES along with a decline in the supply of solid fuels as well as oil (Figure 35). Natural gas maintains an almost stable share in primary energy supply throughout the projection period. Nuclear energy sees a decline in the short term (attributable to the nuclear phase-out that is being pursued by some Member States) but is projected to resume a moderate increasing trend in the decades after 2020. Recovery from the economic crisis brings an upward effect on energy demand, observed up to 2015, which is consequently reflected on primary supply and import dependence (mainly for natural gas and solids). This trend is reversed until 2020, as the shift towards the consumption of RES in parallel with the improvements in energy efficiency (which lowers the demand) have a positive effect on import dependency (Figure 37). Evolution of primary energy production follows the declining trend of primary energy supply, it is however steeper and continuous throughout the projection period (with a small increase in the period 2035-45), as it reflects the depletion of domestic fossil fuel reserves. The mix in primary energy production changes considerably over time, with RES (including biomass) becoming the dominant energy form (Figure 36). FIGURE 35: PRIMARY ENERGY SUPPLY FIGURE 36: PRIMARY ENERGY PRODUCTION The situation in imports evolves only moderately. Beyond 2020, despite the decreasing trend in final energy demand for fossil fuels, limited domestic resources result in an increase in imports of natural gas and oil products (Figure 38), which drive net imports as well as import dependence moderately upward. By 2030, import dependence reaches 55%, and by 2050 it is close to 57%. FIGURE 37: PRIMARY ENERGY IMPORTS FIGURE 38: NET IMPORTS BY FUEL The external fossil fuel bill of the EU is projected to rise in constant prices by around 50% from 2010 to 2030 and exceeds 2010 levels by around 80% in 2050, reaching around 500 bn €'10 and 600 bn €'10 in 2030 and 2050, respectively. Biomass supply, which is projected to be mostly indigenous in the EU, increases significantly over time following the developments of domestic industry which is increasingly using advanced feedstock and technologies. Until 2020, the increase in the demand for biofuels is faster than the growth of the domestic production, resulting in a substantial increase in the share of imported biofuels relative to past levels. Beyond 2020, domestic production catches up, and the share of imported biofuels remains stable until the end of the projection period. ### CO₂ emissions The developments in the EU according to the Reference scenario energy projections that have been described so far, following the provisions of the EU ETS, the RES Directive, the ESD, the EED and other specific policies, result in reduced energy intensity of activities in parallel with reduced carbon intensity of power generation and energy demand. The combined effect of these developments is that CO₂ emissions in the EU are projected to decrease continuously until 2050. CO₂ emissions reduction is very significant, in particular in the power generation sector, resulting mainly from the ETS, in particular in the longer term. In other sectors, CO₂ emissions reduction is mainly driven by the energy intensity decreases that are induced by policies on energy efficiency. The evolution of the generation mix implies a steady decrease in carbon intensity of power generation (Figure 39) and leads to significant emissions reductions from the sector. Carbon intensity of power gen- Carbon intensity of power generation from thermal CO₂ emissions of power generation (MtCO₂) plants (tCO₂/MWhe+MWhth) 1800 0.70 1600 0.60 Refinery boilers 1400 0.50 0.50 Industrial boilers 1200 0.41 0.40 0.33 1000 District heating 0.30 800 0.22 ■ Thermal power 600 0.20 plants 400 0.10 200 0.00 2000 2010 2020 2030 2040 2050 2000 2010 2020 2040 2050 FIGURE 39: CO₂ EMISSIONS OF POWER GENERATION AND ENERGY TRANSFORMATION eration from thermal plants decreases by 26% in 2020 relative to 2005. The corresponding figure 2050 is 70%. A significant factor of emissions reduction in power generation is the higher CHP market penetration the increasing and use of biomass in cogeneration, which make steam generation less carbon intensive over time. In the longer term, the introduction of CCS technologies contributes to further emissions reduction; in 2030 the share of total CO_2 emissions from power generation that are captured is small, being slightly higher than 1%, however it is projected to rise to 48% of the remaining low emission level by 2050. Overall, in 2020, total CO_2 emissions of power generation are reduced by 29% relative to 2005; by 2030 and 2050, total emissions reduce by 45% and 70% respectively. Also in the industrial sector, the ETS drives a shift towards less carbon intensive fuels, for both energy related and process related uses. In parallel, activity of the sector is projected to grow faster for non-energy intensive industries. Industry as a whole is also expected to make substantial efforts on energy efficiency as it is confronted with the increasing energy prices and the global competition. The resulting effect on energy-related carbon intensity of the industrial sector is a 14% decrease by 2020 relative to 2005, which is projected to reach 19% until 2030 and 29% until 2050. As demonstrated in Figure 40: Energy-related CO2 emissions of the industrial sector the impact of energy intensity decreases is driving the bulk of achieved emissions reduction. FIGURE 40: ENERGY-RELATED CO₂ EMISSIONS OF THE INDUSTRIAL SECTOR Process related emissions³⁰ decrease only slightly in the short term (2% reduction in 2020 relative to 2005) but decrease becomes considerable in the long term (15% reduction in 2030), especially in the last decade of the projection (69% reduction in 2050) following the increasing trends of ETS prices, which make CCS for industrial processes an economically viable option. The effect on emissions from energy intensity decrease is even more considerable for the residential sector (Figure 41), driven by increasing international fuel prices and policies on eco-design and performance of buildings, including the EED. The effect of these policies, in combination with renewables policies and national specific policies on reducing pollutants (thus driving a shift towards less carbon intensive fuels), drives a decrease of carbon intensity of the sector by 17%, 23% and 32% relative to 2005 in 2020, 2030 and 2050 respectively. FIGURE 41: CO₂ EMISSIONS OF THE RESIDENTIAL SECTOR Similarly, in the tertiary sector (Figure 42), a significant progress occurs in terms of energy intensity decrease driven by rising fuel prices and energy efficiency policies, with projections showing a shift toward less carbon intensive fuels and electricity. Overall emissions decrease substantially throughout the projection period, achieving carbon intensity re- $^{^{\}rm 30}$ These include also the small amount of $\rm CO_2$ emissions in the fugitive, solvent and waste sectors. duction of 24%, 36% and 46% relative to 2005 in 2020, 2030 and 2050 respectively. FIGURE 42: CO₂ EMISSIONS OF THE TERTIARY SECTOR In transport, CO_2 emissions (excluding international maritime) go down by 8% between 2010 and 2050. CO_2 emissions decrease until 2035 and slightly increase thereafter primarily driven by CO_2 emissions growth in freight road transport and aviation (Figure 43). Fuel efficiency gains driven by CO_2 standards for LDVs as well as the increasing fossil fuel prices result in significant emission reductions relative to current trends. Decreases in carbon intensity of energy consumption are less pronounced as the projections do not show a significant shift towards alternative fuels. A shift to alternative fuels, including electricity, is mainly projected in the longer run for the passenger cars segment and in rail. The main drivers of declining emissions are policies on CO_2 emissions from LDVs. These bring about a considerable decrease in emissions from passenger cars and light commercial vehicles, with the highest
reduction taking place in the period 2010-20. Beyond 2035, CO_2 emissions from passenger road transport stabilize with no further tightening of CO_2 standards assumed. Aviation emissions are increasing over the projection period, however at a slower rate than aviation activity, primarily due to the fuel efficiency improvements and the slow penetration of bio-kerosene beyond 2035, fostered by rising ETS prices. CO₂ emissions from passenger rail are decreasing as a result of switching from diesel to electricity and the shift from conventional passenger rail to high-speed rail. FIGURE 43: CO₂ EMISSIONS OF THE TRANSPORT SECTOR Regarding freight transport, CO_2 emissions steadily grow throughout the projection period. The main contributor to CO_2 emissions growth is road freight, where the increased activity surpasses improvements in specific fuel consumption, especially for HGVs. CO_2 emissions from other modes (rail and inland navigation) hold a small share in total freight emissions. Figure 44 and Figure 45 depict the evolution of total CO_2 emissions and indicate two main characteristics³¹; the first one is that dedicated policies result in ETS CO_2 emissions reducing faster than overall emissions. Moreover, the trend in CO_2 emissions shows a very steep decrease in power generation, whereas emissions in the field of transport increase compared to 1990 and decrease at much slower pace between 2010 and 2050 due to the relatively high marginal abatement costs in this sector. In the long term, as power generation becomes almost completely carbon-free, the transport sector becomes the largest source of CO_2 emissions. FIGURE 44: EVOLUTION OF CO₂ EMISSIONS FIGURE 45: EVOLUTION OF CO₂ EMISSIONS BY SECTOR ### Non-CO₂ emissions and their drivers Current and future emissions of anthropogenic non-CO₂ greenhouse gases (GHGs) have been estimated for the Reference scenario using the GAINS model. The input of energy activity drivers was taken from PRIMES model results and agricultural activity drivers were derived from CAPRI model results (see box on the next page). Drivers for other relevant sectors (e.g., waste and F-gases) were developed within the GAINS model to be consistent with the macroeconomic projections as described in section 2. The non-CO₂ GHGs considered here are the ones targeted under the Kyoto protocol, i.e. methane (CH₄), nitrous oxide (N2O) and three groups of fluorinated gases (Fgases) viz. hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF₆). Emissions of non-CO2 GHGs have been expressed in terms of Mt CO₂eq adopting IPCC AR2 Global Warming Potentials (GWPs) over 100 years, i.e. on a weight-equivalent basis the CO2 equivalent warming potential adopted for CH₄ is 21 (i.e. 1t CH₄ equals 21t CO_2 eq), for N_2O it is 310 (i.e. 1t N_2O equals 310t CO₂eq) and for the different F-gases have a GWP which ranges between 140 and 23900 depending on the F-gas. The GAINS model estimates for CH₄ and N₂O emissions in year 2005 are aligned with the emissions reported by Member States to the UN-FCCC (as of April 2012) by introducing country- and gas specific calibration residuals. These carry over as constants to all future years. The constants reflect differences in the methodological approaches taken by countries relative to the consistent GAINS model approach, as well as minor emission sources which countries report that are not captured in the GAINS ³¹ For consistency reasons PRIMES calculates energy-related CO₂ emissions based on the fuel use reported in Eurostat energy balances and projected in PRIMES. The calculated emissions may therefore vary from energy-related CO₂ emissions reported to UN-FCCC. Process related and other CO2 emissions are projected starting from the emission inventories for 2005 and 2010 as reported to the UNFCCC in May 2012. Starting from this basis, PRIMES total CO2 emissions are calibrated to total CO2 emissions reported to UNFCCC in 2012 for 2005 to the extent reasonably possible. In particular, adjustments have been done for process-related emissions to avoid possible double counting of CO2 emissions. PRIMES ETS sector coverage corresponds to the phase 3 ETS scope as valid since 2013. ETS emissions are calibrated to 2005 and 2010 ETS CO₂ emissions, with higher importance accorded to calibration for 2005, based on verified emissions and estimates for scope adjustments and additional sectors. model structure³². No calibration was conducted for F-gas emissions, because of large variation between countries in the quality and completeness of the reported emissions. Non-CO₂ GHGs are emitted from a variety of sources and sectors. Figure 46 shows the contribution of the major sectors to total non-CO₂ emissions in 2005 and the projected development to 2050 in the Reference scenario. Non-CO₂ GHG emissions in EU28 are expected to decline from 903 to 728 Mt CO₂eq between 2005 and 2030 and stabilize on that level throughout the remaining projection period. The agricultural sector is a major contributor to emissions, responsible for over 50% in 2005 and with only minimal decline expected in the future. The largest decline in emissions is expected to take place in the waste and industry sectors in response to existing control regulations. FIGURE 46: NON-CO₂ GHGS BY MAJOR SECTORS IN EU28 2005 TO 2050 Table 8 provides an overview of the main national policies affecting the Reference scenario non-CO2 GHG emissions projections in EU28. The relevant EU level policies (see overview table in section 1.3) are in particular the EU Landfill Directive and the EU Fgas regulation, as well as the EU ETS. In the following sections, the emission projections are described ³² A detailed description of the GAINS methodology for estimating non-CO₂ GHGs and projections for EU28 can be found in Höglund-Isaksson, L., W. Winiwarter, P. Purohit: Non-CO2 greenhouse gas emissions, mitigation potentials and costs in EU28 from 2005 to 2050, Part I: GAINS model methodology, International Institute for Applied Systems Analysis, Laxenburg, Austria. by sector and in more detail - explaining drivers, current control and reasons for overall trends. The Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model is an integrated assessment model developed by the International Institute for Applied Systems Analysis (IIASA) for the purpose of describing policy-relevant pathways of atmospheric pollution from anthropogenic sources. Greenhouse gases (GHGs) and many of the traditional air pollutants have common sources, their emissions interact in the atmosphere, and separately or jointly they cause a variety of environmental effects at the local, regional and global scales. The GAINS model addresses emission control strategies that simultaneously address air pollutants and greenhouse gases. The GAINS model was used to produce projections of EU28 non-CO₂ GHG emissions. The model includes information on emission factors, technical control potentials and costs which when combined with economic, energy and agricultural activity pathways from the PRIMES and CAPRI models, result in consistent projections of future non-CO₂ GHGs. The Common Agricultural Policy Regional Impact (CA-PRI) model is an agricultural sector model with a focus on Europe (disaggregation into 280 NUTS2 regions, detailed activity data and coverage of Common Agricultural policies), but embedded in a global market model to represent bilateral trade between 44 regions (countries or country aggregates). The main model outputs are market balance data, prices, income and economic welfare and, due to its high level of disaggregation in the activity data, also various environmental indicators like nutrient balances, erosion etc. (see www.caprimodel.org). The CAPRI outlook systematically merges the information in historical time series with external projections from other models or independent expert knowledge while imposing technical consistency. Key external information came from the models PRIMES, GLOBIOM and AGLINK, together with national expert information on specific items. The key outputs (to GAINS) were the activity data in the livestock sector plus mineral fertilizer use in the crop sector. TABLE 8: MAIN NATIONAL POLICIES WITH SPECIFIC EFFECTS ON NON-CO₂ GHGS AND CONSIDERED IN THE REFERENCE SCENARIO | | THE REFERENCE SCENARIO | | | | | |---|--|--|--|--|--| | | National policies | | | | | | 1 | Ban on landfill of biodegradable waste | Austria, Belgium, Denmark,
Germany, Netherlands, Sweden | | | | | 2 | National F-gas policies | Austria, Belgium, Denmark,
Germany, Netherlands, Sweden | | | | | 3 | Subsidy scheme for anaerobic digestion of manure | Netherlands | | | | Decomposing non-CO₂ GHG emissions for the ETS and the non-ETS sectors reveals different trends for the two categories. Emissions from the ETS sectors demonstrate a very significant decrease as they fall 90% from 2005 already by 2020 and slightly decrease thereafter (see section on industry sectors below). These constitute however a small share of overall non-CO₂ GHGs (6% in 2005). The reduction of emissions of gases from the non-ETS sectors is less pronounced. In 2020 the reduction achieved is 11% relative to 2005. The trend continues to be decreasing reaching a 15% reduction in 2030. Beyond 2035, the trend is reversed and ultimately in 2050 the reduction relative to 2005 is projected to be 13%. #### Agriculture sector The main source of agricultural non-CO2 GHGs are N₂O emissions from microbial processes in soils. They contribute to roughly half of agricultural non-CO₂ GHGs in EU28, as shown in Figure 47. The activity driver for soil emissions used in GAINS is nitrogen input on agricultural lands, which is the sum of the nitrogen contained in mineral fertilizers applied, animal manure
spread and crop residues left on fields. Activity numbers used are Eurostat data, while future trends in mineral fertilizer input on lands and animal numbers are adopted from projections made by the CAPRI model. Country-specific information on crop residues and animal excretion rates are taken from national reporting to the UNFCCC (2012) and kept constant over time. N₂O emissions from soils are estimated at 251 Mt CO₂eq in 2005 with a slight decline of 5 percent to 2030 due to declining trends in mineral fertilizer use and cattle numbers (see Figure 47). FIGURE 47: Non-CO₂ GHGs of the AGRICULTURE SECTOR IN EU28 BY SOURCE The other major source of agricultural non-CO₂ GHGs is livestock rearing (dairy and non-dairy cattle, pigs, sheep and poultry) and accounts for 225 Mt CO₂eq in 2005 with a slight expected decline to 218 Mt CO₂eq in 2030. CH₄ emissions are released from enteric fermentation in ruminants as well as management of animal manure, which gives rise to anaerobic conditions during which microbial activity forms N₂O and CH₄ which are then released. Enteric fermentation and manure management emissions from dairy cows are driven by the development in animal numbers as well as by changes in metabolic activity: more productive cows (productivity expressed as milk yield per cow) tend to cause higher emissions per animal. The increase in CH₄ emissions from dairy cows in Figure 48 results from an increased milk production and the combined effect of a 10 percent decline in animal numbers and a 30 percent expected increase in the average milk yield per cow between 2005 and 2030. For other animal categories, emissions are almost exclusively driven by animal numbers. CH₄ emissions mainly from large pig farms are about 2 Mt CO₂eq per year lower than would be expected on the basis of activity levels only due to the existing capacity to treat manure in anaerobic digesters with energy recovery. This is the result of national policies. FIGURE 48: AGRICULTURE SECTOR ACTIVITY DRIVERS AND EMISSIONS OF NON-CO₂ GHGs in EU28 ### Energy sector Energy sector sources of non-CO₂ GHGs are fugitive leakage of CH₄ from fossil fuel extraction and transportation and CH₄ and N₂O emissions from fuel combustion, as shown in Figure 49. N₂O from combustion sources is partly a direct by-product of combustion as well as has been a side-effect of some NO_x control technologies on stationary and mobile combustion sources³³. Some low-NO_x technologies like fluidized bed combustion or selective NO_x reduction technologies reduce NO_x emissions but may strongly increase N₂O emissions. The relative decline in N₂O emissions from combustion is stronger than the expected decline in total energy consumption, which is the result of a fuel use shift in stationary sources away from fluidized bed combustion of fossil solid fuels. CH4 emissions from extraction of coal, natural gas and oil decline in line with the expected reduction of fossil fuel production in the EU. The driver for the projected leakage from long-distance gas transmission is the gas consumption in the respective country. Leakage 33 Mobile combustion sources refer to combustion in the transport sector. For mobile sources, this problem seems to be solved with today's technologies. from this source does not decline proportionately with gas consumption due to a relatively stronger increase in demand in countries which report higher leakage rates. CH₄ leakage from consumer gas distribution networks declines faster than gas consumption due to effects of an on-going replacement of old town gas networks in some EU countries expected to be completed in 2030. FIGURE 49: NON-CO₂ GHGS OF THE ENERGY SECTOR IN EU28 BY SOURCE ### Waste and wastewater sector In 2005, the waste and wastewater sectors in EU28 are estimated to have released almost 150 Mt CO₂eq. Half of this amount comes from municipal solid waste as shown in Figure 50. CH₄ from solid waste is released when biodegradable matter decomposes under anaerobic conditions in landfills or during storage and handling of biodegradable waste in different waste treatment processes. Due to the slow decomposition of waste in landfills, GAINS models future emissions as driven by the gross (pretreatment) amounts of waste generated ten to twenty years before. Further parameters include the fraction of the waste deposited on landfills and the effect on emissions of current recovery and control of landfill gas. The gross amounts of solid waste generated are driven by GDP and urbanization rate for municipal solid waste and by value added in the relevant manufacturing industries. The implementation of the EU Landfill Directive is expected to reduce CH4 emissions from municipal and industrial solid waste by almost 60 percent between 2005 and 2030. A modest decline in emissions of 9 percent between 2005 and *56* 2010 result from landfill gas recovery becoming mandatory from 2009, while the deeper cuts in emissions between 2010 and 2030 are expected from the increased diversion of biodegradable waste away from landfills through separation and treatment. Taking into account the time lag between disposal and emission release from landfills, the full effect of the Landfill Directive on CH₄ emissions is achieved only in 2030. Thereafter emissions start rising slowly driven by the expected future growth in GDP and industry value added. Wastewater from households and organic processes in industry contain nitrogen and organic compounds which wastewater treatment plants are decomposing before discharge. The main gaseous products are CO₂ and molecular nitrogen but during the process also CH₄ and N₂O are formed and released. Figure 50 shows that the release of CH₄ and N₂O from wastewater handling and treatment in EU28 is expected to remain at a level of about 40 Mt CO2eq between 2005 and 2050. The activity driver for N2O emissions from wastewater is total population. Driver for CH₄ emissions from domestic wastewater is the number of people connected to centralised (urban) and decentralised (rural) collection of wastewater, respectively. The activity data used to estimate CH₄ emissions from industry wastewater is chemical oxygen demand (COD) in untreated wastewater from the manufacturing of food, pulp and paper, and organic chemical products. Projections of future emissions are driven by growth in value added in respective industry. The EU Urban Wastewater Treatment Directive regulates the release of waterborne pollutants in wastewater from urban households and food industry. "Appropriate treatment" must be in place by 2005. In GAINS, "appropriate treatment" is interpreted as a conversion from primary mechanical treatment to secondary/tertiary aerobic and/or anaerobic treatment. As a side-effect to improved water quality, such conversions also reduce the formation and release of CH₄. CH₄ emissions from domestic and industrial wastewater drop slightly between 2005 and 2010 primarily due to extensions of secondary/tertiary wastewater treatment in some new Member States but also as a result of more people being connected to centralized wastewater treatment. After 2030 CH₄ emissions from domestic wastewater treatment decline assuming that with the natural turnover of capital municipal wastewater treatment plants will become more effective in controlling CH₄ emissions. This assumption does not apply to the more small-scale treatment of industrial wastewater and therefore CH₄ emissions from industrial wastewater are expected to grow proportionately to value added in the relevant industries. FIGURE 50: NON-CO₂ GHGs of the Waste and Wastewater sector in EU28 #### F-gas emissions Emissions of fluorinated gases (F-gases) considered here are HFCs, PFCs and SF₆. HFCs are primarily used as cooling agent in air conditioners (AC) and refrigerators, but also as blowing agents in foams and propellants for aerosols. Sources of PFC emissions are primary aluminum production and semiconductor industry, while SF₆ serves a variety of uses in e.g., high and mid voltage switches, magnesium production and casting, soundproof windows, sports and military equipment. Although used in small quantities, the high warming potentials and long lifetimes in the atmosphere make the contribution of these gases to global warming significant in CO₂-eq terms. Figure 51 shows how F-gas emissions in EU28 are expected to fluctuate between 80 and 90 Mt CO₂eq over the period 2005 to 2050, which represents an increasing share of total non-CO₂ GHGs from 9 to 12 percent (due to the overall decline in CH₄ and N₂O emissions). FIGURE 51: F-GAS EMISSIONS IN EU28 BY SOURCE The fluctuating but relatively stable level of F-gas emissions is the combined result of a strong increase in demand for services offered by F-gases (e.g., cooling), replacement of the ozone-depleting substances CFCs and HCFCs with HFCs in order to comply with the Montreal Protocol, and effects of adopted regulations to control F-gas emissions. Demand for cooling and refrigeration in GAINS is primarily driven by economic growth along with cooling degree days, commercial floor space and assumptions about technology penetration and saturation rates³⁴. The EU F-gas regulation came into effect in 2006 and the EU Directive on mobile air-conditioning systems in steps from 2008 onwards. Together with stricter national Fgas legislation in several member states (Austria, Belgium, Denmark, Germany, Netherlands and Sweden) these regulations account for the expected stabilization in future F-gas emissions after 2010 shown in Figure 51. The Reference projection does not take account of the ongoing revision of the EU F-gas regulation due to be adopted by 2014, aiming to significantly reduce emissions. Included in the Reference scenario is the prohibition of high GWP cooling agents in mobile air conditioners (MACs). It is assumed that the use of HFC-134a in MACs is replaced by HFO-1234yf with a GWP of 4 resulting in an almost complete phase-out of these emissions by 2040.
The decline in F-gas emissions between 2010 and 2015 seen in Figure 51 is due to compliance with the EU F-gas regulation which requires leakage control and end-of-life recovery of HFCs from AC and refrigeration equipment, limitations on the use of F-gases as propellants for aerosols and foams and a ban on SF₆ use in various applications e.g., sound-proof windows and sports equipment. ### Industry sectors covered by the EU ETS Emissions of non-CO₂ GHGs from sectors regulated under the EU Emissions Trading System (EU-ETS) since 2013 include N₂O emissions from nitric and adipic acid production and PFCs from primary aluminum production. In 2005 these emissions amounted to 57 Mt CO₂eq or 6 percent of total non-CO₂ GHGs in EU28. N₂O emissions from nitric and adipic acid production can be effectively controlled through installation of existing low cost technology. The marginal cost of these technologies is lower than the carbon price in the EU-ETS thereby making technology adoption profitable. This together with the anticipation of the ETS inclusion, related Joint Implementation projects and the economic crisis explain the sharp decline of 70 percent in reported emissions between 2005 and 2010 shown in Figure 52, as well as the further decline. FIGURE 52: NON-CO₂ GHGs of EU-ETS SECTORS IN EU28 By 2020 the expected decline in emissions is 90 percent due to full adoption of available and improved technologies. PFC emissions from primary aluminum production are linked to the use of older production technologies. With the natural turnover of capital the older technologies are expected to be replaced by the _ ³⁴ Please see Höglund-Isaksson et al. 2013 for details. more efficient and less emitting point-feeder prebake (PFPB) technology. # Total GHG emissions (excluding LULUCF) Overall, in 2020, the corresponding GHG emissions targets are projected to be overachieved; total reduction in GHG emissions relative to 1990 is 24%, resulting from 22% reduction of CO₂ emissions and 35% reduction of emissions from non-CO₂ gases. In the ETS sectors, total GHG emissions are reduced by 24% relative to 2005, surpassing the target of 21% due to the projected continuous build-up of an allowance surplus. Regarding non-ETS sectors, the target of the ESD is overachieved at the EU level, with total emissions reducing by 15% in 2020 relative to 2005, surpassing the 10% target. Respective national targets are achieved domestically in the majority of countries. Until 2030, developments (in particular in the power sector) result in total GHG emissions reducing by 32% relative to 1990. Emissions of the ETS sectors reduce by 36% compared to 2005, with 47% being the corresponding figure for power generation alone. Non-ETS sectors also see a decrease in emissions but not as strong. Finally, in 2050 perspective, emissions continue to decrease, primarily driven by developments in power generation. Overall GHGs emissions are reduced by 44% relative to 1990 (46% for CO₂ emissions). FIGURE 53: EVOLUTION OF GHG EMISSIONS³⁵ The decreasing trend in emissions beyond 2020 is well pronounced, especially for the power generation sector, however it is not sufficiently intense in order to ³⁵ Excluding LULUCF emissions and removals. For comparability reasons over time, ETS and non-ETS emissions for 2005 and 2010 are reported in ETS phase 3 scope as valid from 2013. achieve the long-term objectives in the context of the Roadmaps to 2050. More specifically, in line with the EU's objective of -80 to -95% GHG emissions reduction in 2050 compared to 1990, the Roadmap for moving to a low carbon economy in 2050³⁶ sets a milestone for GHG emissions reductions in the EU of 40% in 2030 relative to 1990 and 80% in 2050, while the projections in the Reference 2013 scenario are 32% reduction in 2030 and 44% reduction in 2050. ## LULUCF emissions and removals and their drivers Current and future CO₂ emissions from the land use, land use change and forestry sector (LULUCF) have been estimated using the Global Biosphere Management Model (GLOBIOM) and the Global Forest Model (G4M) models. Basic drivers, such as: GDP, population development, energy demand, biomass energy supply and productivity changes are generated by PRIMES and GEM-E3 or provided by global databases³⁷. These drivers are then used by the economic bottom-up land use model GLOBIOM. Demand is endogenously produced by the model and matched by supply of food, fodder, timber and energy. The information between models flows not only in one direction but is circulated between GLOBIOM and G4M models iteratively, where relevant. While G4M is used to estimate emissions from forest land, GLO-BIOM estimates emissions from crop- and grassland. Remaining emissions from wetlands, settlements and other land (corresponding to UNFCCC accounts) are not modeled explicitly and kept constant at 2010 levels until 2050. Table 9 gives a brief overview of the datasets and models used to estimate LULUCF areas and emission factors. The EU28 LULUCF sector is at present a carbon sink as it sequesters more carbon than it emits. The EU LULUCF sink in the UNFCCC inventory was estimated between 288 Mt CO₂ in 2000 and 296 Mt CO₂ in 2010³⁸ which is around 20% above the projections ³⁶ COM(2011)112 $^{^{\}rm 37}$ DG ECFIN publications are used for macro-economic projections. ³⁸ Please see: http://unfccc.int. delivered by GLOBIOM and G4M. The difference is related to model and datasets uncertainties as well as different modeling and reporting approaches applied. The LULUCF sink is expected to be maintained until 2050, even though it is projected to decline from about -244 Mt CO₂ in 2010, to -214 Mt CO₂ in 2030 and -196 Mt CO₂ in 2050 in the Reference scenario, which corresponds to a decrease from 2010 levels of -12% by 2030 and -20% by 2050. This decline is the result of changes in different land use activities of which the forest sector changes are the most important. Figure 54 shows the projection of the total EU28 LULUCF sink in the Reference scenario until 2050 and the contribution from different activities. TABLE 9: METHODOLOGY USED TO ESTIMATE LULUCF EMISSIONS | Area/Complex E ! ! | | | | |--|--|--|--| | | Area/Supply estimate | Emission factor | | | | | | | | Afforestation | G4M estimate,
based on GLO-
BIOM drivers,
calibrated to his-
toric level (UN-
FCCC) | Internal forest growth
model, simplified soil
emission estimate
based on literature | | | Deforestation | G4M estimate,
based on GLO-
BIOM drivers,
calibrated to his-
toric level (UN-
FCCC) | Average biomass
stock estimated by
G4M, based on re-
mote sensing map | | | Forest management | Based on country
UNFCCC and
Kyoto data or
other data bases
(MCPFE) | G4M estimate based
on age class structure,
initial biomass stock,
management regime
etc. | | | Cropland management | GLOBIOM esti-
mate, calibrated
to historic level
(EUROSTAT) | Estimate of biophysical crop model (EPIC), depending on soil, climate and crop parameters | | | Grassland management | GLOBIOM esti-
mate, calibrated
to historic level
(EUROSTAT) | Country level emission factor based on UN-FCCC data | | | Settlements,
wetlands and
other land | UNFCCC data | UNFCCC data | | | Harvested
wood prod-
ucts | GLOBIOM esti-
mate, calibrated
to historic level
(FAO, country
submission) | IPCC default values | | In general, forest management emissions are driven by the balance of harvest removals and forest increment rates (the growth of the biomass stored in a forest as a result of the growth of the trees with the age). As harvesting removals increase over time related to growing demand for wood for products (such as furniture or paper), the carbon sink in managed forests declines significantly. Growing demand for wood as projected by GLOBIOM is driven by population and income growth as well as increasing wood demand for renewable energy production. The significant decline in the managed forests carbon sink can however be partially compensated by a rising carbon sink from afforestation, a decrease in deforestation and increasing carbon storage in harvested wood product. Since part of the harvested biomass is processed to final wood products which have a lifespan of several years, the carbon sink from harvested wood products increases (see Figure 54). Until 2050, emissions from deforestation continue to decrease in line with historic trends. In addition, carbon sequestration from afforested areas increases due to that fact that new forests are established but also young forests that were established over the last 20 years get into a phase of high biomass production. FIGURE 54: EU28 LULUCF EMISSIONS UNTIL 2050 IN MT ${\rm CO_2}$ Activities in the agricultural sector have a smaller impact on the total LULUCF sink compared to the forest sector. Still, net carbon emissions from cropland are projected to decline by some 40% compared to 2010 due to the increasing cultivation of annual (e.g. miscanthus, switchgrass) and perennial lignocellulosic crops (e.g. short rotation tree plantations) for renewable biomass based bioenergy production. Typically these plants provide more litter input into the soil and management activities are less disturbing the soil, leading to a reduced loss or even an accumulation of soil carbon. Similarly, total emissions from grasslands are expected to go down as more land is projected to be converted to grassland that typically tends to sequester additional carbon. Figure 55 shows the EU28 LULUCF sector land balance until 2050. Over time, the forest area expands by 4% in 2030 and 7% in 2050 compared to 2010 at the expense of cropland and grassland taken out of production.
Cropland and grassland areas remain at more or less constant levels. The area for perennial crops (including annual lignocellulosic crops) for renewable energy production grows significantly and by 2030 7% of total cropland is cultivated with perennials (9% in 2050). FIGURE 55: EU28 LULUCF SECTOR LAND BALANCE IN 1.000 HA UNTIL 2050 The following sections provide a more detailed overview of the drivers, emission projections and overall trends by the different LULUCF sectors. #### Emissions from forest land The current net forest sink (the sum of forest management, afforestation and deforestation) is projected to decrease from -299 Mt $\rm CO_2$ in 2010, to -208 Mt $\rm CO_2$ in 2030 and -150 Mt $\rm CO_2$ in 2050 which corresponds to a decline by -31% and -50% in 2030 and 2050, respectively. This is the result of different, partly, opposing trends. Increasing wood demand and corresponding rising harvesting removals are important drivers, but also a projected decline in the forest growth rate due to ageing. Harvesting removals rise from 536 million $\rm m^3$ in 2010, to 620 million $\rm m^3$ in 2030 and 686 million $\rm m^3$ in 2050. At the same time, the carbon sink in managed forests declines from -303 Mt CO₂ in 2010 to -127 Mt CO₂ in 2030 and -24 Mt CO₂ in 2050. Total harvest removals in EU28 increase steadily over time as well as the share wood removed for energy use in the total harvest (see Figure 56). This share increases from 16% of total harvest in 2010, to 17% in 2030 and 18% in 2050 as demand for renewable energy production rises. Despite a decrease of forest increment over time, in 2050 the increment is with 777 million m³ still well above the total wood removals which sum up to 686 million m³. Reasons for the declining forest increment are a change in age class structure towards a higher share of older forest stands that grow at lower rates and a saturation of biomass accumulation. European forests get older but also thicker and therefore grow relatively slower in the future. This trend might be reversed after 2050 following the more intensive use of forest (resulting in reestablished younger forests stands) in the second half of the century. FIGURE 56: EU28 HARVEST REMOVALS AND INCREMENT IN 1.000 M3 UNTIL 2050 Simultaneously, the carbon sink in harvested wood products increases from-19 Mt CO₂ in 2010 to -61 Mt CO₂ in 2030 and -95 Mt CO₂ in 2050 compensating the reduced sink in the managed forest to some degree. In addition, the carbon sink from afforested areas is also growing until 2050. Even though annual afforestation and reforestation rates decrease over time, 11 million ha (Mha) of land will be afforested until 2030, 16 Mha until 2050 (see Figure 55). In 2030, already 8% of the total forest area will be newly planted forests (10% in 2050). The total forest area is projected to increase from 140 Mha in 2010, to 146 Mha in 2030 and 150 Mha in 2050. In total, afforested areas are projected to sequester 94 Mt CO₂ in 2030 and 130 Mt CO₂ in 2050. With increasing age the new forests get more and more into a phase of high production and become gradually available for wood and biomass supply. Towards 2050 these forests are therefore also taking harvest pressure from older forests and thus help to keep the sink up in managed existing forests. Figure 57 shows the development of the carbon sink in the forest sector until 2050. FIGURE 57: DEVELOPMENT OF THE EU28 CARBON SINK IN THE FOREST SECTOR UNTIL 2050 Emissions from deforestation continue to decrease from 45 Mt CO_2 in 2010, to 12 Mt CO_2 in 2030 and 4 Mt CO_2 in 2050 as deforestation drops from 74.000 ha in 2010 to 7.000 ha in 2050. This development is consistent with historic trends. # Emissions from cropland Cropland is a net source of carbon dioxide emissions in EU28 at present. Over time, emissions are projected to decrease from 26 Mt $\rm CO_2$ in 2010, to 14 Mt $\rm CO_2$ in 2030 (44% decrease in comparison to 2010) and 16 Mt CO₂ in 2050 (38% decrease). The main driver for this decline is the projected establishment of short rotation tree plantations and lignocellulosic crops for renewable energy production which has a positive effect on the amount of carbon stored in the soil compared to conventional crops. Another important factor is the growing use of perennial crops such as miscanthus. The PRIMES biomass supply indicates that with growing demand the supply of these crops will grow because these are relatively cost-effective. In 2030, the area covered by perennial crops sums up to 7 Mha (7% of total cropland) and 9 Mha (9% of total cropland) in 2050. While carbon sequestration from perennials increases over time, emissions from conventional crops decrease as area declines. The conventional crop area is projected to decrease by 2 Mha until 2030 and 7 Mha until 2050. Another important factor influencing soil carbon emissions from croplands is a saturation effect. Modeled soil carbon stocks converge towards equilibrium under a constant management regime. Disturbances of the equilibrium due to a change in management lead to a new equilibrium. The emissions or removals towards the equilibrium get smaller over time as the new management continues. This is especially true for more intense management changes such as the conversion of annual crops into perennial crop cultivation. Emissions from cropland remaining cropland decline from 16 Mt CO₂ in 2010 to -3 Mt CO₂ in 2030 and -5 Mt CO₂ in 2050. Emissions from land converted to cropland rise from 9 Mt CO2 to 17 Mt CO2 in 2030 and 21 Mt CO₂ in 2050 as land converted to cropland starts emitting carbon when being cultivated. As a result total cropland emissions are expected to decline over time (see Figure 54). The total cropland area is projected to increase slightly from 101 Mha in 2010, to 105 Mha in 2030 and 102 Mha in 2050 related to the increase in perennial crop cultivation. Cropland remaining cropland declines from 96 Mha in 2010 to 95 Mha in 2030 and 87 Mha in 2050. Land converted to cropland increases from 5 Mha in 2010 to 10 and 15 Mha in 2030 and 2050 respectively. ### Emissions from grassland Grasslands are a net carbon source at present in the EU28. Over time, however, they turn from being a net source in 2010 with emissions of 4 Mt CO2 to a net carbon sink of -5 Mt CO₂ in 2030 and -12 Mt CO₂ 2050. This result is mainly driven by land converted to grassland as this land use change tends to sequester carbon after conversion. Even though total grassland area decreases marginally from 62 Mha to 61 Mha by 2050, land converted to grassland sequesters by 2030 14 Mt CO₂ and by 2050 21 Mt CO₂ and turns grasslands into a net carbon sink. Grassland remaining grassland declines from 60 Mha in 2010 to 56 Mha in 2030 and 53 Mha in 2050 due to afforestation and expansion of perennials. Land converted to grassland increases from 2 Mha in 2010 to 5 Mha in 2030 and 8 Mha in 2050 in order to compensate for the loss of grasslands and meet livestock feeding demand. #### Emissions from other land Emissions from other land, settlements and wetlands are not modeled explicitly in GLOBIOM and kept constant at 2010 levels as reported by UNFCCC³⁹. Emissions from wetlands amount to 5 Mt $\rm CO_2$, for settlements they amount to 39 Mt $\rm CO_2$ and for other land 1 Mt $\rm CO_2$. In EU28, around 22 Mha is covered by wetlands, 27 Mha by settlements and 26 Mha by other land according to UNFCCC reported data. ### Total energy system and other mitigation costs The considerable changes in the EU energy system and projected international fuel price developments drive strongly increasing energy system costs until 2020. This is attributable to direct capital expenditure payments both on the demand side (e.g. building insulation, replacing equipment with more efficient appliances, etc. triggered by energy efficiency policies) and on the supply side (refurbishment and new investments in power generation and transmission, needed to replace the existing capital stock). Additionally, increasing capital expenditures in power generation driven by the RES 2020 target are also reflected. Last but not least, strongly increasing international fossil fuel prices cause a significant further upward effect on energy system costs, both through direct fuel expenditures and indirectly through the electricity prices. Overall, in 2020 total system costs constitute 15% of the GDP, rising from 13% in 2010⁴⁰. Beyond 2020 and throughout the remaining projection period, energy costs continue to increase in absolute terms but at a slower rate, below GDP growth, as the system reaps benefits from the investments undertaken in the previous decade (notably via fuel savings). In this period, the share of energy system costs in GDP is gradually decreasing, reaching 2010 levels in 2050. FIGURE 58: EVOLUTION OF ENERGY SYSTEM COSTS⁴¹ Reflecting increasing capital intensiveness of the energy system, the share of CAPEX (capital costs and direct efficiency investments) in total system costs increases over time, reaching 40% in 2050 from 24% in 2010 (excluding ETS auction payments). Auction payments are very small compared to total energy system costs; it should be noted that auction payments do not represent an actual economic cost, as the revenues are recycled into the economy. Regarding OPEX, overtime electrification of the residential and the tertiary sectors result in electricity costs becoming the main OPEX component for these sectors, instead of other fuel costs. The opposite ef- 40 Total system costs include total energy system costs, costs re- _ lated to process-CO₂ abatement and non-CO₂ GHG abatement. The energy system costs have been calculated on the basis of nominal discount rates, despite the use of lower discount rates for simulating economic decision making under framework conditions that strongly foster energy efficiency (see part on modelling of energy efficiency policies). Further modelling work will look into an alternative cost
reporting methodology. ⁴¹ Excluding ETS auction payments, given that they result in corresponding auction revenues. ³⁹ http://unfccc.int fect is observed for the industrial sector, owing to decreasing long term electricity prices. ### Conclusion The portfolio of policies and binding targets that have been adopted so far in the EU are expected to bring about considerable changes in the energy system relative to past trends. Key policies that have been examined in the Reference scenario are GHG reduction policies like the EU ETS along with efforts to reach targeted RES shares and improve significantly energy efficiency, including CO2 standards for vehicles. The latter two policy lines strongly support GHG reduction, involving a large number of synergies and also some overlaps, e.g. regarding the downward effect of RES electricity penetration and electricity savings on ETS prices. This has been addressed in modelling the binding 2020 GHG targets as effect of the EU ETS, the RES targets and other policies. An additional non-ETS target-related policy driver to ensure achievement turned out not to be necessary. At the same time, competitive energy provision for businesses as well as affordability of energy use are key issues for economic and social development in the EU. Therefore this scenario analysis has also focused on relevant indicators in this respect, showing overall developments and potential trade-offs. Energy security issues have also been addressed, thereby giving a comprehensive picture on the possible implications of pursuing the adopted policies under the macro-economic and world energy framework conditions that have been modelled on the basis of the long term economic and demographic analyses undertaken in collaboration with Member States experts (notably the EPC/DG ECFIN Ageing Report). GHG reduction is progressing in all sectors, but decarbonisation is particularly strong in power generation given the large number of options for decarbonisation in this sector and despite the move towards using more electricity. This higher electricity use reflects its convenience at use as well as the synergies from replacing CO₂ emitting fossil fuels (where CCS is not feasible or not economic) with electricity, which in turn is generated in a low carbon mode. Indeed, the main characteristic of the future EU energy system is a significant reduction of the carbon intensity of power generation. Another key feature is the decoupling of energy consumption from GDP growth, which is more limited for electricity due to the increasing shares of electricity in final energy consumption. Overall, despite significant economic growth making the EU economy 78% larger in 2050 than it was in 2010, there is a decline of total energy consumption by 8%. The period until 2020 involves the most sweeping transitions due to the legally binding targets of the 20-20-20 Energy and Climate Package, the provisions of the EED and the CO₂ regulations for LDVs. The projection indicates that the measures contained in the EED combined with mandatory objectives on renewables, the EU ETS and other EU and national efficiency and climate policies, coupled with the steep increase in fossil fuel prices, induce energy savings of the order of 17% in 2020 relative to the benchmark (Baseline 2007 scenario). RES targets would be achieved, indeed slightly overachieved. Regarding GHG emissions, target levels (for all sectors combined and for the non-ETS sectors) would be even surpassed at the EU level. This is due to the economic crisis and a combination of policies that lead at an EU aggregate level to lower non-ETS emissions than resulting from the aggregate binding Member State targets in the Effort Sharing Decision and rising ETS surplus allowances until after 2020. Consequently, in 2020 GHG emissions fall by 24% compared to 1990, further decreasing to 32% below the 1990 level in 2030 and by 44% in 2050. However, this significant decrease falls still considerably short of the EU's 2050 GHG objective. The transitions of the 2010-20 decade set the ground for future developments. Beyond 2020, no RES targets have been agreed and no additional efficiency policies are defined, although efficiency measures continue to bear improvements in energy consumption until 2030 and beyond (notably the long term effects of more energy efficient investment brought about by different measures including eco-design, CO₂ standards for LDVs, etc. Energy consumption in 2030 is 21% lower than the 2030 energy consumption of the benchmark case (Baseline 2007). Moreover, the continuation of the ETS, leading to large decrease of ETS allowances throughout the projection period, constitutes a significant driver of continuing RES penetration, energy efficiency and further emissions reduction. In 2030, GHG emissions are projected to be reduced by 32% relative to 1990. The changes that the power generation sector undergoes entail considerable capital intensive investments, as well as investments in the transmission and distribution system. These have an upward effect on electricity prices and energy system costs in the transitional period until 2020, enhanced further by the increased fossil fuel prices. Beyond 2020, however, electricity prices stabilize and even decrease. A general effect on total energy system costs is that they become more capital intensive over time. After having undergone all the structural adjustments to cope with the 2020 targets and policies, total energy system costs grow slower than GDP, leading to decreasing ratio of energy system costs to GDP in the period 2020-50. Finally, the intense deployment of RES following notably the investment to achieve the 2020 targets results in sizeable decrease in external energy dependence. In the long run, however, the limited availability of indigenous fossil fuel resources (due to depletion of domestic resources) as well as limited additional biomass imports lead to total net energy imports increasing again (after 2035) This mainly concerns natural gas, which according to the projection will play a crucial role in the context of emission reduction targets and as back-up for variable RES. # **GLOSSARY** **Aviation:** Aviation activity includes only intra-EU (domestic and EU international) air transportation. Energy consumption and CO_2 emissions in aviation reflects sales of fuels at the point of refuelling, irrespective of airplane destination. They approximately correspond to all outgoing domestic and international flights. **Biofuels:** Biofuels include ethanol, biodiesel, biokerosene and bio heavy. Carbon capture and storage (CCS): Carbon capture and geological storage is a technique for trapping carbon dioxide emitted from large point sources, compressing it, and transporting it to a suitable storage site where it is injected into the ground. **Carbon intensity:** The amount of CO₂ emitted per unit of energy consumed or produced (t of CO₂/tonne of oil equivalent (toe) or MWh). **CO₂ Emissions to GDP:** The amount of CO₂ emitted per unit of GDP (carbon intensity of GDP - t of CO₂/M Euro). **Cogeneration thermal plant:** A system using a common energy source to produce both electricity and steam for other uses, resulting in increased fuel efficiency (see also: CHP). Combined Cycle Gas Turbine plant (CCGT): A technology which combines gas turbines and steam turbines, connected to one or more electrical generators at the same plant. The gas turbine (usually fuelled by natural gas or oil) produces mechanical power, which drives the generator, and heat in the form of hot exhaust gases. These gases are fed to a boiler, where steam is raised at pressure to drive a conventional steam turbine, which is also connected to an electrical generator. This has the effect of producing additional electricity from the same fuel compared to an open cycle turbine. Combined Heat and Power (CHP): This means cogeneration of useful heat and power (electricity) in a single process. In contrast to conventional power plants that convert only a limited part of the primary energy into electricity with the remainder of this energy being discharged as waste heat, CHP makes use of a greater proportion of this energy for e.g. industrial processes, district heating, and space heating. CHP therefore improves energy efficiency (see also: cogeneration thermal plant). Efficiency for thermal electricity production: A measure of the efficiency of fuel conversion into electricity and useful heat. It is calculated as heat and electricity output divided by the calorific value of input fuel. Efficiency indicator in freight transport (activity related): Energy efficiency in freight transport is calculated on the basis of energy use per tonne-km. Given the existence of some methodological inconsistencies between transport and energy statistics, absolute numbers (especially at the level of individual Member States) might be misleading in some cases. For that reason, the numbers given are only illustrative of the trends in certain cases. Efficiency indicator in passenger transport (activity related): Energy efficiency in passenger transport is calculated on the basis of energy use per passenger-km travelled. Issues related to consistency of transport and energy statistics also apply to passenger transport (see also: Efficiency indicator in freight transport). **Energy branch consumption:** Energy consumed in refineries, electricity and steam generation and in other transformation processes. **Energy intensity:** energy consumption/GDP or another indicator for economic activity. **Energy intensive industries:** Iron and steel, non-ferrous metals, chemicals, non-metallic minerals, and paper and pulp industries. **Energy Service Company (ESCO):** A company that implements a broad range of energy efficiency projects. EU Emissions Trading System (EU-ETS): A scheme for greenhouse gas emissions allowance trading within the Community, established by Directive 2003/87/EC in
order to promote reductions in greenhouse gas emissions in a cost-effective and economically efficient manner. Installations included in the scheme are combustion plants, oil refineries, coke ovens, iron and steel plants, and factories producing cement, glass, lime, brick, ceramics, pulp and paper. Recent amendments (2008/101/EC and 2009/29/EC) have enlarged its scope to include aviation and further process emissions. **Feed-in tariff:** The price per unit (of electricity) that an eligible renewable electricity generator receives according to cost-based calculations for the specific resource used. Final energy demand: Energy consumed in the transport, industrial, household, services and agriculture sectors; the latter two sectors are sometimes aggregated and named "tertiary". It excludes deliveries to the energy transformation sector (e.g. power plants) and to the energy branch. It includes electricity consumption in the above mentioned final demand sectors. **Freight transport activity:** Covers goods transport by road, rail and inland navigation. Road transport activity is defined according to the nationality principle, in line with the available statistics from EURO-STAT. **Fuel cells:** A fuel cell is an electrochemical energy conversion device converting hydrogen and oxygen into electricity and heat with the help of catalysts. The fuel cell provides a direct current voltage that can be used to power various electrical devices including motors. **Fuel input to power generation:** Fuel use in power plants and CHP plants. **Gas:** Includes natural gas, blast furnace gas, cokeoven gas and gasworks gas. **Generation capacity:** The maximum rated output of a generator, prime mover, or other electric power production equipment under specific conditions designated by the manufacturer. **Geothermal plant:** A plant in which the prime mover is a steam turbine, which is driven either by steam produced from naturally hot water or by natural steam that derives its energy from heat in rocks or fluids beneath the surface of the earth. The energy is extracted by drilling and/or pumping. **GINI coefficient:** (or index) Measures distribution inequalities present in statistics, such as income distribution variation among EU Member States. A Gini coefficient of zero expresses an exactly equal income between MS. Gross Inland Consumption (or primary energy consumption): Quantity of energy consumed within the borders of a country. It is calculated as primary production + recovered products + imports +/- stock changes – exports – bunkers (i.e. quantities supplied to international sea-shipping). **Gross Inland Consumption/GDP:** Energy intensity indicator calculated as the ratio of total energy consumption to GDP – (toe/M Euro). **Hydro power plant:** A plant that produces energy through the use of moving water. In this report, hydro excludes pumped storage plants that generate electricity during peak load periods by using water previously pumped into an elevated storage reservoir during off-peak periods when excess generating capacity is available. Energy losses in pumping are accounted for separately. **Inland navigation:** Covers inland waterways and national maritime transport, for the purpose of ensuring consistency with the energy balances. International maritime is not included in the above category as, according to EUROSTAT energy balances, energy needs for international shipping are allocated to bunkers. **Import dependency**: Demonstrates the extent to which a country relies upon imports in order to meet its energy needs. **Non-fossil fuels:** Nuclear and renewable energy sources. **Non-energy uses:** The use of petrochemicals and other energy carriers for purposes other than energy production, such as chemical feed-stocks, lubricants and asphalt for road construction. **Nuclear power plant:** A plant in which a nuclear fission chain reaction can be initiated, controlled, and sustained at a specific rate for production of energy. **Oil:** Includes crude oil, feed-stocks, refinery gas, liquefied petroleum gas, kerosene, gasoline, diesel oil, fuel oil, naphtha and other petroleum products. **Peak devices:** Gas turbines, internal combustion engines and other small-scale thermal power plants which are usually used to supply electricity in peak hours. Passenger transport activity: Passenger transport activity covers road transport (buses and coaches, passenger cars and vans, powered 2-wheelers), rail transport, aviation and inland navigation. Tram and metro activity is provided together with rail in the reporting by MS. **Primary production:** Total indigenous production. In PRIMES result sheets (Appendix 2) it also includes recovered products. Renewable energy sources: Energy resources which are naturally replenishing but flow-limited. These are virtually inexhaustible but limited in the amount of energy that is available per unit of time. Renewable energy resources include: biomass, waste energy, hydro, wind, geothermal, solar, wave and tidal energy. **Solar power plant:** A plant producing energy with the use of radiant energy from the sun; includes solar thermal and photovoltaic (direct conversion of solar energy into electricity) plants. **Solids:** Include both primary products (hard coal and lignite) and derived fuels (patent fuels, coke, tar, pitch and benzole). **Thermal power plants:** Type of electricity generating plant in which the source of energy for the prime mover is heat (nuclear power plants are excluded). Wind power plant: Typically, a group of wind turbines supplying electricity directly to a consumer, or interconnected to a common transmission or distribution system. Offshore wind includes windmills located at sea (coastal wind mills are usually included in onshore wind). | REFERENCE 2013 | | | | | | | | | | | | |---|-----------|---------|---------|---------|---------|---------|---------|--------|-----------|---------|--------| | EU-28: Key Demographic and Econor | mic Assum | ptions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 ' | '30-'40 | '40-'5 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 485.6 | 503.6 | 517.0 | 524.9 | 528.2 | 526.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0. | | Average household size (persons) | 2.5 | 2.4 | 2.4 | 2.3 | 2.3 | 2.2 | -0.5 | -0.2 | -0.2 | -0.2 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 10725.4 | 12301.4 | 14246.4 | 16667.7 | 19150.8 | 21944.1 | 1.4 | 1.5 | 1.6 | 1.4 | 1. | | Household Expenditure (in Euro'10/capita) | 12814.2 | 14186.9 | 15773.9 | 18162.1 | 20901.3 | 24439.2 | 1.0 | 1.1 | 1.4 | 1.4 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 11000.9 | 12738.2 | 14903.3 | 17103.5 | 19561.1 | | 1.5 | 1.6 | 1.4 | 1. | | Industry | | 1637.6 | 1888.6 | 2128.0 | 2336.3 | 2546.0 | | 1.4 | 1.2 | 0.9 | 0. | | iron and steel | | 50.0 | 54.2 | 56.8 | 57.2 | 56.9 | | 0.8 | 0.5 | 0.1 | -0. | | non ferrous metals | | 18.7 | 21.3 | 22.1 | 22.3 | 22.1 | | 1.3 | 0.4 | 0.1 | -0 | | chemicals | | 196.6 | 233.1 | 260.6 | 284.8 | 306.9 | | 1.7 | 1.1 | 0.9 | 0 | | non metallic minerals | | 68.6 | 78.3 | 88.4 | 94.1 | 98.3 | | 1.3 | 1.2 | 0.6 | 0 | | paper pulp | | 98.4 | 106.6 | 116.6 | 124.3 | 128.6 | | 8.0 | 0.9 | 0.6 | 0 | | food, drink and tobacco | | 221.6 | 247.7 | 283.7 | 316.3 | 350.1 | | 1.1 | 1.4 | 1.1 | 1 | | engineering | | 652.1 | 789.2 | 920.6 | 1039.8 | 1158.3 | | 1.9 | 1.6 | 1.2 | 1 | | textiles | | 63.6 | 56.4 | 48.4 | 42.5 | 38.7 | | -1.2 | -1.5 | -1.3 | -0 | | other industries (incl. printing) | | 267.3 | 301.8 | 330.8 | 355.0 | 386.2 | | 1.2 | 0.9 | 0.7 | 0 | | Construction | | 703.0 | 786.8 | 901.0 | 988.2 | 1067.5 | | 1.1 | 1.4 | 0.9 | 0 | | Tertiary | | 8324.6 | 9696.5 | 11479.6 | 13361.4 | 15507.4 | | 1.5 | 1.7 | 1.5 | 1 | | market services | | 4783.5 | 5686.6 | 6845.0 | 8111.4 | 9602.2 | | 1.7 | 1.9 | 1.7 | 1 | | non market services | | 2147.8 | 2347.5 | 2676.6 | 2978.7 | 3301.3 | | 0.9 | 1.3 | 1.1 | 1 | | trade | | 1210.5 | 1470.3 | 1759.9 | 2071.2 | 2402.5 | | 2.0 | 1.8 | 1.6 | 1 | | agriculture | | 182.9 | 192.1 | 198.2 | 200.1 | 201.4 | | 0.5 | 0.3 | 0.1 | 0 | | Energy sector and others | | 335.7 | 366.3 | 394.7 | 417.6 | 440.1 | | 0.9 | 0.7 | 0.6 | 0. | | EU-27: Key Demographic and Econor | mic Assum | ptions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | | | | '30-'40 | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 481.1 | 499.2 | 512.4 | 520.3 | 523.6 | 521.9 | 0.4 | 0.3 | 0.2 | 0.1 | 0. | | Average household size (persons) | 2.5 | 2.4 | 2.4 | 2.3 | 2.3 | 2.2 | -0.5 | -0.2 | -0.2 | -0.2 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 10670.6 | 12256.0 | 14189.9 | 16600.1 | 19073.1 | 21858.7 | 1.4 | 1.5 | 1.6 | 1.4 | 1. | | Household Expenditure (in Euro'10/capita) | 12891.8 | 14260.6 | 15850.5 | 18243.7 | 20990.5 | 24545.6 | 1.0 | 1.1 | 1.4 | 1.4 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 10961.3 | 12689.8 | 14846.2 | 17039.7 | 19493.4 | | 1.5 | 1.6 | 1.4 | 1. | | Industry | | 1630.6 | 1880.8 | 2119.2 | 2326.6 | 2535.9 | | 1.4 | 1.2 | 0.9 | 0. | | iron and steel | | 49.5 | 53.7 | 56.3 | 56.6 | 56.2 | | 0.8 | 0.5 | 0.1 | -0 | | non ferrous metals | | 18.7 | 21.3 | 22.1 | 22.3 | 22.1 | | 1.3 | 0.4 | 0.1 | -0 | | chemicals | | 195.9 | 232.4 | 259.7 | 283.8 | 305.8 | | 1.7 | 1.1 | 0.9 | 0 | | non metallic minerals | | 68.2 | 77.9 | 87.9 | 93.6 | 97.7 | | 1.3 | 1.2 | 0.6 | 0 | | paper pulp | | 98.0 | 106.1 | 116.0 | 123.6 | 127.8 | | 0.8 | 0.9 | 0.6 | 0 | | food, drink and tobacco | | 220.1 | 246.0 | 281.8 | 314.2 | 348.0 | | 1.1 | 1.4 | 1.1 | 1 | | engineering | | 651.4 | 788.2 | 919.4 | 1038.4 | 1156.9 | | 1.9 | 1.6 | 1.2 | 1 | | textiles | | 63.3 | 56.2 | 48.1 | 42.2 | 38.5 | | -1.2 | -1.5 | -1.3 | -0 | | other industries (incl. printing) | | 265.3 | 299.1 | 327.9 | 351.7 | 382.8 | | 1.2 | 0.9 | 0.7 | 0 | | Construction | | 700.3 | 783.7 | 897.5 | 984.5 | 1063.6
| | 1.1 | 1.4 | 0.9 | 0 | | Tertiary | | 8295.2 | 9659.6 | 11435.4 | 13311.6 | 15454.4 | | 1.5 | 1.7 | 1.5 | 1 | | market services | | 4770.5 | 5669.6 | 6824.9 | 8088.8 | 9578.1 | | 1.7 | 1.9 | 1.7 | 1 | | non market services | | 2140.4 | 2338.7 | 2665.7 | 2966.5 | 3288.3 | | 0.9 | 1.3 | 1.1 | 1 | | trade | | 1203.6 | 1461.5 | 1749.0 | 2058.7 | 2389.1 | | 2.0 | 1.8 | 1.6 | 1. | | 11440 | | | | | | | | | | | | | agriculture | | 180.7 | 189.8 | 195.7 | 197.6 | 198.9 | | 0.5 | 0.3 | 0.1 | 0. | | Austria: Key Demographic and Econo | mic Assun | nptions | | | | | | | | | |--|-----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------|----------------|----------------------------------|-------------------|-----------------------| | | 2000 | 2010 | 2020 | 2030 | 2040 | | '00-'10 '10-'2 | 0 '20-'30 | | | | Main Demographic Assumptions | | | | | | | | | | | | Population (Million) | 8.0 | 8.4 | 8.6 | 8.8 | 9.0 | 9.0 | 0.5 0 | 3 0.3 | 0.1 | 0 | | Average household size (persons) | 2.5 | 2.3 | 2.3 | 2.2 | 2.2 | 2.1 | -0.9 -0 | .1 -0.2 | -0.2 | -0 | | Gross Domestic Product (in 000 MEuro'10) | 245.5 | 286.2 | 337.7 | 385.4 | 442.5 | 507.4 | 1.5 1 | 7 1.3 | 1.4 | 1. | | Household Expenditure (in Euro'10/capita) | 17068.5 | 18640.0 | 21391.7 | 23858.8 | 27437.8 | 32265.1 | 0.9 1 | 4 1.1 | 1.4 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 258.6 | 305.1 | 348.2 | 399.4 | 457.1 | 1 | 7 1.3 | 1.4 | 1. | | Industry | | 45.6 | 55.0 | 61.2 | 65.4 | 71.6 | 1 | 9 1.1 | 0.7 | 0 | | iron and steel | | 2.9 | 3.1 | 3.2 | 3.2 | 3.1 | 0 | 7 0.2 | 0.0 | -0 | | non ferrous metals | | 0.8 | 1.1 | 1.1 | 1.2 | 1.2 | 4 | .0 -0.2 | 0.7 | 0 | | chemicals | | 3.8 | 4.3 | 4.6 | 5.1 | 6.1 | 1 | .1 0.8 | 1.0 | 1 | | non metallic minerals | | 2.3 | 2.6 | 2.8 | 3.0 | 3.1 | 1 | .1 1.1 | 0.4 | 0 | | paper pulp | | 2.7 | 3.1 | 3.6 | 3.8 | 4.0 | 1 | 2 1.5 | 0.7 | 0 | | food, drink and tobacco | | 4.7 | 4.9 | 5.6 | 6.3 | 7.1 | 0 | .3 1.5 | 1.1 | 1 | | engineering | | 19.1 | 25.9 | 29.5 | 30.6 | 32.4 | 3 | .1 1.3 | 0.4 | 0 | | textiles | | 1.0 | 0.8 | 0.7 | 0.6 | 0.6 | -1 | .8 -1.4 | -1.5 | -C | | other industries (incl. printing) | | 8.3 | 9.3 | 10.0 | 11.7 | 14.1 | 1 | 2 0.7 | 1.6 | 1 | | Construction | | 17.7 | 19.7 | 21.5 | 23.5 | 25.2 | 1 | .1 0.9 | 0.9 | C | | -
Fertiary | | 188.5 | 223.0 | 257.7 | 302.2 | 351.7 | 1 | 7 1.5 | 1.6 | 1 | | market services | | 103.6 | 122.1 | 139.7 | 163.8 | 192.4 | 1 | | | 1 | | non market services | | 45.9 | 52.4 | 59.4 | 68.9 | 79.1 | 1 | | | | | trade | | 35.1 | 44.4 | 54.5 | 65.3 | 75.9 | 2 | 4 2.1 | 1.8 | | | agriculture | | 3.8 | 4.0 | 4.2 | 4.2 | 4.2 | 0 | | | (| | · · | | 6.9 | 7.5 | 7.7 | 8.3 | 8.7 | 0 | | | (| | nergy sector and others
Belgium: Key Demographic and Econ | omic Assu | | 7.5 | 7.7 | 0.0 | 0.1 | U | .0 0.5 | 0.1 | | | Beigiani. Rey Beinograpine and Leon | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '10-'2 | 0 '20-'30 | '30-'40 | '40-' | | fair Danasantia Assessations | | | | | | | | | | | | Main Demographic Assumptions | 40.0 | 40.0 | 44.0 | 40.0 | 40.7 | 40.4 | | - 0- | 0.4 | | | Population (Million) | 10.2 | 10.8 | 11.6 | 12.2 | 12.7 | 13.1 | 0.6 0 | | | 0 | | Average household size (persons) | 2.4 | 2.3 | 2.3 | 2.2 | 2.2 | 2.2 | -0.5 -0 | | -0.1 | -C | | Gross Domestic Product (in 000 MEuro'10) | 308.9 | 354.7 | 409.2 | 474.6 | 563.4 | 668.8 | 1.4 1 | | | 1 | | lousehold Expenditure (in Euro'10/capita) | 15914.2 | 17295.0 | 18178.4 | 20285.7 | 23397.8 | 27170.5 | 0.8 0 | | 1.4 | 1 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 315.8 | 364.3 | 422.5 | 501.0 | 593.8 | 1 | | | 1 | | ndustry | | 40.8 | 47.6 | 54.4 | 63.7 | 74.1 | 1 | | | 1 | | iron and steel | | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | 0 | | 0.1 | (| | non ferrous metals | | 0.8 | 1.0 | 1.1 | 1.2 | 1.2 | 2 | | | (| | chemicals | | 10.0 | 12.0 | 13.3 | 14.8 | 16.4 | 1 | | | 1 | | non metallic minerals | | 2.6 | 3.0 | 3.5 | 3.9 | 4.2 | 1 | | | (| | paper pulp | | 3.3 | 3.9 | 4.9 | 5.7 | 6.4 | 1 | | | • | | food, drink and tobacco | | 6.4 | 7.1 | 8.0 | 9.5 | 11.3 | 1 | | | • | | | | 9.4 | 12.0 | 14.7 | 19.0 | 24.1 | 2 | | 2.6 | 2 | | engineering
 | | 1.9 | 1.7 | 1.4 | 1.2 | 1.2 | -1 | | | -(| | textiles | | | | 5.1 | 6.0 | 6.9 | 1 | .1 1.0 | 1.6 | | | textiles other industries (incl. printing) | | 4.1 | 4.6 | | | | | | | | | textiles other industries (incl. printing) construction | | 18.0 | 20.8 | 23.1 | 26.2 | 30.0 | 1 | | | | | textiles other industries (incl. printing) construction ertiary | | 18.0
245.3 | 20.8
283.3 | 23.1
331.1 | 26.2
395.7 | 472.6 | 1 | 4 1.6 | 1.8 | | | textiles other industries (incl. printing) construction fertiary market services | | 18.0
245.3
133.1 | 20.8
283.3
159.9 | 23.1
331.1
192.2 | 26.2
395.7
234.6 | 472.6
286.9 | 1
1 | 4 1.6
9 1.9 | 1.8
2.0 | 2 | | textiles other industries (incl. printing) Construction Fertiary market services non market services | | 18.0
245.3
133.1
69.8 | 20.8
283.3
159.9
76.3 | 23.1
331.1
192.2
84.9 | 26.2
395.7
234.6
97.6 | 472.6
286.9
111.4 | 1
1
0 | 4 1.6
9 1.9
9 1.1 | 1.8
2.0
1.4 | 2 | | textiles other industries (incl. printing) Construction Fertiary market services | | 18.0
245.3
133.1 | 20.8
283.3
159.9 | 23.1
331.1
192.2 | 26.2
395.7
234.6 | 472.6
286.9 | 1
1 | .4 1.6
.9 1.9
.9 1.1 | 1.8
2.0
1.4 | 1
2
1 | | textiles other industries (incl. printing) Construction Tertiary market services non market services | | 18.0
245.3
133.1
69.8 | 20.8
283.3
159.9
76.3 | 23.1
331.1
192.2
84.9 | 26.2
395.7
234.6
97.6 | 472.6
286.9
111.4 | 1
1
0 | 4 1.6
9 1.9
9 1.1
1 1.4 | 1.8
2.0
1.4 | 1
2
1
1
0 | | REFERENCE 2013 | | | | | | | | | | | | |---|-----------|----------|--------|--------|---------|---------|------------|-------|---------|---------|---------| | Bulgaria: Key Demographic and Econo | omic Assu | mptions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 8.2 | 7.6 | 7.1 | 6.6 | 6.2 | 5.9 | -0.8 | -0.6 | -0.7 | -0.6 | -0.6 | | Average household size (persons) | 2.7 | 2.6 | 2.5 | 2.4 | 2.3 | 2.2 | -0.3 | -0.3 | -0.3 | -0.4 | -0.4 | | Gross Domestic Product (in 000 MEuro'10) | 24.2 | 36.1 | 45.1 | 51.5 | 59.2 | 64.9 | 4.1 | 2.3 | 1.3 | 1.4 | 0.9 | | Household Expenditure (in Euro'10/capita) | 1778.1 | 2992.1 | 3996.8 | 5008.7 | 6306.6 | 7437.8 | 5.3 | 2.9 | 2.3 | 2.3 | 1.7 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 31.0 | 38.8 | 44.4 | 50.9 | 55.7 | | 2.3 | 1.3 | 1.4 | 0.9 | | Industry | | 5.2 | 6.4 | 7.3 | 8.4 | 9.2 | | 2.0 | 1.3 | 1.4 | 1.0 | | iron and steel | | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | | 3.9 | 1.1 | 1.7 | 1.1 | | non ferrous metals | | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | | 1.5 | 1.4 | 1.7 | 1.1 | | chemicals | | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | | 1.9 | 1.0 | 0.5 | 0.3 | | non metallic minerals | | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | | 2.0 | 1.5 | 1.6 | 0.8 | | paper pulp | | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | | 2.1 | 2.4 | 2.2 | 1.7 | | food, drink and tobacco | | 0.7 | 0.9 | 0.9 | 1.0 | 1.1 | | 1.7 | 0.6 | 1.1 | 0.7 | | engineering | | 1.5 | 2.0 | 2.6 | 3.2 | 3.6 | | 2.9 | 2.4 | 2.1 | 1.2 | | textiles | | 0.8 | 0.9 | 0.8 | 0.7 | 0.6 | | 0.5 | -1.6 | -0.8 | -0.8 | | other industries (incl. printing) | | 1.0 | 1.3 | 1.4 | 1.7 | 1.9 | | 1.9 | 1.5 | 1.4 | 1.6 | | Construction | | 2.2 | 2.6 | 2.8 | 3.1 | 3.4 | | 1.6 | 0.7 | 1.1 | 0.7 | | Tertiary | | 21.8 | 27.7 | 32.0 | 36.8 | 40.4 | | 2.4 | 1.4 | 1.4 | 0.9 | | market services | | 13.7 | 18.1 | 21.0 | 24.2 | 26.4 | | 2.8 | 1.5 | 1.4 | 0.9 | | non market services | | 4.0 | 4.7 | 5.1 | 5.8 | 6.1 | | 1.5 | 1.0 | 1.2 | 0.5 | | trade | | 2.5 | 3.3 | 4.1 | 5.1 | 6.3 | | 2.8 | 2.3 | 2.2 | 2.0 | | agriculture | | 1.5 | 1.6 | 1.7 | 1.7 | 1.7 | | 0.7 | 0.2 | 0.1 | 0.0 | | Energy sector and others | | 1.8 | 2.2 | 2.3 | 2.6 | 2.7 | | 1.7 | 0.7 | 1.0 | 0.6 | | <u>.</u> | | | | 2.0 | 2.0 | | | | 0.1 | | 0.0 | | Croatia: Key Demographic and Econo | | <u> </u> | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 | .5030 | '30-'40 | '40-'50 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 4.5 | 4.4 | 4.6 | 4.7 | 4.6 | 4.6 | -0.2 | 0.5 | 0.1 | -0.1 | -0.1 | | Average household size (persons) | 2.6 | 2.4 | 2.3 | 2.3 | 2.3 | 2.2 | -0.9 | -0.1 | -0.2 | -0.2 | -0.1 | | Gross Domestic Product (in 000 MEuro'10) | 35.3 | 45.9 | 56.6 | 67.6 | 77.7 | 85.4 | 2.7 | 2.1 | 1.8 | 1.4 | 0.9 | | Household Expenditure (in Euro'10/capita) | 4528.9 | 5875.4 | 7299.8 | 9046.7 | 10816.9 | 12291.1 | 2.6 | 2.2 | 2.2 | 1.8 | 1.3 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 39.6 | 48.4 | 57.1 | 63.8 | 67.6 | | 2.0 | 1.7 | 1.1 | 0.6 | | Industry | | 7.0 | 7.8 | 8.8 | 9.7 | 10.1 | | 1.1 | 1.2 | 1.0 | 0.4 | | iron and steel | | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | | 0.7 | 0.9 | 0.5 | 0.2 | | non ferrous metals | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.6 | 0.7 | 0.4 | 0.2 | | chemicals | | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | | 1.4 | 1.6 | 1.2 | 0.4 | | non metallic minerals | | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | | 1.1 | 1.1 | 1.3 | 1.2 | | paper pulp | | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | | 1.3 | 1.3 | 1.5 | 1.3 | | food, drink and tobacco | | 1.4 | 1.7 | 1.9 | 2.0 | 2.2 | | 1.8 | 1.2 | 0.8 | 0.5 | | engineering | | 0.6 | 1.0 | 1.2 | 1.4 | 1.4 | | 4.6 | 2.0 | 1.2 | 0.2 | | textiles | | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | | -0.1 | -1.1 | -1.2 | -1.0 | | other industries (incl. printing) | | 2.0 | 2.7 | 3.0 | 3.3 | 3.4 | | 2.7 | 1.1 | 1.0 | 0.3 | | Construction | | 2.6 | 3.1 | 3.4 | 3.7 | 3.9 | | 1.5 | 1.1 | 0.8 | 0.6 | |
Tertiary | | 29.4 | 36.9 | 44.3 | 49.8 | 53.0 | | 2.3 | 1.8 | 1.2 | 0.6 | | market services | | 13.0 | 17.0 | 20.1 | 22.6 | 24.2 | | 2.8 | 1.7 | 1.2 | 0.6 | | non market services | | 7.4 | 8.8 | 10.9 | 12.2 | 13.0 | | 1.8 | 2.1 | 1.1 | 0.7 | | trade | | 6.9 | 8.8 | 10.9 | 12.5 | 13.4 | | 2.5 | 2.1 | 1.4 | 0.7 | | agriculture | | 2.2 | 2.3 | 2.4 | 2.5 | 2.5 | | 0.4 | 0.6 | 0.2 | -0.1 | | Energy sector and others | | 0.5 | 0.5 | 0.6 | 0.6 | 0.5 | | 0.9 | 0.7 | 0.0 | -0.5 | | Cyprus: Key Demographic and Econo | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | י חביבחו | 20-130 1 | 30-'40 ' | '40-'50 | |---|----------|--------------|--------------|--------------|--------------|--------------|------------|-------------|-------------|-------------|-------------| | | 2000 | 2010 | | 2030 | 2040 | | | | | 30- 40 | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 0.7 | 0.8 | 0.9 | 1.0 | 1.0 | 1.1 | 1.5 | 1.0 | 1.0 | 0.6 | 0.5 | | Average household size (persons) | 3.1 | 2.7 | 2.6 | 2.5 | 2.4 | 2.3 | -1.4 | -0.2 | -0.3 | -0.5 | -0.3 | | Gross Domestic Product (in 000 MEuro'10) | 13.1 | 17.3 | 19.8 | 24.1 | 30.3 | 36.2 | 2.8 | 1.3 | 2.0 | 2.3 | 1.8 | | Household Expenditure (in Euro'10/capita) | 12052.6 | 14352.5 | 15011.4 | 16844.6 | 19994.5 | 22729.6 | 1.8 | 0.4 | 1.2 | 1.7 | 1.3 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 15.6 | 17.8 | 21.7 | 27.2 | 32.5 | | 1.3 | 2.0 | 2.3 | 1.8 | | Industry | | 1.1 | 1.1 | 1.3 | 1.6 | 1.8 | | 0.6 | 1.4 | 2.0 | 1.3
1.0 | | iron and steel
non ferrous metals | | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0
0.0 | 0.0 | | -0.2 | 0.7 | 1.3 | 1.0 | | chemicals | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4 | 1.5 | 1.6 | 1.0 | | | | | | | | | | | | | | | non metallic minerals | | 0.1 | 0.2
0.1 | 0.2
0.1 | 0.2
0.1 | 0.2 | | 0.4 | 1.0 | 1.5
1.2 | 0.9 | | paper pulp | | 0.1 | | | | 0.1 | | 1.4 | 1.4 | | 1.4 | | food, drink and tobacco | | 0.4 | 0.4 | 0.4 | 0.6 | 0.6 | | 0.3 | 1.6 | 2.1 | 1.5 | | engineering | | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | | 1.3 | 1.7 | 2.6 | 1.1 | | textiles | | 0.0
0.2 | 0.0
0.2 | 0.0
0.3 | 0.0
0.3 | 0.0
0.4 | | -1.1
0.6 | -1.1
1.4 | -0.2
2.2 | -0.3
1.8 | | other industries (incl. printing) | | | | | 0.3
2.1 | | | | 1.4 | 2.2 | 1.7 | | Construction | | 1.4 | 1.5 | 1.7 | | 2.4 | | 0.3 | | | | | Tertiary | | 12.9 | 14.9 | 18.5 | 23.3 | 27.9 | | 1.5 | 2.2 | 2.3 | 1.8 | | market services non market services | | 7.2
3.4 | 8.6
3.4 | 10.8
3.9 | 13.7
4.9 | 16.8
5.8 | | 1.8
-0.1 | 2.3
1.6 | 2.4
2.3 | 2.1
1.6 | | | | | | | | | | | | | | | trade | | 1.9 | 2.6 | 3.3 | 4.3 | 5.0 | | 3.2 | 2.6 | 2.6 | 1.5 | | agriculture | | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | | 0.1 | 0.1 | 0.0 | 0.1 | | Energy sector and others | | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | | 0.5 | 1.0 | 1.1 | 9.0 | | Czech Republic: Key Demographic an | d Econom | ic Assump | tions | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 10-'20 ': | 20-'30 ' | 30-'40 ' | '40-'50 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 10.3 | 10.5 | 10.8 | 10.8 | 10.7 | 10.7 | 0.2 | 0.3 | 0.0 | -0.1 | -0.1 | | Average household size (persons) | 2.6 | 2.3 | 2.3 | 2.3 | 2.2 | 2.2 | -1.1 | -0.1 | -0.2 | -0.2 | -0.2 | | Gross Domestic Product (in 000 MEuro'10) | 107.0 | 149.3 | 184.3 | 218.8 | 255.9 | 290.0 | 3.4 | 2.1 | 1.7 | 1.6 | 1.3 | | Household Expenditure (in Euro'10/capita) | 5471.8 | 7150.8 | 8521.4 | 10163.0 | 12200.1 | 14231.3 | 2.7 | 1.8 | 1.8 | 1.8 | 1.6 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | 3471.0 | 134.7 | 166.2 | 197.3 | 230.5 | 260.7 | | 2.1 | 1.7 | 1.6 | 1.2 | | Industry | | 31.5 | 38.1 | 46.1 | 54.3 | 61.5 | | 1.9 | 1.9 | 1.7 | 1.2 | | iron and steel | | 1.0 | 1.1 | 1.3 | 1.4 | 1.4 | | 1.5 | 1.3 | 0.9 | -0. | | non ferrous metals | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 0.6 | 1.1 | 1.6 | 0.5 | | chemicals | | 1.7 | 2.1 | 2.3 | 2.6 | 2.8 | | 2.0 | 1.0 | 1.4 | 0.8 | | non metallic minerals | | 1.8 | 1.9 | 2.1 | 2.3 | 2.4 | | 0.8 | 1.0 | 0.8 | 0.7 | | paper pulp | | 1.2 | 1.3 | 1.4 | 1.6 | 1.8 | | 0.8 | 1.1 | 1.2 | 1.0 | | food, drink and tobacco | | 3.3 | 3.8 | 4.2 | 4.8 | 5.4 | | 1.3 | 1.2 | 1.3 | 1.1 | | engineering | | 15.2 | 19.8 | 25.8 | 31.7 | 36.9 | | 2.7 | 2.7 | 2.1 | 1.5 | | textiles | | 1.0 | 1.0 | 0.8 | 0.8 | 0.7 | | 0.0 | -1.5 | -1.0 | -0.7 | | other industries (incl. printing) | | 6.2 | 7.0 | 7.9 | 8.9 | 9.8 | | 1.2 | 1.2 | 1.2 | 1.0 | | Construction | | 9.7 | 11.3 | 12.5 | 13.9 | 15.3 | | 1.5 | 1.0 | 1.1 | 0.9 | | Tertiary | | 85.7 | 108.2 | 129.4 | 152.4 | 174.2 | | 2.4 | 1.8 | 1.7 | 1.3 | | • | | 48.6 | 62.4 | 75.3 | 89.5 | 103.0 | | 2.5 | 1.9 | 1.7 | 1.4 | | market services | | | | | | | | | | | | | non market services | | 20.7 | 24.5 | 27.9 | 31.3 | 33.9 | | 1.7 | 1.3 | 1.2 | 0.8 | | | | 20.7
14.2 | 24.5
18.9 | 27.9
23.8 | 31.3
29.1 | 33.9
34.8 | | 1.7
2.9 | 1.3
2.3 | 1.2
2.0 | 0.8
1.8 | | non market services | | | | | | | | | | | | | REFERENCE 2013 | | | | | | | | | | | | |--|--------------------|--|---|---|--|---|----------------------------|--|---|--|---| | Denmark: Key Demographic and Ecor | omic Assu | ımptions | | | | | | | | | | | | | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | | | | | | | | | *************************************** | | | | Population (Million) | 5.3 | 5.5 | 5.7 | 5.9 | 6.0 | 6.0 | 0.4 | 0.3 | 0.3 | 0.2 | 0.1 | | Average household size (persons) | 2.2 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | -0.6 | 0.0 | -0.1 | 0.0 | -0.1 | | Gross Domestic Product (in 000 MEuro'10) | 222.7 | 235.6 | 270.4 | 314.9 | 364.1 | 430.5 | 0.6 | 1.4 | 1.5 | 1.5 | 1.7 | | Household Expenditure (in Euro'10/capita) | 18517.2 | 20644.0 | 23144.3 | 26559.2 | 30797.8 | 37142.4 | 1.1 | 1.1 | 1.4 | 1.5 | 1.9 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 202.8 | 232.8 | 271.0 | 313.1 | 369.5 | | 1.4 | 1.5 | 1.5 | 1.7 | | Industry | | 23.4 | 25.8 | 28.9 | 32.9 | 37.5 | | 1.0 | 1.1 | 1.3 | 1.3 | | iron and steel | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | -0.1 | 0.0 | -0.2 | 0.1 | | non ferrous metals | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 1.8 | 0.4 | 0.0 | 0.1 | | chemicals | | 3.6 | 4.1 | 5.0 | 6.1 | 7.4 | | 1.2 | 2.1 | 2.0 | 1.8 | | non metallic minerals | | 0.8 | 0.9 | 0.9 | 1.0 | 1.2 | | 1.0 | 0.5 | | 1.6 | | paper pulp | | 0.9 | 1.0 | 1.0 | 1.1 | 1.3 | | 0.6 | 0.6 | | 1.2 | | food, drink and tobacco | | 4.2 | 4.5 | 5.0 | 5.5 | 6.5 | | 0.8 | 0.9 | | 1.6 | | engineering | | 9.3 | 10.3 | 11.4 | 13.0 | 14.5 | | 1.1 | 1.0 | | 1.1 | | textiles | | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | | -1.6 | -1.7 | | -0.2 | | other industries (incl. printing) | | 4.0 | 4.5 | 5.0 | 5.6 | 6.1 | | 1.1 | 1.2 | | 1.0 | | Construction | | 9.5 | 10.5 | 11.9 | 13.0 | 14.5 | | 1.0 | 1.2 | | 1.0 | | Tertiary | | 159.6 | 185.6 | 219.2 | 255.4 | 305.1 | | 1.5 | 1.7 | | 1.8 | | market services | | 83.4 | 95.0 | 111.0 | 129.5 | 157.2 | | 1.3 | 1.6 | | 2.0 | | non market services | | 50.0 | 57.4 | 67.7 | 77.8 | 90.7 | | 1.4 | 1.7 | | 1.6 | | trade | | 23.5 | 30.6 | 37.7 | 45.4 | 54.4 | | 2.6 | 2.1 | 1.9 | 1.8 | | agriculture | | 2.6 | 2.7 | 2.7 | 2.8 | 2.8 | | 0.3 | 0.1 | 0.2 | 0.1 | | Energy sector and others | | 10.4 | 10.8 | 11.0 | 11.7 | 12.4 | | 0.4 | 0.3 | 0.5 | 0.7 | | Estonia: Key Demographic and Econo | mic Assur | nptions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | Population (Million) | 1 4 | | | | | | | | | | | | Population (Million) Average household size (persons) | 1.4
2.4 | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | -0.2 | -0.1 | -0.3 | -0.3 | -0.2 | | Average household size (persons) | 2.4 | 1.3
2.1 | 1.3
2.1 | 1.3
2.1 | 1.2
2.1 | 1.2
2.1 | -0.2
-1.4 | -0.1
0.0 | -0.3
-0.1 | -0.3
-0.1 | -0.2
0.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) | 2.4
10.1 | 1.3
2.1
14.3 | 1.3
2.1
19.4 | 1.3
2.1
24.1 | 1.2
2.1
28.8 | 1.2
2.1
32.2 | -0.2
-1.4
3.5 | -0.1
0.0
3.1 | -0.3
-0.1 | -0.3
-0.1 | -0.2
0.0 | | Average household size (persons) Gross
Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) | 2.4 | 1.3
2.1
14.3
5558.7 | 1.3
2.1
19.4
7912.2 | 1.3
2.1
24.1
10494.5 | 1.2
2.1
28.8
13346.5 | 1.2
2.1
32.2
15739.7 | -0.2
-1.4 | -0.1
0.0
3.1
3.6 | -0.3
-0.1
2.2
2.9 | -0.3
-0.1
1.8
2.4 | -0.2
0.0
1.1
1.7 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12. 5 | 1.3
2.1
19.4
7912.2
17.0 | 1.3
2.1
24.1
10494.5
21.0 | 1.2
2.1
28.8
13346.5
25.1 | 1.2
2.1
32.2
15739.7
28.1 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1 | -0.3
-0.1
2.2
2.9 | -0.3
-0.1
1.8
2.4 | -0.2
0.0
1.1
1.7 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry | 2.4
10.1 | 1.3
2.1
14.3
5558.7 | 1.3
2.1
19.4
7912.2
17.0
2.8 | 1.3
2.1
24.1
10494.5 | 1.2
2.1
28.8
13346.5 | 1.2
2.1
32.2
15739.7
28.1
4.0 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6 | -0.3
-0.1
2.2
2.9 | -0.3
-0.1
1.8
2.4
1.8
1.3 | -0.2
0.0
1.1
1.7 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0 | 1.3
2.1
19.4
7912.2
17.0 | 1.3
2.1
24.1
10494.5
21.0
3.3 | 1.2
2.1
28.8
13346.5
25.1
3.7 | 1.2
2.1
32.2
15739.7
28.1 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5 | -0.3
-0.1
2.2
2.9
2.2
1.5 | -0.3
-0.1
1.8
2.4
1.8
1.3 | -0.2
0.0
1.1
1.7
1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2 | -0.3
-0.1
2.2
2.9
2.2
1.5
2.5 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3 | -0.2
0.0
1.1
1.7
1.1
0.8 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0
0.0 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8 | -0.3
-0.1
2.2
2.9
2.2
1.5
2.5
1.1 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.0 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0
0.0
0.1 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.0 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4 | -0.3
-0.1
2.2
2.9
2.2
1.5
2.5
1.1 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3
1.2 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.1
0.1 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1
0.1 | 24.1
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.0
0.1
0.2 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3 | -0.3
-0.1
2.2
2.9
2.2
1.5
2.5
1.1
1.5 | -0.3
-0.1
1.8
2.4
1.3
1.4
-0.3
1.2
0.7 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.1
0.1 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1
0.1 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3
2.9 | -0.3
-0.1
2.2
2.9
2.5
1.5
2.5
1.1
1.5
1.3
2.0
1.9 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3
1.2
0.7
1.2 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4
1.0
0.9 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.1
0.1
0.1 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1
0.1
0.1 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2
0.2 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3
2.9
2.9
4.7
1.3 | -0.3
-0.1
2.2
2.9
2.5
1.1
1.5
1.3
2.0
1.9
1.3
-0.6 | -0.3
-0.1
1.8
2.4
1.3
1.4
-0.3
1.2
0.7
1.2
1.4
1.6
-0.7 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4
0.4
1.0
0.9
0.9 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.1
0.1
0.1
0.3
0.7
0.1
0.6 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1
0.1
0.1
0.4
1.2
0.1
0.8 | 1.3
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2
0.2
0.4
1.3
0.1 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3
2.9
2.9
4.7
1.3
2.6 | -0.3
-0.1
2.2
2.9
2.5
1.1
1.5
1.3
2.0
1.9
1.3
-0.6 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3
1.2
0.7
1.2
1.4
1.6
-0.7 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4
0.4
1.0
0.9
0.9 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2.4
10.1 | 1.3
2.1
14.3
5558.7
2.0
0.0
0.1
0.1
0.1
0.3
0.7
0.1
0.6
0.7 | 1.3
2.1
19.4
7912.2
2.8
0.0
0.0
0.1
0.1
0.1
0.4
1.2
0.1
0.8
0.9 | 1.3
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2
0.2
0.4
1.3
0.1
0.9
1.0 |
1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3
2.9
2.9
4.7
1.3
2.6
2.2 | -0.3 -0.1 2.2 2.9 2.5 1.5 2.5 1.1 1.5 2.0 1.9 1.3 -0.6 1.7 1.7 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3
1.2
0.7
1.2
1.4
1.6
-0.7 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4
1.0
0.9
0.9
-0.8 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.1
0.1
0.1
0.1
0.3
0.7
0.1
0.6
0.7
9.1 | 1.3
2.1
19.4
7912.2
17.0
2.8
0.0
0.0
0.1
0.1
0.1
0.4
1.2
0.1
0.8
0.9 | 24.1 24.1 10494.5 21.0 3.3 0.0 0.0 0.1 0.2 0.2 0.4 1.3 0.1 0.9 1.0 15.8 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0
1.2 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1
1.4
21.7 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.5
7.2
2.8
1.4
5.3
2.9
2.9
4.7
1.3
2.6
2.2
3.2 | -0.3
-0.1
2.2
2.9
2.5
1.1
1.5
1.3
2.0
1.9
1.3
-0.6
1.7 | -0.3
-0.1
1.8
2.4
1.8
1.3
1.4
-0.3
1.2
0.7
1.2
1.4
1.6
-0.7
1.2
1.7 | -0.2
0.0
1.1
1.7
1.1
0.8
1.8
-0.4
0.4
1.0
0.9
0.9
-0.8
0.7
1.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services | 2.4
10.1 | 1.3 2.1 14.3 5558.7 12.5 2.0 0.0 0.0 0.1 0.1 0.1 0.3 0.7 0.1 0.6 0.7 9.1 5.1 | 1.3 2.1 19.4 7912.2 17.0 2.8 0.0 0.0 0.1 0.1 0.1 0.4 1.2 0.1 0.8 0.9 12.4 7.3 | 1.3
2.1
24.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2
0.2
0.4
1.3
0.1
0.9
1.0
15.8
9.4 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0
1.2
19.1 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1
1.4
21.7 | -0.2
-1.4
3.5 | -0.1 0.0 3.1 3.6 3.1 3.5 7.2 2.8 1.4 5.3 2.9 4.7 1.3 2.6 2.2 3.2 3.5 | -0.3 -0.1 2.2 2.9 2.5 1.1 1.5 1.3 2.0 1.9 1.3 -0.6 1.7 1.7 2.4 2.6 | -0.3 -0.1 1.8 2.4 1.8 1.3 1.4 -0.3 1.2 0.7 1.2 1.4 1.6 -0.7 1.2 1.7 1.9 2.2 | -0.2
0.0
1.1
1.7
1.1
0.8
-0.4
0.4
1.0
0.9
-0.8
0.7
1.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.1
0.1
0.1
0.3
0.7
0.1
0.6
0.7
9.1
5.1
2.0 | 1.3 2.1 19.4 7912.2 17.0 2.8 0.0 0.0 0.1 0.1 0.1 0.4 1.2 0.1 0.8 0.9 12.4 7.3 2.6 | 1.3 2.1 24.1 10494.5 21.0 3.3 0.0 0.0 0.1 0.2 0.2 0.4 1.3 0.1 0.9 1.0 15.8 9.4 3.2 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0
1.2
19.1
11.7
3.5 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1
1.4
21.7
13.4
3.7 | -0.2
-1.4
3.5 | -0.1 0.0 3.1 3.6 3.1 3.5 7.2 2.8 1.4 5.3 2.9 4.7 1.3 2.6 2.2 2.3 2.5 2.7 | -0.3 -0.1 2.2 2.9 2.5 1.1 1.5 1.3 2.0 1.9 1.3 -0.6 1.7 2.4 2.6 1.8 | -0.3 -0.1 1.8 2.4 1.8 1.3 1.4 -0.3 1.2 0.7 1.2 1.4 1.6 -0.7 1.2 1.7 1.9 2.2 1.1 | -0.22
0.0.0
1.11
1.77
1.11
0.8.8
1.8.6
0.4.4
0.4.4
0.4.4
1.0.6
0.9
0.9
0.9
0.7
1.0
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services trade | 2.4
10.1 | 1.3 2.1 14.3 5558.7 12.5 2.0 0.0 0.0 0.1 0.1 0.1 0.3 0.7 0.1 0.6 0.7 9.1 5.1 2.0 1.5 | 1.3 2.1 19.4 7912.2 17.0 2.8 0.0 0.0 0.1 0.1 0.1 0.4 1.2 0.1 0.8 0.9 12.4 7.3 2.6 2.1 | 1.3
2.1
10494.5
21.0
3.3
0.0
0.0
0.1
0.2
0.2
0.4
1.3
0.1
0.9
1.0
15.8
9.4
3.2
2.7 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0
1.2
19.1
11.7
3.5
3.4 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1
1.4
21.7
13.4
3.7 | -0.2
-1.4
3.5 | -0.1
0.0
3.1
3.6
3.1
3.5
7.2
2.8
1.4
5.3
2.9
2.9
4.7
1.3
2.6
2.2
3.2
3.2
3.5
2.7
3.5 | -0.3 -0.1 2.2 2.9 2.5 1.1 1.5 1.3 2.0 1.9 1.3 -0.6 1.7 2.4 2.6 1.8 2.7 | -0.3 -0.1 1.8 2.4 1.8 1.3 1.4 -0.3 1.2 0.7 1.2 1.4 1.6 -0.7 1.2 1.7 1.9 2.2 1.1 2.2 | -0.2 0.0
0.0
1.1.1
1.7
1.1.1
0.8
1.8
1.8
0.4
0.4
0.4
0.4
0.9
0.9
0.9
0.9
0.7
1.0
1.0
1.0
0.8
0.9
1.0
0.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2.4
10.1 | 1.3
2.1
14.3
5558.7
12.5
2.0
0.0
0.0
0.1
0.1
0.1
0.3
0.7
0.1
0.6
0.7
9.1
5.1
2.0 | 1.3 2.1 19.4 7912.2 17.0 2.8 0.0 0.0 0.1 0.1 0.1 0.4 1.2 0.1 0.8 0.9 12.4 7.3 2.6 | 1.3 2.1 24.1 10494.5 21.0 3.3 0.0 0.0 0.1 0.2 0.2 0.4 1.3 0.1 0.9 1.0 15.8 9.4 3.2 | 1.2
2.1
28.8
13346.5
25.1
3.7
0.0
0.0
0.1
0.2
0.2
0.5
1.6
0.1
1.0
1.2
19.1
11.7
3.5 | 1.2
2.1
32.2
15739.7
28.1
4.0
0.0
0.0
0.1
0.2
0.2
0.5
1.7
0.1
1.1
1.4
21.7
13.4
3.7 | -0.2
-1.4
3.5 | -0.1 0.0 3.1 3.6 3.1 3.5 7.2 2.8 1.4 5.3 2.9 4.7 1.3 2.6 2.2 2.3 2.5 2.7 | -0.3 -0.1 2.2 2.9 2.5 1.1 1.5 1.3 2.0 1.9 1.3 -0.6 1.7 2.4 2.6 1.8 | -0.3 -0.1 1.8 2.4 1.8 1.3 1.4 -0.3 1.2 0.7 1.2 1.4 1.6 -0.7 1.2 1.7 1.9 2.2 1.1 2.2 0.5 | -0.22
0.0.0
1.11
1.77
1.11
0.8.8
1.8.6
0.4.4
0.4.4
0.4.4
1.0.6
0.9
0.9
0.9
0.7
1.0
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | | Finland: Key Demographic and Econ | | • | 2000 | 0000 | 2040 | 2052 | 100 140 14 | 0 100 10 | 0 120 1 | 20 140 | 140 15 | |---|-----------|----------------|----------------|----------------|----------------|----------------|------------|------------|------------|------------|--------| | | 2000 | 2010 | 2020 | 2030 | 2040 | | '00-'10 '1 | 0-'20 '2 | 20-'30 ' | 30-'40 | '40-'5 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 5.2 | 5.4 | 5.6 | 5.7 | 5.7 | 5.7 | 0.3 | 0.4 | 0.2 | 0.0 | 0. | | Average household size (persons) | 2.3 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | -0.8 | 0.0 | 0.0 | -0.1 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 150.5 | 179.7 | 211.9 | 243.5 | 284.2 | 329.4 | 1.8 | 1.7 | 1.4 | 1.6 | 1. | | Household Expenditure (in Euro'10/capita) | 14733.0 | 18488.9 | 20939.6 | 23714.2 | 28035.5 | 33245.6 | 2.3 | 1.3 | 1.3 | 1.7 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 156.6 | 184.6 | 212.0 | 247.3 | 286.1 | | 1.7 | 1.4 | 1.5 | 1. | | Industry | | 28.0 | 32.8 | 37.1 | 41.3 | 45.5 | | 1.6 | 1.2 | 1.1 | 1. | | iron and steel | | 0.7 | 0.9 | 0.9 | 0.9 | 1.0 | | 2.9 | 0.2 | 0.2 | 0. | | non ferrous metals | | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | | 1.8 | 0.1 | 0.2 | 0 | | chemicals | | 2.5 | 2.7 | 3.0 | 3.2 | 3.4 | | 8.0 | 1.0 | 0.7 | 0 | | non metallic minerals | | 1.0 | 1.2 | 1.4 | 1.5 | 1.6 | | 1.9 | 1.6 | 1.0 | 0 | | paper pulp | | 3.8 | 3.9 | 4.2 | 4.4 | 4.6 | | 0.2 | 8.0 | 0.5 | 0. | | food, drink and tobacco | | 2.7 | 3.0 | 3.4 | 4.1 | 4.6 | | 1.0 | 1.5 | 1.7 | 1. | | engineering | | 11.9 | 15.0 | 17.3 | 19.5 | 21.5 | | 2.3 | 1.4 | 1.2 | 1 | | textiles | | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | | -1.0 | -1.5 | -1.0 | -0 | | other industries (incl. printing) | | 4.6 | 5.3 | 6.0 | 6.9 | 8.1 | | 1.4 | 1.3 | 1.4 | 1 | | Construction | | 10.4 | 11.8 | 13.1 | 14.5 | 15.7 | | 1.3 | 1.1 | 1.0 | 0 | | Tertiary | | 113.6 | 134.7 | 156.0 | 185.2 | 218.1 | | 1.7 | 1.5 | 1.7 | 1 | | market services | | 60.1 | 72.3 | 83.8 | 100.7 | 121.1 | | 1.9 | 1.5 | 1.9 | 1 | | non market services | | 33.1 | 38.2 | 43.2 | 49.6 | 56.4 | | 1.4 | 1.2 | 1.4 | 1 | | trade | | 15.6 | 19.3 | 24.1 | 30.0 | 35.8 | | 2.2 | 2.3 | 2.2
 1 | | agriculture | | 4.8 | 4.9 | 4.9 | 4.9 | 4.8 | | 0.2 | 0.1 | 0.0 | -0 | | Energy sector and others | | 4.6 | 5.2 | 5.8 | 6.3 | 6.8 | | 1.2 | 1.1 | 0.8 | 0 | | France: Key Demographic and Econo | mic Assum | nptions | | | | | | | | | | | , 3, | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 '2 | 20-'30 ' | 30-'40 ' | '40-'5 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | =0.4 | | | | | | | | Population (Million) | 58.9 | 62.8 | 65.8 | 68.2 | 70.1 | 71.0 | 0.6 | 0.5 | 0.4 | 0.3 | 0 | | Average household size (persons) | 2.4 | 2.3 | 2.3 | 2.3 | 2.2 | 2.2 | -0.3 | -0.1 | -0.1 | -0.1 | -0 | | Gross Domestic Product (in 000 MEuro'10) | 1726.6 | 1932.8 | 2256.9 | 2698.9 | 3163.4 | 3703.3 | 1.1 | 1.6 | 1.8 | 1.6 | 1 | | Household Expenditure (in Euro'10/capita) | 16201.1 | 17903.9 | 19773.7 | 22675.5 | 25848.6 | 29918.6 | 1.0 | 1.0 | 1.4 | 1.3 | 1 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 1738.0 | 2029.3 | 2426.3 | 2840.9 | 3320.0 | | 1.6 | 1.8 | 1.6 | 1 | | ndustry | | 175.0 | 203.7 | 242.6 | 276.6 | 310.9 | | 1.5 | 1.8 | 1.3 | 1 | | iron and steel | | 3.9 | 4.0 | 3.8 | 3.5 | 3.5 | | 0.1 | -0.6 | -0.6 | -0 | | non ferrous metals | | 1.4 | 1.7 | 1.8 | 1.8 | 1.8 | | 1.8 | 0.7 | 0.3 | -0 | | chemicals | | 18.1 | 20.8 | 23.1 | 25.0 | 26.5 | | 1.4 | 1.0 | 0.8 | C | | non metallic minerals | | 7.7 | 8.8 | 10.1 | 11.3 | 12.6 | | 1.3 | 1.4 | 1.1 | 1 | | paper pulp | | 7.3 | 8.6 | 10.1 | 11.8 | 13.7 | | 1.6 | 1.6 | 1.6 | 1 | | food, drink and tobacco | | 29.4 | 34.2 | 40.7 | 46.8 | 54.7 | | 1.5 | 1.7 | 1.4 | 1 | | engineering | | 61.9 | 73.7 | 97.6 | 114.4 | 127.8 | | 1.8 | 2.8 | 1.6 | 1 | | textiles | | 5.0 | 4.5 | 3.8 | 3.2 | 3.0 | | -1.0 | -1.7 | -1.6 | -0 | | other industries (incl. printing) Construction | | 40.2 | 47.4 | 51.8 | 58.7 | 67.4 | | 1.7 | 0.9 | 1.3 | 1 | | | | 104.4 | 117.2 | 133.8 | 148.8 | 162.6 | | 1.2 | 1.3 | 1.1 | C | | | | 1428.3 | 1674.9 | 2015.1 | 2379.9 | 2810.3 | | 1.6 | 1.9 | 1.7 | 1 | | ^r ertiary | | 0000 | 0-0-0 | | | | | | | | | | Fertiary
market services | | 820.6 | 958.9 | 1156.4 | 1382.1 | 1663.5 | | 1.6 | 1.9 | 1.8 | | | Fertiary
market services
non market services | | 393.1 | 456.5 | 542.9 | 622.9 | 710.1 | | 1.5 | 1.7 | 1.4 | 1 | | Tertiary
market services
non market services
trade | | 393.1
184.5 | 456.5
227.4 | 542.9
282.9 | 622.9
341.9 | 710.1
403.6 | | 1.5
2.1 | 1.7
2.2 | 1.4
1.9 | 1
1 | | Tertiary
market services
non market services | | 393.1 | 456.5 | 542.9 | 622.9 | 710.1 | | 1.5 | 1.7 | 1.4 | 1 | | REFERENCE 2013 | | | | | | | | | | | | |---|--------------------|---------------------------------------|---------------------------------------|--|--------------------------------|--------------------------------|-----------|-----------------------------|--------------------------|--------------------------|-----| | Germany: Key Demographic and Eco | nomic Assı
2000 | umptions
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 ' | י חכי-חו | 20-'20 ' | 30-'40 | '// | | | | | 2020 | | 2040 | | | | 20- 30 | | | | Main Demographic Assumptions | | | | | | | | | | | | | opulation (Million) | 82.2 | 81.8 | 80.1 | 77.9 | 74.8 | 70.8 | 0.0 | -0.2 | -0.3 | -0.4 | | | verage household size (persons) | 2.2 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | -0.6 | 0.0 | -0.1 | -0.1 | | | ross Domestic Product (in 000 MEuro'10) | 2257.7 | 2476.8 | 2801.8 | 2997.7 | 3185.2 | 3465.8 | 0.9 | 1.2 | 0.7 | 0.6 | | | ousehold Expenditure (in Euro'10/capita) | 16649.9 | 17395.9 | 19401.3 | 21234.4 | 23682.7 | 27991.8 | 0.4 | 1.1 | 0.9 | 1.1 | | | ECTORAL VALUE ADDED (in 000 MEuro'10) | | 2216.5 | 2507.1 | 2682.1 | 2846.8 | 3092.3 | | 1.2 | 0.7 | 0.6 | | | dustry | | 460.0 | 517.1 | 537.5 | 551.5 | 573.9 | | 1.2 | 0.4 | 0.3 | | | iron and steel | | 16.1 | 17.3 | 18.0 | 17.6 | 17.3 | | 8.0 | 0.4 | -0.2 | | | non ferrous metals | | 6.2 | 6.7 | 6.5 | 6.2 | 6.0 | | 8.0 | -0.3 | -0.4 | | | chemicals | | 56.4 | 64.8 | 68.7 | 71.7 | 75.8 | | 1.4 | 0.6 | 0.4 | | | non metallic minerals | | 14.3 | 14.8 | 15.1 | 14.9 | 14.7 | | 0.4 | 0.2 | -0.1 | | | paper pulp | | 18.9 | 20.0 | 20.7 | 20.6 | 20.0 | | 0.6 | 0.3 | 0.0 | | | food, drink and tobacco | | 38.3 | 40.0 | 42.3 | 43.5 | 45.1 | | 0.4 | 0.6 | 0.3 | | | engineering | | 238.3 | 281.2 | 292.9 | 307.9 | 327.1 | | 1.7 | 0.4 | 0.5 | | | textiles | | 6.8 | 5.5 | 4.2 | 3.3 | 2.8 | | -2.0 | -2.6 | -2.4 | | | other industries (incl. printing) | | 64.9 | 66.7 | 69.2 | 65.7 | 65.3 | | 0.3 | 0.4 | -0.5 | | | onstruction | | 96.3 | 102.5 | 105.5 | 108.5 | 114.7 | | 0.6 | 0.3 | 0.3 | | | ertiary | | 1596.3 | 1816.4 | 1964.5 | 2110.2 | 2323.6 | | 1.3 | 0.8 | 0.7 | | | market services | | 965.0 | 1131.0 | 1258.3 | 1381.1 | 1531.8 | | 1.6 | 1.1 | 0.9 | | | non market services | | 405.0 | 437.9 | 452.7 | 466.9 | 504.0 | | 0.8 | 0.3 | 0.3 | | | trade | | 207.6 | 228.3 | 233.7 | 242.9 | 269.3 | | 1.0 | 0.2 | 0.4 | | | | | | | | | | | | | | | | agriculture | | 18.7 | 19.1 | 19.8 | 19.3 | 18.5 | | 0.3 | 0.4 | -0.3 | | | nergy sector and others | | 64.0 | 71.1 | 74.6 | 76.7 | 80.1 | | 1.1 | 0.5 | 0.3 | _ | | Greece: Key Demographic and Econo | omic Assun
2000 | nptions
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 ' | י חבי חו | י חבי חב | 20 '40 | 14 | | | | | | | | | 00-10 | | | | | | ain Demographic Assumptions | | | | | | | | | | | | | opulation (Million) | 10.9 | 11.3 | 11.5 | 11.6 | 11.6 | 11.6 | 0.4 | 0.2 | 0.0 | 0.0 | | | verage household size (persons) | 2.8 | 2.7 | 2.6 | 2.5 | 2.4 | 2.3 | -0.5 | -0.3 | -0.4 | -0.3 | | | ross Domestic Product (in 000 MEuro'10) | 184.1 | 227.3 | 227.1 | 256.6 | 289.3 | 322.1 | 2.1 | 0.0 | 1.2 | 1.2 | | | ousehold Expenditure (in Euro'10/capita) | 11778.0 | 14981.1 | 14620.3 | 16014.1 | 17225.0 | 18255.4 | 2.4 | -0.2 | 0.9 | 0.7 | | | ECTORAL VALUE ADDED (in 000 MEuro'10) | | 200.6 | 200.4 | 226.4 | 255.0 | 283.5 | | 0.0 | 1.2 | 1.2 | | | dustry | | 18.2 | 19.4 | 21.4 | 23.2 | 25.1 | | 0.6 | 1.0 | 0.8 | | | iron and steel | | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | 0.2 | 0.0 | -0.1 | | | non ferrous metals | | 0.7 | 8.0 | 0.8 | 0.9 | 0.9 | | 0.8 | 0.4 | 0.6 | | | chemicals | | 2.0 | 2.1 | 2.4 | 2.6 | 2.8 | | 0.8 | 1.1 | 0.8 | | | non metallic minerals | | 1.3 | 1.5 | 1.6 | 1.6 | 1.7 | | 2.1 | 0.3 | 0.3 | | | paper pulp | | 1.7 | 1.7 | 1.8 | 2.0 | 2.1 | | 0.1 | 0.7 | 0.7 | | | food, drink and tobacco | | 6.7 | 7.1 | 8.4 | 9.8 | 11.2 | | 0.6 | 1.7 | 1.5 | | | | | 2.1 | 2.1 | 2.4 | 2.6 | 2.9 | | 0.2 | 1.1 | 1.1 | | | engineering | | 0.9 | 0.9 | 0.8 | 0.8 | 0.7 | | 0.0 | -1.3 | -1.0 | | | engineering
textiles | | | | 2.1 | 1.8 | 1.8 | | 0.7 | 0.7 | -1.1 | | | textiles | | 1.8 | 1.9 | | | | | | | | | | textiles other industries (incl. printing) | | 1.8
10.7 | 1.9
10.5 | 11.0 | 11.6 | 12.3 | | -0.2 | 0.4 | 0.5 | | | textiles
other industries (incl. printing)
onstruction | | 10.7 | 10.5 | 11.0 | 11.6
213.4 | 12.3
239.2 | | -0.2
-0.1 | 0.4
1.3 | 0.5
1.3 | | | textiles other industries (incl. printing) onstruction ertiary | | 10.7
165.1 | 10.5
163.9 | 11.0
187.3 | 213.4 | 239.2 | | -0.1 | 1.3 | 1.3 | | | textiles other industries (incl. printing) onstruction ertiary market services | | 10.7
165.1
96.5 | 10.5
163.9
99.8 | 11.0
187.3
116.0 | 213.4
132.7 | 239.2
151.7 | | -0.1
0.3 | 1.3
1.5 | 1.3
1.4 | | | textiles other industries (incl. printing) onstruction ertiary market services non market services | | 10.7
165.1
96.5
37.2 | 10.5
163.9
99.8
32.8 | 11.0
187.3
116.0
36.1 | 213.4
132.7
41.4 | 239.2
151.7
43.9 | | -0.1
0.3
-1.3 | 1.3
1.5
1.0 | 1.3
1.4
1.4 | | | textiles other industries (incl. printing) construction ertiary market services non market services trade | | 10.7
165.1
96.5
37.2
25.1 | 10.5
163.9
99.8
32.8
24.9 | 11.0
187.3
116.0
36.1
28.8 | 213.4
132.7
41.4
32.8 | 239.2
151.7
43.9
37.0 | | -0.1
0.3
-1.3
-0.1 | 1.3
1.5
1.0
1.5 | 1.3
1.4
1.4
1.3 | | | textiles other industries (incl. printing) onstruction ertiary market services non market services | | 10.7
165.1
96.5
37.2 | 10.5
163.9
99.8
32.8 | 11.0
187.3
116.0
36.1 | 213.4
132.7
41.4 | 239.2
151.7
43.9 | | -0.1
0.3
-1.3 | 1.3
1.5
1.0 | 1.3
1.4
1.4 | | | Hungary: Key Demographic and Econo | | | | | | | | | | | | |---|-----------|--------------|--------------|--------------|--------------|---------|------------|-------|-----------|--------|--------| | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 | '20-'30 ' | 30-'40 | '40-'5 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 10.2 | 10.0 | 9.9 | 9.7 | 9.4 | 9.2 | -0.2 | -0.1 | -0.2 | -0.3 | -0. | | Average household size (persons) | 2.5 | 2.3 | 2.3 | 2.2 | 2.2 | 2.1 | -0.8 | -0.1 | -0.3 | -0.2 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 79.9 | 97.1 | 106.6 | 127.3 | 146.5 | 162.0 | 2.0 | 0.9 | 1.8 | 1.4 | 1. | | Household Expenditure (in Euro'10/capita) | 4233.0 | 5164.2 | 5708.5 | 6941.5 | 8236.3 | 9438.4 | 2.0 | 1.0 | 2.0 | 1.7 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 82.1 | 90.1 | 107.6 | 123.7 | 136.6 | | 0.9 | 1.8 | 1.4 | 1. | | Industry | | 16.9 | 18.6 | 22.4 | 25.7 | 28.4 | | 1.0 | 1.9 | 1.4 | 1. | | iron and steel | | 0.2 | 0.3 | 0.4 | 0.4 | 0.4 | | 6.1 | 0.9 | 0.4 | 0. | | non ferrous metals | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 3.5 | 0.5 | 0.1 | 0. | | chemicals | | 1.6 | 1.9 | 2.2 | 2.5 | 2.6 | | 1.3 | 1.7 | 1.3 | 0. | | non metallic minerals | | 0.5 | 0.6 | 0.7 | 0.8 | 0.8 | | 0.9 | 1.6 | 1.0 | 0. | | paper pulp | | 0.6 | 0.6 | 0.7 | 0.8 | 0.9 | | 0.9 | 1.5 | 1.2 | 0. | | food, drink and tobacco | | 1.9 | 2.0 | 2.3 | 2.6 | 2.9 | | 0.3 | 1.6 | 1.3 | 0. | |
engineering | | 9.1 | 10.2 | 12.6 | 14.7 | 16.7 | | 1.1 | 2.2 | 1.6 | 1.3 | | textiles | | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | | -1.9 | -1.8 | -1.6 | -1. | | other industries (incl. printing) | | 2.4 | 2.5 | 3.0 | 3.4 | 3.7 | | 8.0 | 1.7 | 1.2 | 0. | | Construction | | 3.6 | 4.0 | 4.7 | 5.4 | 6.0 | | 1.1 | 1.7 | 1.4 | 1. | | Tertiary | | 57.4 | 63.2 | 75.8 | 87.6 | 97.1 | | 1.0 | 1.8 | 1.5 | 1.0 | | market services | | 31.8 | 35.0 | 42.3 | 49.6 | 56.1 | | 0.9 | 1.9 | 1.6 | 1.3 | | non market services | | 14.5 | 15.4 | 17.9 | 19.9 | 20.8 | | 0.6 | 1.6 | 1.0 | 0. | | trade | | 8.0 | 9.5 | 12.0 | 14.4 | 16.4 | | 1.8 | 2.3 | 1.9 | 1.3 | | agriculture | | 3.1 | 3.4 | 3.6 | 3.7 | 3.8 | | 0.8 | 0.8 | 0.2 | 0.3 | | Energy sector and others | | 4.1 | 4.3 | 4.6 | 4.9 | 5.0 | | 0.4 | 0.7 | 0.6 | 0.: | | Ireland: Key Demographic and Econor | mic Assum | ntions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 | '20-'30 ' | 30-'40 | '40-'5 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 3.8 | 4.5 | 4.8 | 5.3 | 5.8 | 6.2 | 1.7 | 0.8 | 0.9 | 0.9 | 0. | | Average household size (persons) | 3.0 | 2.8 | 2.7 | 2.6 | 2.6 | 2.6 | -0.6 | -0.6 | -0.1 | -0.1 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 123.2 | 156.0 | 191.6 | 262.2 | 324.6 | 385.9 | 2.4 | 2.1 | 3.2 | 2.2 | 1. | | Household Expenditure (in Euro'10/capita) | 16548.0 | 17747.3 | 18695.9 | 23044.2 | 25755.6 | 28220.3 | 0.7 | 0.5 | 2.1 | 1.1 | 0. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 141.1 | 173.4 | 237.2 | 293.3 | 348.2 | | 2.1 | 3.2 | 2.1 | 1. | | Industry | | 36.7 | 46.0 | 60.5 | 72.8 | 84.6 | | 2.3 | 2.8 | 1.9 | 1. | | iron and steel | | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | 0.6 | 1.8 | 1.0 | 0. | | non ferrous metals | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 1.2 | 1.1 | 0.3 | 0.3 | | chemicals | | 15.5 | 19.5 | 25.2 | 28.1 | 30.8 | | 2.3 | 2.6 | 1.1 | 0.9 | | non metallic minerals | | 0.6 | 0.7 | 0.9 | 1.0 | 1.1 | | 2.0 | 2.3 | 1.6 | 0. | | paper pulp | | 4.7 | 5.9 | 6.1 | 7.1 | 7.9 | | 2.2 | 0.4 | 1.5 | 1. | | food, drink and tobacco | | 6.4 | 7.9 | 10.7 | 13.1 | 15.4 | | 2.1 | 3.2 | 2.0 | 1. | | engineering | | 7.4 | 9.6 | 14.6 | 19.9 | 25.4 | | 2.5 | 4.3 | 3.2 | 2. | | textiles | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 0.2 | 0.2 | -0.6 | -0. | | other industries (incl. printing) | | 1.7 | 2.1 | 2.6 | 3.1 | 3.5 | | 2.1 | 2.2 | 1.8 | 1. | | Construction | | 4.5 | 6.0 | 7.5 | 8.9 | 10.2 | | 3.0 | 2.2 | 1.8 | 1. | | Tertiary | | 97.6 | 118.6 | 165.3 | 207.0 | 248.2 | | 2.0 | 3.4 | 2.3 | 1.8 | | | | 53.3 | 70.3 | 105.1 | 136.4 | 168.9 | | 2.8 | 4.1 | 2.6 | 2. | | market services | | | | | 00.0 | 40.7 | | -0.2 | 4.0 | 4.5 | 4 | | market services non market services | | 28.5 | 28.1 | 33.9 | 39.3 | 43.7 | | -0.2 | 1.9 | 1.5 | 1. | | | | 28.5
13.4 | 28.1
17.5 | 33.9
23.5 | 39.3
28.4 | 32.6 | | 2.8 | 3.0 | 1.5 | 1. | | non market services | | | | | | | | | | | | | REFERENCE 2013 | | | | | | | | | | | | |---|----------------------------|---|--|---|--|--|----------------------------|---|---|--|--| | Italy: Key Demographic and Economic | Assumpti | ons
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 ' | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 56.9 | 60.3 | 62.9 | 64.5 | 65.7 | 65.9 | 0.6 | 0.4 | 0.3 | 0.2 | 0.0 | | Average household size (persons) | 2.6 | 2.4 | 2.4 | 2.3 | 2.3 | 2.2 | -0.8 | 0.0 | -0.2 | -0.2 | -0.2 | | Gross Domestic Product (in 000 MEuro'10) | 1496.6 | 1553.2 | 1691.3 | 1964.2 | 2225.2 | 2546.7 | 0.4 | 0.9 | 1.5 | 1.3 | 1.4 | | Household Expenditure (in Euro'10/capita) | 15739.5 | 15602.4 | 16003.0 | 17952.1 | 20217.4 | 23899.1 | -0.1 | 0.3 | 1.2 | 1.2 | 1.7 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 1391.8 | 1515.5 | 1759.7 | 1991.4 | 2275.3 | | 0.9 | 1.5 | 1.2 | 1.3 | | Industry | | 223.9 | 240.8 | 266.5 | 285.1 | 305.8 | | 0.7 | 1.0 | 0.7 | 0.7 | | iron and steel | | 6.7 | 6.8 | 6.9 | 7.1 | 7.2 | | 0.1 | 0.2 | 0.2 | 0.2 | | non ferrous metals | | 2.1 | 2.3 | 2.5 | 2.6 | 2.6 | | 1.0 | 0.7 | 0.5 | 0.0 | | chemicals | | 15.5 | 17.2 | 18.8 | 21.8 | 25.0 | | 1.1 | 0.9 | 1.5 | 1.4 | | non metallic minerals | | 11.2 | 12.7 | 15.3 | 16.3 | 17.2 | | 1.3 | 1.9 | 0.6 | 0.5 | | paper pulp | | 10.3 | 11.2 | 13.0 | 14.2 | 14.7 | | 0.9 | 1.5 | 0.9 | 0.3 | | food, drink and tobacco | | 25.2 | 27.8 | 32.8 | 38.1 | 43.6 | | 1.0 | 1.7 | 1.5 | 1.4 | | engineering | | 91.7 | 101.1 | 115.4 | 122.3 | 129.9 | | 1.0 | 1.3 | 0.6 | 0.6 | | textiles | | 24.4 | 21.3 | 18.4 | 16.5 | 15.3 | | -1.3 | -1.4 | -1.1 | -0.7 | | other industries (incl. printing) | | 36.9 | 40.3 | 43.3 | 46.2 | 50.2 | | 0.9 | 0.7 | 0.6 | 3.0 | | Construction | | 84.5 | 89.3 | 103.9 | 114.1 | 124.0 | | 0.5 | 1.5 | 0.9 | 3.0 | | Tertiary | | 1055.5 | 1155.5 | 1355.9 | 1556.3 | 1805.1 | | 0.9 | 1.6 | 1.4 | 1.5 | | market services | | 636.6 | 707.7 | 840.9 | 983.3 | 1167.1 | | 1.1 | 1.7 | 1.6 | 1.7 | | non market services | | 241.8 | 245.9 | 280.5 | 305.9 | 336.9 | | 0.2 | 1.3 | 0.9 | 1.0 | | trade | | 150.7 | 175.0 | 206.3 | 238.3 | 271.2 | | 1.5 | 1.7 | 1.4 | 1.3 | | agriculture | | 26.4 | 26.9 | 28.2 | 28.9 | 29.9 | | 0.2 | 0.5 | 0.2 | 0.3 | | Energy sector and others | | 27.9 | 30.0 | 33.4 | 35.9 | 40.5 | | 0.7 | 1.1 | 0.7 | 1.2 | | Latvia: Key Demographic and Econom | nic Assumi | otions | | | | | | | | | | | | no / toodin | วเเบทอ | | | | | | | | | | | | 2000 | 2010
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | 2000 | 2010 | | | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | 2000 | 2010 | | | | | | | | | | | Main Demographic Assumptions Population (Million) | 2000
2.4 | 2010
2.2 | 2.1 | 2.0 | 1.9 | 1.8 | -0.6 | -0.5 | -0.6 | -0.6 | -0.6 | | Main Demographic Assumptions Population (Million) Average household size (persons) | 2000
2.4
2.6 | 2010
2.2
2.4 | 2.1
2.4 | 2.0
2.3 | 1.9
2.3 | 1.8
2.2 | -0.6
-0.6 | -0.5
-0.1 | -0.6
-0.2 | -0.6
-0.2 | -0.6
-0.1 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) | 2000
2.4
2.6
12.5 | 2010
2.2
2.4
18.0 | 2.1
2.4
23.6 | 2.0
2.3
29.7 | 1.9
2.3
34.4 | 1.8
2.2
36.7 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8 | -0.6
-0.2
2.3 | -0.6
-0.2
1.5 | -0.6
-0.1 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) | 2000
2.4
2.6 | 2010
2.2
2.4
18.0
5035.8 | 2.1
2.4
23.6
7297.9 | 2.0
2.3
29.7
9905.9 | 1.9
2.3
34.4
12119.0 | 1.8
2.2
36.7
13649.5 | -0.6
-0.6 | -0.5
-0.1
2.8
3.8 | -0.6
-0.2
2.3
3.1 | -0.6
-0.2
1.5
2.0 | -0.6
-0.1
0.7 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) | 2000
2.4
2.6
12.5 | 2.2
2.4
18.0
5035.8
16.1 | 2.1
2.4
23.6
7297.9
21.2 | 2.0
2.3
29.7
9905.9
26.6 | 1.9
2.3
34.4
12119.0
30.8 | 1.8
2.2
36.7
13649.5
32.8 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8 | -0.6
-0.2
2.3
3.1
2.3 | -0.6
-0.2
1.5
2.0 | -0.6
-0.1
0.7
1.2 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry | 2000
2.4
2.6
12.5 | 2010
2.2
2.4
18.0
5035.8
16.1
2.2 | 2.1
2.4
23.6
7297.9
21.2
2.9 | 2.0
2.3
29.7
9905.9
26.6
3.2 | 1.9
2.3
34.4
12119.0
30.8
3.5 | 1.8
2.2
36.7
13649.5
32.8
3.5 | -0.6
-0.6
3.7 |
-0.5
-0.1
2.8
3.8
2.8
2.6 | -0.6
-0.2
2.3
3.1
2.3
1.3 | -0.6
-0.2
1.5
2.0
1.5
0.7 | -0.6
-0.1
0.7
1.2
0.7 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel | 2000
2.4
2.6
12.5 | 2.2
2.4
18.0
5035.8
16.1
2.2
0.1 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1 | -0.6
-0.1
0.7
1.2
0.7
0.2 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.4 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1
1.8 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.0 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2
0.2 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.0
1.4 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2
0.5 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.2
0.8 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7
4.5 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.0
1.4
1.1
2.3 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7
1.2 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2
0.5
0.0 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
3
0.2
0.2
0.2
0.8
0.8 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7
4.5
0.2 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.0
1.4
1.1
2.3
-1.2 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7
1.2
-1.2 | -0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2
0.5
0.0
0.8 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.7
0.5
0.1
0.8 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.8
0.8
0.1
1.0 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7
4.5
0.2
1.8 | -0.6
-0.2
2.3
3.1
2.3
1.3
0.2
1.4
1.0
1.4
1.1
2.3
-1.2 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7
1.2
-1.2 |
-0.6
-0.1
0.7
1.2
0.7
0.2
-0.1
-0.3
0.2
0.2
0.5
0.0 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.7
0.5
0.1
0.8
1.2 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
1.0 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.2
0.8
0.8
0.1
1.0 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7
4.5
0.2
1.8
2.3 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.0 1.4 1.1 2.3 -1.2 1.2 1.5 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7
1.2
-1.2
0.8
1.1 | -0.6
-0.11
0.7
0.7
0.2
-0.1
-0.3
0.2
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 12.3 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1
0.8
1.2 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
0.9
1.4
21.3 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
1.0
1.5
25.0 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.8
0.8
0.1
1.0
1.6
27.0 | -0.6
-0.6
3.7 | -0.5
-0.1
2.8
3.8
2.6
6.1
8.8
3.1
1.8
0.0
2.7
4.5
0.2
1.8
2.3
2.9 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.4 1.0 1.4 1.1 2.3 -1.2 1.5 2.6 | -0.6
-0.2
1.5
2.0
1.5
0.7
-0.1
0.3
0.4
0.6
0.9
0.7
1.2
-1.2
0.8
1.1 | -0.6
-0.1
0.7
1.2
-0.1
-0.3
0.2
-0.2
0.2
0.8
-1.5
-0.0
0.2 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 12.3 6.5 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1
0.8
1.2
16.4
9.2 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
0.9
1.4
21.3
12.2 | 1.9 2.3 34.4 12119.0 30.8 3.5 0.1 0.0 0.3 0.2 0.1 0.8 0.7 0.1 1.0 1.5 25.0 14.3 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.2
0.8
0.8
0.1
1.0
1.6
27.0
14.9 | -0.6
-0.6
3.7 | -0.5 -0.1 2.8 3.8 2.8 2.6 6.1 8.8 3.1 1.8 0.0 2.7 4.5 0.2 1.8 2.3 2.9 3.4 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.4 1.0 1.4 1.1 2.3 -1.2 1.5 2.6 2.9 | -0.6 -0.2 1.5 2.0 1.5 0.7 -0.1 0.3 0.4 0.6 0.9 0.7 1.2 -1.2 0.8 1.1 1.6 1.6 | -0.6
-0.1.
0.7
1.2
-0.1
-0.3
-0.2
-0.2
-0.5
-0.6
-0.6
-1.5
-0.6
-0.4
-0.4 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 12.3 6.5 2.4 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1
0.8
1.2
16.4
9.2
2.8 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
0.9
1.4
21.3
12.2
3.2 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
1.0
1.5
25.0
14.3
3.5 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.8
0.8
0.1
1.0
1.6
27.0
14.9
3.5 | -0.6
-0.6
3.7 | -0.5 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.4 1.0 1.4 1.1 2.3 -1.2 1.5 2.6 2.9 1.5 | -0.6 -0.2 1.5 2.0 1.5 0.7 -0.1 0.3 0.4 0.6 0.9 0.7 1.2 -1.2 0.8 1.1 1.6 1.6 0.9 | -0.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services trade | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 12.3 6.5 2.4 2.7 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1
0.8
1.2
16.4
9.2
2.8
3.8 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
0.9
1.4
21.3
12.2
3.2
5.1 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
1.0
1.5
25.0
14.3
3.5
6.4 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.8
0.8
0.1
1.0
1.6
27.0
14.9
3.5
7.8 | -0.6
-0.6
3.7 | -0.5 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.0 1.4 1.1 2.3 -1.2 1.5 2.6 2.9 1.5 3.0 | -0.6 -0.2 1.5 2.0 1.5 0.7 -0.1 0.3 0.4 0.6 0.9 0.7 1.2 -1.2 0.8 1.1 1.6 0.9 2.4 | -0.66
-0.11
0.7
1.2
0.7
0.2
-0.13
-0.3
0.2
0.2
0.5
0.0
0.8
0.8
0.4
0.4
0.4 | | Main Demographic Assumptions Population (Million) Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2000
2.4
2.6
12.5 | 2010 2.2 2.4 18.0 5035.8 16.1 2.2 0.1 0.0 0.2 0.1 0.1 0.5 0.3 0.1 0.7 1.0 12.3 6.5 2.4 | 2.1
2.4
23.6
7297.9
21.2
2.9
0.1
0.0
0.3
0.1
0.1
0.7
0.5
0.1
0.8
1.2
16.4
9.2
2.8 | 2.0
2.3
29.7
9905.9
26.6
3.2
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
0.9
1.4
21.3
12.2
3.2 | 1.9
2.3
34.4
12119.0
30.8
3.5
0.1
0.0
0.3
0.2
0.1
0.8
0.7
0.1
1.0
1.5
25.0
14.3
3.5 | 1.8
2.2
36.7
13649.5
32.8
3.5
0.1
0.0
0.3
0.2
0.2
0.8
0.8
0.1
1.0
1.6
27.0
14.9
3.5 | -0.6
-0.6
3.7 | -0.5 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | -0.6 -0.2 2.3 3.1 2.3 1.3 0.2 1.4 1.4 1.0 1.4 1.1 2.3 -1.2 1.5 2.6 2.9 1.5 | -0.6 -0.2 1.5 2.0 1.5 0.7 -0.1 0.3 0.4 0.6 0.9 0.7 1.2 -1.2 0.8 1.1 1.6 1.6 0.9 | -0.6
-0.1.1
0.7
0.2
-0.1.1
-0.3
0.2
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | Lithuania: Key Demographic and Econ | | | | | | | | | | | | |---|--------------------|--|--|--|---|---|--------------------|---|---
--|---| | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 ' | 20-'30 '3 | 30-'40 ' | 40-'5 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 3.5 | 3.3 | 3.2 | 3.0 | 2.9 | 2.8 | -0.5 | -0.5 | -0.4 | -0.4 | -0. | | Average household size (persons) | 2.8 | 2.6 | 2.5 | 2.4 | 2.3 | 2.3 | -0.7 | -0.4 | -0.3 | -0.3 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 18.0 | 27.5 | 35.1 | 41.8 | 49.3 | 55.6 | 4.4 | 2.4 | 1.8 | 1.7 | 1. | | Household Expenditure (in Euro'10/capita) | 3300.3 | 5325.1 | 7357.5 | 9364.3 | 11685.8 | 13811.0 | 4.9 | 3.3 | 2.4 | 2.2 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 24.7 | 31.5 | 37.5 | 44.2 | 49.7 | | 2.4 | 1.8 | 1.7 | 1. | | Industry | | 4.1 | 5.0 | 5.6 | 6.6 | 7.4 | | 1.9 | 1.3 | 1.5 | 1.3 | | iron and steel | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.8 | 1.2 | 1.2 | 0. | | non ferrous metals | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0 | 0.0 | 0.3 | 0. | | chemicals | | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | | 1.2 | 0.7 | 0.7 | 0. | | non metallic minerals | | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | | 6.0 | 2.4 | 1.9 | 1. | | paper pulp | | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | | 1.2 | 2.9 | 2.3 | 1. | | food, drink and tobacco | | 1.1 | 1.4 | 1.6 | 1.9 | 2.2 | | 1.9 | 1.5 | 1.8 | 1. | | engineering | | 0.6 | 0.8 | 0.9 | 1.1 | 1.3 | | 2.3 | 1.6 | 2.0 | 1. | | textiles | | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | | 0.3 | -1.0 | -0.3 | -0. | | other industries (incl. printing) | | 1.1 | 1.3 | 1.4 | 1.7 | 1.9 | | 1.8 | 1.1 | 1.5 | 1. | | Construction | | 1.5 | 1.8 | 1.9 | 2.1 | 2.1 | | 1.8 | 0.9 | 0.6 | 0. | | Tertiary | | 17.6 | 23.1 | 28.1 | 33.5 | 38.1 | | 2.7 | 2.0 | 1.8 | 1.3 | | market services | | 8.7 | 11.7 | 14.2 | 16.9 | 19.1 | | 3.0 | 2.0 | 1.7 | 1.3 | | non market services | | 3.9 | 4.7 | 5.4 | 6.3 | 7.0 | | 2.0 | 1.3 | 1.5 | 1.: | | trade | | 4.2 | 5.8 | 7.6 | 9.5 | 11.1 | | 3.3 | 2.8 | 2.2 | 1.0 | | agriculture | | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | | 0.3 | 0.1 | 0.2 | 0. | | Energy sector and others | | 1.5 | 1.6 | 1.8 | 2.0 | 2.1 | | 1.0 | 1.1 | 1.1 | 0. | | Luxembourg: Key Demographic and E | conomic | Seumntion | 16 | | | | | | | | | | Edxembodig. Rey Demograpino and E | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 ' | 20-'30 ': | 30-'40 ' | 40-'5 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | | | | | | | | | | | | | | 0.4 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | 1.5 | 1.3 | 0.9 | 0.7 | 0. | | Average household size (persons) | 2.6 | 0.5
2.5 | 0.6
2.5 | 0.6
2.4 | 0.7
2.3 | 0.7
2.2 | 1.5
-0.4 | 1.3
-0.1 | -0.3 | 0.7
-0.4 | -0. | | | | | | | | | | | | | | | Gross Domestic Product (in 000 MEuro'10) | 2.6 | 2.5 | 2.5 | 2.4 | 2.3 | 2.2 | -0.4 | -0.1 | -0.3 | -0.4 | -0
1.
1. | | Gross Domestic Product (in 000 MEuro'10)
Household Expenditure (in Euro'10/capita) | 2.6
30.8 | 2.5
40.3 | 2.5
48.6 | 2.4
58.3 | 2.3
69.3 | 2.2
82.1 | -0.4
2.7 | -0.1
1.9 | -0.3
1.8 | -0.4
1.8 | -0
1. | | Gross Domestic Product (in 000 MEuro'10)
Household Expenditure (in Euro'10/capita)
SECTORAL VALUE ADDED (in 000 MEuro'10) | 2.6
30.8 | 2.5
40.3
26876.5 | 2.5
48.6
27830.0 | 2.4
58.3
30596.6 | 2.3
69.3
34728.6 | 2.2
82.1
40742.2 | -0.4
2.7 | -0.1
1.9
0.3 | -0.3
1.8
1.0 | -0.4
1.8
1.3 | -0
1.
1. | | Gross Domestic Product (in 000 MEuro'10)
Household Expenditure (in Euro'10/capita)
SECTORAL VALUE ADDED (in 000 MEuro'10) | 2.6
30.8 | 2.5
40.3
26876.5
36.6 | 2.5
48.6
27830.0
44.1 | 2.4
58.3
30596.6
52.9 | 2.3
69.3
34728.6
62.8 | 2.2
82.1
40742.2
74.3 | -0.4
2.7 | -0.1
1.9
0.3
1.9 | -0.3
1.8
1.0
1.8 | -0.4
1.8
1.3 | -0
1
1
1 | | Gross Domestic Product (in 000 MEuro'10)
Household Expenditure (in Euro'10/capita)
SECTORAL VALUE ADDED (in 000 MEuro'10)
Industry | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2 | 2.5
48.6
27830.0
44.1
2.4 | 2.4
58.3
30596.6
52.9
2.7 | 2.3
69.3
34728.6
62.8
2.8 | 2.2
82.1
40742.2
74.3
3.0 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8 | -0.3
1.8
1.0
1.8
0.9 | -0.4
1.8
1.3
1.7
0.5 | -0
1.
1.
1.
0. | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3 | 2.5
48.6
27830.0
44.1
2.4
0.3 | 2.4
58.3
30596.6
52.9
2.7
0.3 | 2.3
69.3
34728.6
62.8
2.8
0.3 | 2.2
82.1
40742.2
74.3
3.0
0.3 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1 | -0.3 1.8 1.0 1.8 0.9 0.0 | -0.4
1.8
1.3
1.7
0.5
-0.6 | -0
1.
1.
0.
-0. | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1 | 2.2
82.1
40742.2
74.3
3.0
0.3
0.1 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7 | -0.3
1.8
1.0
1.8
0.9
0.0
0.2 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4 | -0
1
1
0
-0 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2 | 2.2
82.1
40742.2
74.3
3.0
0.3
0.1
0.2 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1 | -0
1
1
1
0
-0
0
0 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2
0.2 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2 | 2.2
82.1
40742.2
74.3
3.0
0.3
0.1
0.2
0.2 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.3 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2 | -0
1.
1.
0
-0
0.
0
0 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2
0.2
0.1 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.3 0.6 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5 | -0.
1.
1.
0.
-0.
-0.
0.
0. | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2
0.2
0.1
0.3 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2 | 2.2
82.1
40742.2
74.3
3.0
0.3
0.1
0.2
0.2
0.2 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0 | -0.3
1.8
1.0
1.8
0.9
0.0
0.2
0.3
0.3
0.6
1.5 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6 | -0.4
1.1
1.0
0.1
-0.1
0.1
0.1
0.1 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2
0.2
0.2
0.1
0.3
0.7 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.2
0.4
0.9 | 2.2
82.1
40742.2
74.3
3.0
0.3
0.1
0.2
0.2
0.2
0.4
0.9 | -0.4
2.7 |
-0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.3 0.6 1.5 1.6 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6
0.6 | -0.4
1.1
1.0
0.1
-0.1
0.1
0.1 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1 | 2.5 48.6 27830.0 44.1 2.4 0.3 0.1 0.2 0.2 0.1 0.3 0.7 0.1 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8
0.1 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.4
0.9
0.1 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 0.4 0.9 0.1 | -0.4
2.7 | -0.1 1.9 0.3 1.9 0.8 -0.1 2.7 1.9 0.1 0.3 1.0 2.0 -1.8 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.3 0.6 1.5 1.6 -1.5 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6
0.6
-1.0 | -0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1
0.5 | 2.5
48.6
27830.0
44.1
2.4
0.3
0.1
0.2
0.2
0.1
0.3
0.7
0.1
0.5 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8
0.1
0.5 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.4
0.9
0.1 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 0.4 0.9 0.1 0.7 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0
-1.8 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.3 0.6 1.5 1.6 -1.5 1.1 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6
0.6
-1.0 | -0 1 1 000 0 0 1 0 1 00 0 0 0 0 0 0 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1
0.5
2.0 | 2.5 48.6 27830.0 44.1 2.4 0.3 0.1 0.2 0.2 0.1 0.3 0.7 0.1 0.5 2.1 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8
0.1
0.5
2.2 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.4
0.9
0.1
0.6
2.3 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 0.4 0.9 0.1 0.7 2.5 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0
-1.8
0.1
0.5 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.6 1.5 1.6 -1.5 1.1 0.3 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6
0.6
-1.0 | -0. 1. 1. 000. 0. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1
0.5
2.0
31.9 | 2.5 48.6 27830.0 44.1 2.4 0.3 0.1 0.2 0.2 0.1 0.3 0.7 0.1 0.5 2.1 39.1 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8
0.1
0.5
2.2
47.6 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.4
0.9
0.1
0.6
2.3
57.4 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 0.4 0.9 0.1 0.7 2.5 68.3 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0
-1.8
0.1
0.5
2.1 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.6 1.5 1.6 -1.5 1.1 0.3 2.0 | -0.4
1.8
1.3
1.7
0.5
-0.6
-0.4
0.1
0.2
0.5
1.6
0.6
-1.0
0.9
0.3
1.9 | -0 1.0 1.0 1.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1
0.5
2.0
31.9
22.0 | 2.5 48.6 27830.0 44.1 2.4 0.3 0.1 0.2 0.2 0.1 0.3 0.7 0.1 0.5 2.1 39.1 27.3 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.1
0.3
0.8
0.1
0.5
2.2
47.6
33.5 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.2
0.4
0.9
0.1
0.6
2.3
57.4
40.8 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.2 0.4 0.9 0.1 0.7 2.5 68.3 48.8 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0
-1.8
0.1
0.5
2.1 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.6 1.5 1.6 -1.5 1.1 0.3 2.0 2.1 | -0.4 1.8 1.3 1.7 0.5 -0.6 -0.4 0.1 0.2 0.5 1.6 0.6 -1.0 0.9 0.3 1.9 2.0 | -0 1.: 1.: 1.: 0.: -0.: -0.: -0.: 0.: 0.: 0.: 0.: 1.: 1.: 1.: 1.: 1.: 1.: 1.: | | non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2.6
30.8 | 2.5
40.3
26876.5
36.6
2.2
0.3
0.0
0.1
0.2
0.1
0.3
0.6
0.1
0.5
2.0
31.9
22.0
6.2 | 2.5 48.6 27830.0 44.1 2.4 0.3 0.1 0.2 0.2 0.1 0.3 0.7 0.1 0.5 2.1 39.1 27.3 7.0 | 2.4
58.3
30596.6
52.9
2.7
0.3
0.1
0.2
0.2
0.1
0.3
0.8
0.1
0.5
2.2
47.6
33.5
8.2 | 2.3
69.3
34728.6
62.8
2.8
0.3
0.1
0.2
0.2
0.4
0.9
0.1
0.6
2.3
57.4
40.8
9.5 | 2.2 82.1 40742.2 74.3 3.0 0.3 0.1 0.2 0.2 0.4 0.9 0.1 0.7 2.5 68.3 48.8 11.2 | -0.4
2.7 | -0.1
1.9
0.3
1.9
0.8
-0.1
2.7
1.9
0.1
0.3
1.0
2.0
-1.8
0.1
0.5
2.1
2.2
1.3 | -0.3 1.8 1.0 1.8 0.9 0.0 0.2 0.3 0.6 1.5 1.6 -1.5 1.1 0.3 2.0 2.1 1.5 | -0.4 1.8 1.3 1.7 0.5 -0.6 -0.4 0.1 0.2 0.5 1.6 0.6 -1.0 0.9 0.3 1.9 2.0 1.5 | -0 1. 1 1 1 1 1 1 1 | | REFERENCE 2013 | | | | | | | | | | | | |---|---------------------|---|--|--|---|--|--------------------------|---|--|--|--| | Malta: Key Demographic and Econom | ic Assump | tions
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | 10-'20 | '20-'30 ' | 30-'40 | 40-'50 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.9 | 0.0 | 0.0 | -0.2 | -0.3 | | Average household size (persons) | 2.9 | 2.6 | 2.5 | 2.5 | 2.5 | 2.4 | -1.0 | -0.3 | -0.2 | -0.2 | -0.1 | | Gross Domestic Product (in 000 MEuro'10) | 5.3 | 6.1 | 7.1 | 8.6 | 10.2 | 11.3 | 1.5 | 1.5 | 1.9 | 1.7 | 1.1 | | Household Expenditure (in Euro'10/capita) | 8524.9 | 9099.6 | 10886.3 | 13449.1 | 16431.3 | 18794.7 | 0.7 | 1.8 | 2.1 | 2.0 | 1.4 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 5.3 | 6.2 | 7.5 | 8.8 | 9.8 | | 1.5 | 1.9 | 1.6 | 1.0 | | Industry | | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | | 1.2 | 1.4 | 1.2 | 0.5 | | iron and steel | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | -0.5 | 1.0 | 0.5 | -0.4 | | non ferrous metals | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | -0.5 | 1.0 | 0.5 | -0.4 | | chemicals | | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | | 2.3 | 0.7 | 0.7 | 0.0 | | non metallic minerals | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6 | 1.2 | 0.7 | 0.2 | | paper pulp | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 0.8 | 1.7 | 1.4 | 1.0 | | food, drink and tobacco
 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 1.6 | 1.8 | 1.3 | 0.6 | | engineering | | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | | 1.2 | 1.9 | 1.7 | 0.7 | | textiles | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | -0.3 | -0.5 | -0.6 | -0.9 | | other industries (incl. printing) | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 0.6 | 1.0 | 0.9 | 0.1 | | Construction | | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | | 1.1 | 1.2 | 1.1 | 0.3 | | Tertiary | | 4.3 | 5.1 | 6.2 | 7.4 | 8.3 | | 1.6 | 2.0 | 1.8 | 1.2 | | market services | | 2.7 | 3.3 | 4.1 | 5.0 | 5.8 | | 2.0 | 2.3 | 2.0 | 1.5 | | non market services | | 1.1 | 1.1 | 1.3 | 1.4 | 1.4 | | 0.6 | 1.4 | 1.0 | 0.1 | | trade | | 0.5 | 0.6 | 0.7 | 0.9 | 1.0 | | 1.8 | 1.9 | 1.7 | 1.2 | | agriculture | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | -0.1 | 0.1 | 0.0 | 0.0 | | Energy sector and others | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | -0.5 | 1.0 | 0.5 | -0.4 | | Netherlands: Key Demographic and E | conomic A | ssumption | S | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | | | | | 40-'50 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | | | | | | | | | | | | | | 15.9 | 16.6 | 17.2 | 17.6 | 17.6 | 17.4 | | | 0.2 | 0.0 | -0.1 | | · · · · · · · · · · · · · · · · · · · | 15.9
2.4 | 16.6
2.4 | 17.2
2.3 | 17.6
2.2 | 17.6
2.2 | 17.4
2.1 | 0.4
0.2 | 0.4
-0.5 | 0.2 | 0.0 | -0.1
-0.5 | | Average household size (persons) | 2.4 | 2.4 | 2.3 | 2.2 | 2.2 | 2.1 | 0.4
0.2 | 0.4
-0.5 | -0.2 | -0.4 | -0.5 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) | 2.4
513.6 | 2.4
588.4 | 2.3
688.1 | 2.2
767.2 | 2.2
866.0 | 2.1
994.4 | 0.4
0.2
1.4 | 0.4
-0.5
1.6 | -0.2
1.1 | -0.4
1.2 | -0.5
1. 4 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) | 2.4 | 2.4
588.4
16109.0 | 2.3
688.1
17740.8 | 2.2
767.2
19449.2 | 2.2
866.0
22469.1 | 2.1
994.4
27595.1 | 0.4
0.2 | 0.4
-0.5
1.6
1.0 | -0.2
1.1
0.9 | -0.4
1.2
1.5 | -0.5
1. 4
2. 1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) | 2.4
513.6 | 2.4
588.4
16109.0
525.9 | 2.3
688.1
17740.8
615.0 | 2.2
767.2
19449.2
685.6 | 2.2
866.0
22469.1
773.1 | 2.1
994.4
27595.1
886.1 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0 | -0.2
1.1
0.9
1.1 | -0.4
1.2
1.5 | -0.5
1.4
2.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9 | 2.3
688.1
17740.8
615.0
73.8 | 2.2
767.2
19449.2
685.6
81.9 | 2.2
866.0
22469.1
773.1
91.8 | 2.1
994.4
27595.1
886.1
102.4 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3 | -0.2
1.1
0.9
1.1
1.1 | -0.4
1.2
1.5
1.2
1.1 | -0.5
1.4
2.1
1. 4 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3 | 2.3
688.1
17740.8
615.0
73.8
1.3 | 767.2
19449.2
685.6
81.9
1.2 | 2.2
866.0
22469.1
773.1
91.8
1.2 | 2.1
994.4
27595.1
886.1
102.4
1.2 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3 | -0.2
1.1
0.9
1.1
1.1
-0.5 | -0.4
1.2
1.5
1.2
1.1
-0.3 | -0.5
1.4
2.1
1.4
1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9 | 2.3
688.1
17740.8
615.0
73.8 | 2.2
767.2
19449.2
685.6
81.9 | 2.2
866.0
22469.1
773.1
91.8 | 2.1
994.4
27595.1
886.1
102.4 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3 | -0.2
1.1
0.9
1.1
1.1 | -0.4
1.2
1.5
1.2
1.1 | -0.5
1.4
2.1
1. 4 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7 | -0.2 1.1 0.9 1.1 1.1 -0.5 0.4 | -0.4
1.2
1.5
1.2
1.1
-0.3
0.2 | -0.5
1.4
2.1
1.4
1.1
0.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1
2.5 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2 | -0.4
1.2
1.5
1.2
1.1
-0.3
0.2
0.8
0.8 | -0.5
1.4
2.1
1.4
1.1
0.0
0.3
0.6
1.2 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1
2.5
3.8 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
1.7 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7 | -0.4
1.2
1.5
1.1
-0.3
0.2
0.8
0.8
1.1 | -0.5
1.4
2.1
1.4
1.1
0.0
0.3
0.6
1.2 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1
2.5
3.8
16.2 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
1.7
0.4
1.3 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8 | -0.4
1.2
1.5
1.1
-0.3
0.2
0.8
0.8
1.1
1.0 | -0.5
1.4
2.1
1.4
1.1
0.0
0.3
0.6
1.2
1.0 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1
2.5
3.8
16.2
20.3 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8
1.7 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 | -0.5
1.4
2.1
1.4
1.1
0.0
0.3
0.6
1.2
1.0
0.9 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5
3.8 16.2 20.3 1.0 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8
1.7
-2.7 | -0.4 1.2 1.5 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 | -0.5
1.4
2.1
1.4
1.1
0.0
0.3
0.6
1.2
1.0
1.3
0.9
-1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2 | 2.3
688.1
17740.8
615.0
73.8
1.3
0.7
15.1
2.5
3.8
16.2
20.3 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8
1.7 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 | -0.5
1.4
2.1
1.1
0.0
0.3
0.6
1.2
1.0
0.9
-1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2
11.8 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8
14.7
34.9 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6
17.0 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7
-1.6
0.8 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8
1.7
-2.7 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 | -0.5
1.4
2.1
1.1
0.0
0.3
0.6
1.2
1.0
1.3
0.9
-1.1 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2
11.8
28.7 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 481.1 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8
14.7
34.9
539.4 | 2.2 866.0 22469.1 773.1 91.8 1.2 0.7 17.4 2.8 4.5 19.4 28.1 0.6 17.0 38.2 611.6 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4
41.2
708.6 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7
-1.6
0.8
1.2 | -0.2
1.1
0.9
1.1
1.1
-0.5
0.4
0.6
0.2
0.7
0.8
1.7
-2.7
1.4
0.8 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 0.9 | -0.5.5 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2
11.8
28.7
405.8 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8
14.7
34.9 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6
17.0
38.2 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4
41.2 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
1.7
0.4
1.3
1.7
-1.6
0.8
1.2 | -0.2 1.1 0.9 1.1 1.1 -0.5 0.4 0.6 0.2 0.7 0.8 1.7 -2.7 1.4 0.8 1.2 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 0.9 1.3 | -0.5.2
1.4
2.1
1.4
1.4
1.0
0.3
0.6
1.2
1.3
0.8
-1.1
1.5
0.8
1.5
1.5
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2
11.8
28.7
405.8
211.3
117.2 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 481.1 252.3 132.3 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8
14.7
34.9
539.4
284.0
146.3 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6
17.0
38.2
611.6
323.6
164.0 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4
41.2
708.6
379.5
185.5 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
1.7
0.4
1.3
1.7
-1.6
0.8
1.2
1.7 | -0.2 1.1 0.9 1.1 1.1 -0.5 0.4 0.6 0.2 0.7 0.8 1.7 -2.7 1.4 0.8 1.2 1.0 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 0.9 1.3 1.3 | -0.5
1.4
2.1
1.4
1.1.1
0.0
0.3
0.6
1.2
1.0
0.5
0.5
0.5
0.5
1.2
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services trade | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.1
1.8
28.7
405.8
211.3
117.2
68.0 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 481.1 252.3 132.3 86.6 | 2.2 767.2 19449.2 685.6 81.9 1.2 0.7 16.1 2.6 4.1 17.5 24.2 0.8 14.7 34.9 539.4 284.0 146.3 98.9 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6
17.0
38.2
611.6
323.6
164.0
113.5 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4
41.2
708.6
379.5
185.5
132.9 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7
-1.6
0.8
1.2
1.7
1.8
1.2
2.4 | -0.2 1.1 0.9 1.1 1.1 -0.5 0.4 0.6 0.2 0.7 0.8 1.7 -2.7 1.4 0.8 1.2 1.0 1.3 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 0.9 1.3 1.3 1.2 1.4 | -0.5
1.4
2.1
1.4
1.1.1
0.0
0.3
0.6
1.2
1.2
1.3
0.8
0.8
1.2
1.1
1.5
1.5
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6 | | Average household size (persons) Gross Domestic Product (in 000 MEuro'10) Household Expenditure (in Euro'10/capita) SECTORAL VALUE ADDED (in 000 MEuro'10) Industry iron and steel non ferrous metals chemicals non metallic minerals paper pulp food, drink and tobacco engineering textiles other industries (incl. printing) Construction Tertiary market services non market services | 2.4
513.6 | 2.4
588.4
16109.0
525.9
64.9
1.3
0.5
12.8
2.1
3.7
14.3
17.2
1.2
11.8
28.7
405.8
211.3
117.2 | 2.3 688.1 17740.8 615.0 73.8 1.3 0.7 15.1 2.5 3.8 16.2 20.3 1.0 12.8 32.2 481.1 252.3 132.3 | 2.2
767.2
19449.2
685.6
81.9
1.2
0.7
16.1
2.6
4.1
17.5
24.2
0.8
14.7
34.9
539.4
284.0
146.3 | 2.2
866.0
22469.1
773.1
91.8
1.2
0.7
17.4
2.8
4.5
19.4
28.1
0.6
17.0
38.2
611.6
323.6
164.0 | 2.1
994.4
27595.1
886.1
102.4
1.2
0.8
18.5
3.1
5.0
22.0
30.8
0.5
20.4
41.2
708.6
379.5
185.5 | 0.4
0.2
1.4 | 0.4
-0.5
1.6
1.0
1.6
1.3
0.0
3.7
1.7
0.4
1.3
1.7
-1.6
0.8
1.2
1.7 | -0.2 1.1 0.9 1.1 1.1
-0.5 0.4 0.6 0.2 0.7 0.8 1.7 -2.7 1.4 0.8 1.2 1.0 | -0.4 1.2 1.5 1.2 1.1 -0.3 0.2 0.8 0.8 1.1 1.0 1.5 -2.1 1.4 0.9 1.3 1.3 1.2 | -0.5
1.4
2.1
1.4
1.1.1
0.0
0.3
0.6
1.2
1.0
0.5
0.5
0.5
0.5
1.2
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | | Poland: Key Demographic and Econo | mic Assun | nptions | | | | | | | | | | |--|-----------|--|---------------------------------------|---------------------------------------|---------------------------------------|------------------------|------------|---------------------------|--------------------------|--------------------------|--------------------------| | | 2000 | 2010 | 2020 | 2030 | 2040 | | '00-'10 '1 | | | 30-'40 ' | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 38.7 | 38.2 | 38.4 | 37.6 | 36.1 | 34.5 | -0.1 | 0.1 | -0.2 | -0.4 | -0. | | Average household size (persons) | 3.2 | 2.9 | 2.7 | 2.6 | 2.5 | 2.4 | -1.0 | -0.8 | -0.4 | -0.4 | -0.3 | | Gross Domestic Product (in 000 MEuro'10) | 241.9 | 354.6 | 474.3 | 564.2 | 646.1 | 697.2 | 3.9 | 3.0 | 1.7 | 1.4 | 0.8 | | Household Expenditure (in Euro'10/capita) | 3978.1 | 5697.3 | 7798.8 | 9626.4 | 11582.8 | 13125.5 | 3.7 | 3.2 | 2.1 | 1.9 | 1.3 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 312.3 | 417.6 | 496.8 | 568.3 | 612.2 | | 2.9 | 1.8 | 1.4 | 0. | | Industry | | 52.2 | 76.0 | 92.3 | 107.7 | 115.2 | | 3.8 | 2.0 | 1.6 | 0.7 | | iron and steel | | 1.1 | 1.4 | 1.5 | 1.6 | 1.7 | | 2.6 | 1.2 | 0.7 | 0. | | non ferrous metals | | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | | 1.5 | 2.3 | 1.6 | 0. | | chemicals | | 3.5 | 5.1 | 5.9 | 6.6 | 6.7 | | 3.7 | 1.5 | 1.2 | 0.: | | non metallic minerals | | 3.6 | 4.7 | 5.6 | 6.5 | 7.0 | | 2.7 | 1.8 | 1.6 | 0. | | paper pulp | | 2.6 | 3.5 | 4.4 | 5.2 | 5.7 | | 3.2 | 2.2 | 1.8 | 0.9 | | food, drink and tobacco | | 9.8 | 12.9 | 15.2 | 17.3 | 18.6 | | 2.7 | 1.7 | 1.3 | 0.7 | | engineering | | 15.8 | 27.4 | 34.8 | 43.1 | 47.5 | | 5.6 | 2.4 | 2.1 | 1. | | textiles | | 2.1 | 2.2 | 2.2 | 2.0 | 1.9 | | 0.6 | -0.1 | -0.7 | -0. | | other industries (incl. printing) | | 13.5 | 18.6 | 22.4 | 25.0 | 25.7 | | 3.3 | 1.9 | 1.1 | 0. | | Construction | | 25.7 | 34.0 | 38.5 | 42.3 | 45.5 | | 2.8 | 1.2 | 1.0 | 0. | | Tertiary | | 216.4 | 285.9 | 341.4 | 391.8 | 423.8 | | 2.8 | 1.8 | 1.4 | 0. | | market services | | 100.0 | 135.6 | 163.8 | 187.9 | 204.8 | | 3.1 | 1.9 | 1.4 | 0.9 | | non market services | | 43.9 | 55.2 | 66.0 | 76.7 | 81.2 | | 2.3 | 1.8 | 1.5 | 0. | | trade | | 60.7 | 81.6 | 97.6 | 112.8 | 123.3 | | 3.0 | 1.8 | 1.5 | 0. | | agriculture | | 11.7 | 13.5 | 14.1 | 14.4 | 14.5 | | 1.4 | 0.4 | 0.2 | 0. | | Energy sector and others | | 17.9 | 21.8 | 24.6 | 26.5 | 27.7 | | 2.0 | 1.2 | 0.7 | 0.4 | | Portugal: Key Demographic and Econ | omic Assu | | 21.0 | 24.0 | 20.0 | 27.7 | | 2.0 | 1.2 | 0.1 | 0. | | i ortugui. Rey Beniograpino ana Econ | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 0-'20 ' | 20-'30 ' | 30-'40 ' | 40-'5 | | | | | | | | | | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 10.2 | 10.6 | 10.7 | 10.8 | 10.8 | 10.6 | 0.4 | 0.1 | 0.0 | 0.0 | -0.2 | | Average household size (persons) | 2.8 | 2.6 | 2.5 | 2.4 | 2.3 | 2.3 | -0.6 | -0.3 | -0.4 | -0.4 | -0.3 | | Gross Domestic Product (in 000 MEuro'10) | 162.1 | 172.7 | 182.0 | 219.4 | 255.6 | 287.9 | 0.6 | 0.5 | 1.9 | 1.5 | 1.3 | | Household Expenditure (in Euro'10/capita) | 9914.1 | 10708.5 | 11223.0 | 13558.0 | 15866.7 | 18178.8 | 0.8 | 0.5 | 1.9 | 1.6 | 1.4 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 151.1 | 159.3 | 192.0 | 223.4 | 251.2 | | 0.5 | 1.9 | 1.5 | 1.3 | | Industry | | 19.6 | 20.5 | 22.3 | 24.5 | 26.5 | | 0.5 | 0.9 | 0.9 | 0.8 | | iron and steel | | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | | 3.4 | 0.4 | 0.6 | 0. | | non ferrous metals | | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | | 3.4 | 0.5 | 0.4 | 0.2 | | chemicals | | 1.3 | 1.4 | 1.5 | 1.6 | 1.9 | | 1.1 | 0.5 | 0.9 | 1.1 | | non metallic minerals | | 1.7 | 1.8 | 2.0 | 2.1 | 2.1 | | 0.7 | 1.0 | 0.5 | 0. | | paper pulp | | 1.3 | 1.4 | 1.6 | 1.8 | 1.8 | | 0.9 | 1.5 | 0.8 | 0. | | food, drink and tobacco | | 3.0 | 3.0 | 3.4 | 3.9 | 4.3 | | 0.1 | 1.0 | 1.4 | 1.0 | | | | 5.3 | 5.7 | 6.8 | 7.8 | 8.9 | | 0.8 | 1.7 | 1.4 | 1. | | engineering | | 3.2 | 2.6 | 2.3 | 2.3 | 2.2 | | -1.9 | -1.1 | -0.4 | -0. | | textiles | | | | | 4.6 | 4.9 | | 1.3 | 0.5 | 0.6 | 0. | | textiles other industries (incl. printing) | | 3.6 | 4.1 | 4.3 | | | | | | | _ | | textiles other industries (incl. printing) Construction | | 3.6
10.1 | 10.0 | 11.4 | 12.1 | 12.3 | | -0.1 | 1.3 | 0.6 | | | textiles other industries (incl. printing) Construction Tertiary | | 3.6
10.1
117.5 | 10.0
124.3 | 11.4
152.8 | 12.1
180.8 | 205.9 | | 0.6 | 2.1 | 1.7 | 1. | | textiles other industries (incl. printing) Construction Tertiary market services | | 3.6
10.1
117.5
59.8 | 10.0
124.3
63.8 | 11.4
152.8
80.8 | 12.1
180.8
97.2 | 205.9
113.2 | | 0.6
0.7 | 2.1
2.4 | 1.7
1.9 | 1.3
1.5 | | textiles other industries (incl. printing) Construction Tertiary market services non market services | | 3.6
10.1
117.5
59.8
32.8 | 10.0
124.3
63.8
31.7 | 11.4
152.8
80.8
37.3 | 12.1
180.8
97.2
43.1 | 205.9
113.2
47.3 | | 0.6
0.7
-0.3 | 2.1
2.4
1.6 | 1.7
1.9
1.5 | 1.5
1.5
0.5 | | textiles other industries (incl. printing) Construction Tertiary market services | | 3.6
10.1
117.5
59.8
32.8
21.4 | 10.0
124.3
63.8
31.7
25.2 | 11.4
152.8
80.8
37.3
31.3 | 12.1
180.8
97.2
43.1
37.0 | 205.9
113.2 | | 0.6
0.7
-0.3
1.6 | 2.1
2.4
1.6
2.2 | 1.7
1.9
1.5
1.7 | 0.2
1.3
1.4
0.9 | | textiles other industries (incl. printing) Construction Tertiary market services non market services | | 3.6
10.1
117.5
59.8
32.8 | 10.0
124.3
63.8
31.7 | 11.4
152.8
80.8
37.3 | 12.1
180.8
97.2
43.1 | 205.9
113.2
47.3 | | 0.6
0.7
-0.3 | 2.1
2.4
1.6 | 1.7
1.9
1.5 | 1.5
1.5
0.5 | | Romania: Key Demographic and Econ | omic Assu | mptions | | | | | | | | | | |---|-----------|-------------------|---------------------|---------------------|---------------------|---------------------|---------|-------------------|-------------------|-------------------|-----------| | | 2000 | 2010 | 2020 | 2030 | 2040 | | '00-'10 | | | | | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 22.5 | 21.5 | 21.0 | 20.3 | 19.4 | 18.5 | -0.5 | -0.2 | -0.4 | -0.4 | -0. | | Average household size (persons) | 3.2 | 2.9 | 2.7 | 2.6 | 2.5 | 2.4 | -1.0 | -0.8 | -0.4 | -0.4 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 83.1 | 124.1 | 157.3 | 178.7 | 201.4 | 216.0 | 4.1 | 2.4 | 1.3 | 1.2 | 0. | | Household Expenditure (in Euro'10/capita) | 1790.5 | 3698.9 | 4990.1 | 5973.3 | 7070.8 | 7983.4 | 7.5 | 3.0 | 1.8 | 1.7 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 112.0 | 142.0 | 161.3 | 181.6 | 194.4 | | 2.4 | 1.3 | 1.2 | 0. | | Industry | | 25.0 | 33.9 | 38.8 | 43.0 | 44.0 | | 3.1 | 1.4 | 1.0 | 0. | | iron and steel | | 0.5 | 0.7 | 0.7 | 0.7 | 0.7 | | 3.4 | 0.8 | 0.3 | 0. | | non ferrous metals | | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | 2.5 | 0.0 | -0.2 | 0. | | chemicals | | 1.0 | 1.3 | 1.4 | 1.5 | 1.5 | | 2.4 | 0.9 | 0.5 | 0. | | non metallic minerals | | 1.0 | 1.2 | 1.4 | 1.5 | 1.4 | | 1.5 | 1.4 | 0.4 | -0. | | paper pulp | | 0.9 | 1.1 | 1.4 | 1.5 | 1.5 | | 2.2 | 2.1 | 0.8 | 0. | | food, drink and tobacco | | 6.2 | 7.4 | 8.1 | 9.0 | 9.3 | | 1.8 | 0.8 | 1.0 | 0. | | engineering | | 9.9 | 16.0 | 19.5 | 22.4 | 22.9 | | 4.9 | 2.0 | 1.4 | 0. | | textiles | | 1.9 | 1.9 | 1.6 | 1.5 | 1.3 | | 0.1 | -1.5 | -1.0 | -1. | | other industries (incl. printing) | | 3.4 | 4.1 | 4.5 | 4.9 | 5.1 | | 1.9 | 0.8 | 1.0 | 0. | | Construction | | 12.4 | 13.0 | 14.9 | 15.9 | 17.3 | | 0.5 | 1.3 | 0.7 | 0. | | Tertiary | | 68.4 | 87.7 | 100.0 | 114.8 | 125.2 | | 2.5 | 1.3 | 1.4 | 0. | | market services | | 36.4 | 49.7 | 57.4 | 66.7 | 73.0 | | 3.2 | 1.4 | 1.5 | 0. | | non market services | | 12.5 | 14.7 | 15.6 | 16.7 | 16.6 | | 1.7 | 0.6 | 0.7 | -0. | | trade | | 12.1 | 15.4 | 18.8 | 22.8 | 26.9 | | 2.5 | 2.1 | 1.9 | 1. | | agriculture | | 7.5 | 7.8 | 8.1 | 8.5 | 8.8 | | 0.5 | 0.3 | 0.5 | 0. | | Energy sector and others | | 6.3 | 7.4 | 7.7 | 7.9 | 7.9 | | 1.7 | 0.3 | 0.3 | 0. | | Slovakia: Key Demographic and Econo | omic Assu | mntions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | '10-'20 | '20-'30 | '30-'40 | '40-'5 | | Main Demographic Assumptions | | | | | | | | | | | | | • • • | E 4 | E 4 | F. C | F. C | <i></i> | F 2 | 0.0 | 0.2 | 0.0 | 0.0 | 0 | | Population (Million) | 5.4 | 5.4 | 5.6 | 5.6 | 5.5 | 5.3 | 0.0 | 0.3 | 0.0 | -0.2 | | | Average household size (persons) | 3.2 | 3.1 | 2.9 | 2.8 | 2.7 | 2.7 | -0.3 | -0.5 | -0.4 | -0.3 | -0. | | Gross Domestic Product (in 000 MEuro'10) | 41.3 | 65.7 | 83.9 | 105.8 | 119.0 | 127.4 | 4.8 | 2.5 | 2.3 | 1.2 | | | Household Expenditure (in Euro'10/capita) | 4726.2 | 7086.1 | 8922.4 | 11409.6 | 13223.3 | 14617.1 | 4.1 | 2.3 | 2.5 | 1.5 | 1. | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 59.8 | 76.3 | 96.1 | 108.1 | 115.5 | | 2.5 | 2.3 | 1.2 | | | ndustry | | 13.8 | 17.4 | 22.3 | 25.1 | 25.6 | | 2.3 | 2.5 | 1.2 | | | iron and steel | | 0.8
0.3 | 1.0 | 1.1
0.3 | 1.1
0.3 | 1.1
0.3 | | 1.9
1.6 | 0.7
0.9 | 0.2 | | | non ferrous metals | | 0.3 | 0.3
0.8 | 0.3 | 1.0 | 0.3 | | 1.0 | 1.1 | 0.2 | | | chemicals non metallic minerals | | 0.7 | 0.8 | 1.0 | 1.0 | 1.1 | | 1.1 | 1.1 | 0.3 | -0.
0. | | paper pulp | | 0.7 | 0.6 | 0.8 | 0.8 | 0.9 | | 1.1 | 1.9 | 0.5 | 0. | | food, drink and tobacco | | 1.2 | 1.4 | 1.8 | 1.9 | 2.0 | | 1.6 | 2.3 | 0.7 | 0.
| | engineering | | 6.4 | 8.8 | 12.2 | 1.9 | 14.9 | | 3.2 | 3.3 | 1.7 | 0. | | textiles | | 0.4 | 0.0
0.5 | 0.5 | 0.4 | 0.4 | | 0.2 | -0.3 | -1.3 | -1. | | other industries (incl. printing) | | 2.6 | 3.0 | 3.7 | 4.0 | 4.0 | | 1.6 | 2.0 | 0.6 | | | Construction | | 5.7 | 6.9 | 8.6 | 9.4 | 9.6 | | 1.0 | 2.0 | 0.0 | 0. | | Fertiary | | 36.3 | 47.7 | 60.0 | 68.1 | 75.0 | | 2.8 | 2.3 | 1.3 | 1. | | market services | | 18.7 | 25.3 | 31.9 | 36.5 | 40.9 | | 3.1 | 2.3 | 1.4 | 1. | | | | 10.7 | | | | | | | | | | | | | 8.4 | 10.1 | 12 4 | 13.2 | 13.1 | | 1 2 | 2.1 | 0.6 | -(1 | | non market services | | 8.4
7.4 | 10.1
10.3 | 12.4
13.5 | 13.2
16.2 | 13.1
18.9 | | 1.8
3.4 | 2.1 | 0.6
1.8 | | | | | 8.4
7.4
1.9 | 10.1
10.3
2.0 | 12.4
13.5
2.1 | 13.2
16.2
2.2 | 13.1
18.9
2.2 | | 1.8
3.4
0.8 | 2.1
2.7
0.5 | 0.6
1.8
0.2 | 1. | | REFERENCE 2013 | | | | | | | | | | | | |---|--------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|------------|-------| | Slovenia: Key Demographic and Ecor | nomic Assu
2000 | mptions
2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | '10-'20 | '20-'30 | '30-'40 | '40-' | | | | | | | | | | | | | | | Main Demographic Assumptions | 0.0 | 0.0 | 0.4 | 0.0 | 0.4 | 0.4 | 0.0 | 0.5 | 0.4 | 0.4 | , | | Population (Million) | 2.0 | 2.0 | 2.1 | 2.2 | 2.1 | 2.1 | 0.3 | 0.5 | 0.1 | -0.1 | -0 | | Average household size (persons) | 2.9 | 2.6 | 2.5 | 2.4 | 2.4 | 2.3 | -1.0 | -0.5 | -0.2 | -0.2 | | | Gross Domestic Product (in 000 MEuro'10) | 27.1 | 35.4 | 41.8 | 48.8 | 55.2 | 60.7 | 2.7 | 1.7 | 1.6 | 1.2 | | | Household Expenditure (in Euro'10/capita) | 7784.1 | 9692.5 | 11079.2 | 13177.2 | 15408.6 | 17624.2 | 2.2 | 1.3 | 1.7 | 1.6 | | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 30.8 | 36.4 | 42.5 | 47.9 | 52.6 | | 1.7 | 1.6 | 1.2 | | | ndustry | | 6.0 | 7.3 | 8.4 | 9.4 | 10.4 | | 2.0 | 1.4 | 1.2
0.0 | | | iron and steel | | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | | 2.5 | 1.4 | | | | non ferrous metals | | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | | 8.5 | 1.4 | 0.0 | | | chemicals | | 0.9 | 1.2 | 1.3 | 1.4 | 1.5 | | 1.9 | 0.9 | 0.8 | | | non metallic minerals | | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | 1.0 | 1.3 | 0.5 | | | paper pulp | | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | -0.3 | 0.7 | 0.4 | | | food, drink and tobacco | | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | | 1.1 | 1.6 | 1.0 | | | engineering | | 2.5 | 3.3 | 4.1 | 4.9 | 5.6 | | 2.9 | 2.0 | 1.8 | | | textiles | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | -1.1 | -1.2 | -1.3 | | | other industries (incl. printing) | | 1.1 | 1.2 | 1.3 | 1.3 | 1.4 | | 0.8 | 0.7 | 0.6 | | | onstruction | | 2.0 | 2.2 | 2.4 | 2.5 | 2.6 | | 1.1 | 1.0 | 0.5 | | | ertiary | | 21.9 | 25.9 | 30.6 | 34.8 | 38.4 | | 1.7 | 1.7 | 1.3 | | | market services | | 11.8 | 14.4 | 17.3 | 20.0 | 22.4 | | 2.0 | 1.8 | 1.5 | | | non market services | | 5.5 | 5.7 | 6.3 | 6.7 | 7.0 | | 0.3 | 1.1 | 0.7 | | | trade | | 3.9 | 5.0 | 6.2 | 7.3 | 8.2 | | 2.6 | 2.2 | 1.6 | | | agriculture | | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | 0.3 | 0.3 | 0.1 | | | nergy sector and others | | 0.9 | 1.0 | 1.1 | 1.1 | 1.2 | | 0.8 | 0.4 | 0.5 | | | pain: Key Demographic and Econon | nic Assumr | | 1.0 | 1.1 | 1.1 | 1.2 | | 0.0 | 0.4 | 0.5 | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 | '10-'20 | '20-'30 | '30-'40 | '40 | | lain Demographic Assumptions | | | | | | | | | | | | | opulation (Million) | 40.0 | 46.0 | 48.0 | 50.0 | 51.7 | 52.7 | 1.4 | 0.4 | 0.4 | 0.3 | | | verage household size (persons) | 2.9 | 2.7 | 2.7 | 2.6 | 2.5 | 2.5 | -0.5 | -0.2 | -0.4 | -0.2 | | | | 856.8 | 1051.3 | 1227.4 | 1583.3 | 1835.6 | 2045.3 | | | | 1.5 | | | ross Domestic Product (in 000 MEuro'10) | | | | | | | 2.1 | 1.6 | 2.6 | | | | ousehold Expenditure (in Euro'10/capita) | 12378.6 | 13196.9 | 14773.3 | 18367.0 | 20668.2 | 22726.0 | 0.6 | 1.1 | 2.2 | 1.2 | | | ECTORAL VALUE ADDED (in 000 MEuro'10) | | 961.6 | 1122.5 | 1447.8 | 1676.7 | 1865.1 | | 1.6 | 2.6 | 1.5 | | | dustry | | 124.5 | 148.5 | 183.2 | 204.8 | 225.8 | | 1.8 | 2.1 | 1.1 | | | iron and steel | | 4.9 | 5.3 | 6.8 | 7.2 | 7.0 | | 0.8 | 2.4 | 0.6 | | | non ferrous metals | | 2.4 | 2.5 | 2.8 | 2.9 | 2.9 | | 0.5 | 1.1 | 0.5 | | | chemicals | | 13.5 | 16.6 | 19.1 | 21.3 | 23.5 | | 2.1 | 1.4 | 1.1 | | | non metallic minerals | | 7.8 | 9.7 | 11.9 | 12.3 | 12.2 | | 2.1 | 2.0 | 0.4 | | | paper pulp | | 7.0 | 7.4 | 8.6 | 9.5 | 9.6 | | 0.4 | 1.6 | 1.0 | | | food, drink and tobacco | | 23.8 | 27.9 | 34.1 | 37.6 | 41.1 | | 1.6 | 2.0 | 1.0 | | | engineering | | 38.9 | 48.7 | 66.7 | 79.3 | 92.5 | | 2.3 | 3.2 | 1.7 | | | textiles | | 5.3 | 4.8 | 4.4 | 3.7 | 3.4 | | -0.9 | -0.9 | -1.5 | | | other industries (incl. printing) | | 20.8 | 25.6 | 28.9 | 31.0 | 33.5 | | 2.1 | 1.2 | 0.7 | | | onstruction | | 114.8 | 125.8 | 157.0 | 169.7 | 176.4 | | 0.9 | 2.2 | 0.8 | | | ertiary | | 700.3 | 824.7 | 1078.6 | 1271.2 | 1431.9 | | 1.6 | 2.7 | 1.7 | | | market services | | 380.4 | 461.2 | 619.9 | 754.6 | 874.1 | | 1.9 | 3.0 | 2.0 | | | non market services | | 177.4 | 189.4 | 242.6 | 263.0 | 269.9 | | 0.7 | 2.5 | 0.8 | | | trade | | 117.0 | 147.5 | 188.6 | 226.5 | 260.8 | | 2.3 | 2.5 | 1.8 | | | agriculture | | 25.5 | 26.6 | 27.4 | 27.1 | 27.1 | | 0.5 | 0.3 | -0.1 | | | agriculture | | 20.0 | 20.0 | 21.4 | 21.1 | 21.1 | | 0.0 | 0.0 | 0.1 | | | REFERENCE 2013 | | | | | | | | | | | | |---|-----------|----------------|----------------|---------------|-----------------|-----------------|------------|------------|-------------|-------------|-------------| | Sweden: Key Demographic and Econ | omic Assu | mptions | | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Demographic Assumptions | | | | | | | | | | | | | Population (Million) | 8.9 | 9.3 | 10.1 | 10.6 | 10.9 | 11.2 | 0.5 | 0.8 | 0.5 | 0.3 | 0.3 | | Average household size (persons) | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | -0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | Gross Domestic Product (in 000 MEuro'10) | 283.3 | 349.2 | 423.6 | 505.2 | 603.1 | 717.0 | 2.1 | 2.0 | 1.8 | 1.8 | 1.7 | | Household Expenditure (in Euro'10/capita) | 15496.3 | 18081.4 | 20797.2 | 24127.3 | 28609.9 | 33791.3 | 1.6 | 1.4 | 1.5 | 1.7 | 1.7 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 304.8 | 369.8 | 440.9 | 525.8 | 624.0 | | 1.9 | 1.8 | 1.8 | 1.7 | | Industry | | 50.8 | 60.4 | 68.6 | 78.0 | 90.8 | | 1.7 | 1.3 | 1.3 | 1.5 | | iron and steel | | 1.8 | 2.4 | 2.7 | 2.7 | 2.8 | | 2.9 | 0.9 | 0.2 | 0.3 | | non ferrous metals | | 0.6 | 0.9 | 0.9 | 0.9 | 0.8 | | 4.6 | 0.2 | -0.5 | -0.3 | | chemicals | | 7.7 | 8.5 | 9.8 | 11.3 | 12.1 | | 1.0 | 1.4 | 1.5 | 0.7 | | non metallic minerals | | 1.0 | 1.4 | 1.4 | 1.5 | 1.6 | | 2.6 | 0.6 | 0.6 | 0.7 | | paper pulp | | 4.1 | 4.3 | 4.8 | 5.2 | 5.7 | | 0.4 | 1.2 | 0.9 | 3.0 | | food, drink and tobacco | | 4.1 | 4.7 | 5.5 | 6.3 | 7.0 | | 1.3 | 1.7 | 1.3 | 1.1 | | engineering | | 22.1 | 26.7 | 30.9 | 35.8 | 43.8 | | 1.9 | 1.5 | 1.5 | 2.0 | | textiles | | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 | | -0.8 | -1.1 | -1.1 | -0.8 | | other industries (incl. printing) | | 9.0 | 11.2 | 12.2 | 13.9 | 16.7 | | 2.3 | 0.9 | 1.3 | 1.8 | | Construction | | 16.7 | 19.5 | 22.1 | 24.8 | 27.3 | | 1.5 | 1.3 | 1.1 | 1.0 | | Tertiary | | 226.0 | 277.3 | 336.9 | 409.0 | 490.9 | | 2.1 | 2.0 | 2.0 | 1.8 | | market services | | 113.8 | 139.7 | 170.7 | 211.0 | 260.5 | | 2.1 | 2.0 | 2.1 | 2.1 | | non market services | | 71.4 | 86.0 | 100.1 | 116.0 | 134.0 | | 1.9 | 1.5 | 1.5 | 1.5 | | trade | | 35.8 | 46.3 | 60.6 | 76.5 | 90.8 | | 2.6 | 2.7 | 2.4 | 1.7 | | agriculture | | 5.0 | 5.3 | 5.4 | 5.6 | 5.6 | | 0.5 | 0.2 | 0.2 | 0.1 | | Energy sector and others | | 11.3 | 12.6 | 13.2 | 14.0 | 15.1 | | 1.0 | 0.5 | 0.5 | 0.8 | | United Kingdom: Key Demographic a | nd Econom | nic Assumr | ntions | | | | | | | | | | | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | '00-'10 '1 | 10-'20 | '20-'30 | '30-'40 | '40-'50 | | Main Branchis Assessment | | | | | | | | | | | | | Main Demographic Assumptions | 50.0 | 00.0 | 00.0 | 70.0 | 70.4 | 70.4 | 0.5 | 0.7 | | 0.5 | 0.4 | | Population (Million) | 58.8 | 62.0 | 66.3 | 70.2 | 73.4 | 76.4 | 0.5 | 0.7 | 0.6 | 0.5 | 0.4 | | Average household size (persons) | 2.4 | 2.4 | 2.3 | 2.2 | 2.1 | 2.1 | -0.1 | -0.3 | -0.4 | -0.3 | -0.3 | | Gross Domestic Product (in 000 MEuro'10) | 1444.8 | 1706.3 | 2023.8 | 2445.4 | 2965.4 | 3581.8 | 1.7 | 1.7 | 1.9 | 1.9 | 1.9 | | Household Expenditure (in Euro'10/capita) | 15784.6 | 17704.5 | 19238.0 | 21741.9 | 25333.1 | 29977.1 | 1.2 | 0.8 | 1.2 | 1.5 | 1.7 | | SECTORAL VALUE ADDED (in 000 MEuro'10) | | 1522.5 | 1805.7 | 2181.4 | 2642.6 | 3186.4 | | 1.7 | 1.9 | 1.9 | 1.9 | | Industry | | 156.3 | 176.7 | 198.6 | 222.2 | 246.3 | | 1.2 | 1.2 | 1.1 | 1.0 | | iron and steel | | 3.0 | 3.0 | 2.8 | 2.7 | 2.7 | | 0.0 | -0.6 | -0.2 | -0.2 | | non ferrous metals | | 1.5 | 1.3 | 1.3 | 1.2 | 1.1 | | -1.3 | -0.3 | -0.8 | -0.9 | | chemicals | | 22.2 | 29.2 | 33.2 | 36.2 | 37.4 | | 2.7 | 1.3 | 0.9 | 0.3 | | non metallic minerals | | 5.0 | 5.7 | 6.0 | 6.2 | 6.4 | | 1.2 | 0.6 | 0.3 | 0.3 | | paper pulp | | 21.2 | 21.4 | 21.2 | 20.0 | 18.4 | | 0.1 | -0.1 | -0.6 | -0.8 | | food, drink and tobacco | | 24.7 | 25.7 | 27.5 | 29.0 | 29.5 | | 0.4 | 0.7 | 0.5 | 0.2 | | engineering
toutiles | | 53.6 | 64.6 | 79.2 | 98.8 | 121.8
2.1 | | 1.9 | 2.1
-2.3 | 2.2
-2.0 | 2.1
-1.9 | | textiles | | 4.7 | 3.9 | 3.1 | 2.5 | | | -1.8 | | | | | other industries (incl. printing) Construction | | 20.3
106.0 | 22.0
126.2 | 24.3
148.0 | 25.7
168.5 | 27.0
187.3 | | 0.8
1.8 | 1.0
1.6 | 0.6
1.3 | 0.5
1.1 | | | | 1199.8 | 1439.2 | 1768.9 | 2181.6 | 2677.8 | | 1.8 | 2.1 | 2.1 | 2.1 | | Tertiary | | 739.6 | 927.8 | 1768.9 | | | | 2.3 | 2.1 | 2.1 | 2.1 | | market services non market services | | 308.8 | 927.8
321.9 | 361.4 | 1481.5
410.6 | 1864.6
464.1 | | 0.4 | 1.2 | 1.3 | 1.2 | | trade | | 306.6
142.7 | 180.4 | 225.3 |
280.1 | 339.4 | | 2.4 | 2.2 | 2.2 | 1.2 | | | | | | | | | | 0.4 | 0.3 | 0.2 | 0.1 | | agriculture | | 8.8 | 9.1 | 9.3 | 9.5 | 9.6 | | | | | | | Energy sector and others | | 60.4 | 63.5 | 66.0 | 70.2 | 75.0 | | 0.5 | 0.4 | 0.6 | 0.7 | | EU28: Reference scenario | | | | | | | | SUI | MARY | ENERGY | BALAN | CE AND | INDIC | ATORS | 5 (A) | |--|-------------------------|-------------------------|-------------------------|-------------------------|------------------|----------------------|------------------------|---------------------|------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 947932
214627 | 904640
196059 | 841485
163855 | 831739
149960 | 808126
139654 | 775146 127408 | 750168
88528 | 755836 79202 | 757922
74288 | 755763 72768 | 737913 69144 | -1.2
-2.7 | -0.4
-1.6 | -0.7
-4.5 | -0.1
-1.2 | | Oil | 176084 | 136469 | 103565 | 90871 | 77509 | 65363 | 55596 | 43537 | 34213 | 23257 | 16347 | -5.2 | -2.9 | -3.3 | -5.9 | | Natural gas | 209437 | 190678 | 158525 | 149395 | 140735 | 124505 | 109610 | 101917 | 95373 | 82682 | 69668 | -2.7 | -1.2 | -2.5 | -2.2 | | Nuclear | 243841 | 257516 | 236563 | 229122 | 193490 | 180877 | 201194 | 214924 | 217916 | 220665 | 215930 | -0.3 | -2.0 | 0.4 | 0.4 | | Renewable energy sources | 103944 | 123918 | 178977 | 212391 | 256738 | 276993 | 295241 | 316256 | 336132 | 356390 | 366824 | 5.6 | 3.7 | 1.4 | 1.1 | | Hydro | 30818 | 26817 | 32208 | 31687 | 32181 | 32953 | 34088 | 35117 | 35702 | 36021 | 36568 | 0.4 | 0.0 | 0.6 | 0.4 | | Biomass & Waste
Wind | 66071
1913 | 84883
6058 | 124361
12829 | 136029
22662 | 150677
41928 | 151650
54362 | 152957
66069 | 155036
73559 | 161613
78008 | 164815
85278 | 164084
92481 | 6.5
21.0 | 1.9
12.6 | 0.2
4.7 | 0.4
1.7 | | Solar and others | 430 | 806 | 3691 | 14040 | 22705 | 28575 | 32035 | 37343 | 41520 | 44813 | 45911 | 24.0 | 19.9 | 3.5 | 1.8 | | Geothermal | 4712 | 5354 | 5888 | 7974 | 9248 | 9453 | 10092 | 15202 | 19288 | 25464 | 27779 | 2.3 | 4.6 | 0.9 | 5.2 | | Net Imports | 829314 | 988719 | 956735 | 968177 | 912060 | 915743 | 921181 | 911821 | 917955 | 940644 | 963104 | 1.4 | -0.5 | 0.1 | 0.2 | | Solids | 98273 | 125211 | 110927 | 116302 | 96769 | 88251 | 85336 | 62203 | 54550 | 54960 | 54873 | 1.2 | -1.4 | -1.2 | -2.2 | | Oil | 535238 | 604030 | 563977 | 551969 | 528622 | 521323 | 521986 | 525813 | 528660 | 538605 | 544042 | 0.5 | -0.6 | -0.1 | 0.2 | | - Crude oil and Feedstocks | 518046 | 585121 | 541240 | 527936 | 507046 | 498075 | 494522 | 494867 | 493650 | 497877 | 497143 | 0.4 | -0.7 | -0.2 | 0.0 | | - Oil products | 17192
193432 | 18909
257849 | 22737
276001 | 24033
286044 | 21577
266444 | 23248
284343 | 27464
290114 | 30946
299138 | 35010
307780 | 40728
319195 | 46899
335472 | 2.8
3.6 | -0.5
-0.4 | 2.4
0.9 | 2.7
0.7 | | Natural gas
Electricity | 2029 | 1412 | 707 | -128 | -1601 | -1508 | -1489 | -1740 | -1818 | -1880 | -2095 | -10.0 | 0.0 | 0.9 | 0.7 | | Gross Inland Consumption | 1732712 | 1833269 | 1767474 | 1746442 | 1664663 | 1633220 | 1611470 | 1605249 | 1611435 | 1628802 | 1630018 | 0.2 | -0.6 | -0.3 | 0.0 | | Solids | 321277 | 317986 | 280653 | 266262 | 236423 | 215659 | 173864 | 141405 | 128839 | 127728 | 124018 | -1.3 | -1.7 | -3.0 | -1.7 | | Oil | 665142 | 683909 | 620735 | 589584 | 551528 | 530942 | 520209 | 510991 | 503915 | 501344 | 497898 | -0.7 | -1.2 | -0.6 | -0.2 | | Natural gas | 396145 | 448380 | 444428 | 435221 | 406259 | 406923 | 397218 | 397005 | 397669 | 394790 | 396632 | 1.2 | -0.9 | -0.2 | 0.0 | | Nuclear | 243841 | 257516 | 236563 | 229122 | 193490 | 180877 | 201194 | 214924 | 217916 | 220665 | 215930 | -0.3 | -2.0 | 0.4 | 0.4 | | Electricity | 2029 | 1412 | 707 | -128 | -1601 | -1508 | -1489 | -1740 | -1818 | -1880 | -2095 | -10.0 | 0.0 | 0.0 | 0.0 | | Renewable energy forms | 104278 | 124065 | 184389 | 226382 | 278563 | 300327 | 320475 | 342663 | 364915 | 386154 | 397635 | 5.9 | 4.2 | 1.4 | 1.1 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 18.5 | 17.3 | 15.9 | 15.2 | 14.2 | 13.2 | 10.8 | 8.8 | 8.0 | 7.8 | 7.6 | | | | | | Oil
Natural gas | 38.4
22.9 | 37.3
24.5 | 35.1
25.1 | 33.8
24.9 | 33.1
24.4 | 32.5
24.9 | 32.3
24.6 | 31.8
24.7 | 31.3
24.7 | 30.8
24.2 | 30.5
24.3 | | | | | | Natural gas
Nuclear | 14.1 | 14.0 | 13.4 | 13.1 | 11.6 | 24.9
11.1 | 12.5 | 13.4 | 13.5 | 13.5 | 13.2 | | | | | | Renewable energy forms | 6.0 | 6.8 | 10.4 | 13.0 | 16.7 | 18.4 | 19.9 | 21.3 | 22.6 | 23.7 | 24.4 | | | | | | Gross Electricity Generation in GWh. | 3006692 | 3286660 | 3327452 | 3416910 | 3428487 | 3530642 | 3664473 | 3806113 | 3991697 | 4202590 | 4338637 | 1.0 | 0.3 | 0.7 | 0.8 | | Self consumption and grid losses | 396970 | 407042 | 377767 | 369108 | 354745 | 360436 | 367526 | 384851 | 414250 | 447802 | 473642 | -0.5 | -0.6 | 0.4 | 1.3 | | Fuel Inputs to Thermal Power Generation | 384957 | 426995 | 417273 | 383090 | 352461 | 338048 | 299413 | 282783 | 288580 | 299341 | 299175 | 0.8 | -1.7 | -1.6 | 0.0 | | Solids | 223038 | 228941 | 197605 | 186948 | 160009 | 143969 | 105545 | 77176 | 68351 | 70308 | 68306 | -1.2 | -2.1 | -4.1 | -2.2 | | Oil (including refinery gas) | 40042 | 33244 | 20532 | 10850 | 5924 | 5272 | 4564 | 4034 | 4151 | 4144 | 4107 | -6.5 | -11.7 | -2.6 | -0.5 | | Gas (including derived gases) | 102844 | 133713 | 149190 | 131949 | 124810 | 126275 | 124806 | 127067 | 129771 | 128423 | 125172 | 3.8 | -1.8 | 0.0 | 0.0 | | Biomass & Waste | 14918 | 26452 | 45117 | 47367 | 54922 | 55679 | 57154 | 62251 | 70151 | 74298 | 77085 | 11.7 | 2.0 | 0.4 | 1.5 | | Geothermal heat
Hydrogen - Methanol | 4114 | 4645
0 | 4828
0 | 5976
0 | 6796
0 | 6853
0 | 7345
0 | 12254 | 16157
0 | 22167
0 | 24506
0 | 1.6
0.0 | 3.5
0.0 | 0.8 | 6.2
0.0 | | Fuel Input to other conversion processes | 1076346 | 1110121 | 1001515 | 971670 | 910149 | 873505 | 879495 | 877552 | 866854 | 862355 | 851255 | -0.7 | -1.0 | -0.3 | -0.2 | | Refineries | 740500 | 763156 | 670015 | 646957 | 615082 | 594427 | 582078 | 571408 | 561252 | 555092 | 547329 | -1.0 | -0.9 | -0.5 | -0.3 | | Biofuels and hydrogen production | 705 | 3101 | 13296 | 18237 | 26224 | 26522 | 27227 | 27464 | 27421 | 28231 | 29476 | 34.1 | 7.0 | 0.4 | 0.4 | | District heating | 18667 | 19517 | 20813 | 22512 | 20814 | 19831 | 19702 | 18586 | 17323 | 17656 | 18478 | 1.1 | 0.0 | -0.5 | -0.3 | | Derived gases, cokeries etc. | 316475 | 324348 | 297391 | 283964 | 248029 | 232725 | 250488 | 260094 | 260858 | 261377 | 255973 | -0.6 | -1.8 | 0.1 | 0.1 | | Energy Branch Consumption | 86990 | 91952 | 88327 | 82471 | 77246 | 73943 | 71067 | 69188 | 68575 | 68919 | 69052 | 0.2 | -1.3 | -0.8 | -0.1 | | Non-Energy Uses | 117117 | 120718 | 114884 | 119316 | 122296 | 121539 | 121547 | 121156 | 119757 | 119350 | 119927 | -0.2 | 0.6 | -0.1 | -0.1 | | Final Energy Demand | 1127687 | 1190674 | 1157570 | 1171067 | 1137297 | 1130470 | 1125536 | 1125533 | 1132629 | 1144095 | 1150707 | 0.3 | -0.2 | -0.1 | 0.1 | | by sector | | | | | | | | | | | | | | | | | Industry | 332412
217920 | 330448
216886 | 290978
187894 | 304838
197139 | 306198
197546 | 305662
195178 | 306929
194763 | 304625
192159 | 304043
189881 | 306949
190112 | 308922
188534 | -1.3
-1.5 | 0.5
0.5 | 0.0
-0.1 | 0.0
-0.2 | | energy intensive industries other industrial sectors | 114492 | 113563 | 103085 | 107699 | 108652 | 110484 | 112166 | 112465 | 114162 | 116837 | 120388 | -1.5 | 0.5 | 0.3 | 0.4 | | Residential | 286291 | 311793 | 311545 | 312012 | 299377 | 300041 | 297328 | 298793 | 301234 | 303983 | 303395 | 0.8 | -0.4 | -0.1 | 0.4 | | Tertiary | 166083 | 179768 | 187856 | 181948 | 172717 | 171685 | 167352 | 168292 | 169602 | 172439 | 172664 | 1.2 | -0.8 | -0.3 | 0.2 | | Transport | 342901 | 368665 | 367191 | 372270 | 359006 | 353083 | 353927 | 353824 | 357751 | 360723 | 365726 | 0.7 | -0.2 | -0.1 | 0.2 | | by fuel | | | | | | | | | | | | | | | | | Solids | 61779 | 54424 | 49673 | 48390 | 46140 | 43134 | 41358 | 39901 | 37926 | 36212 | 34487 | -2.2 | -0.7 | -1.1 | -0.9 | | Oil | 485890 | 502788 | 457366 | 440945 | 408539 | 393484 | 384945 | 378414 | 374817 | 373351 | 371479 | -0.6 | -1.1 | -0.6 | -0.2 | | Gas | 266925 | 285438 | 269920 | 271579 | 251719 | 249695 | 241968 | 238545 | 235764 | 234302 | 238409 | 0.1 | -0.7 | -0.4 | -0.1 | | Electricity Heat (from CHP and District Heating) | 217599
46015 | 239418
52355 | 245271
53515 | 254567
55369 | 255699
56068 | 264355
56188 | 275584
55942 | 285884
56410 | 298901
57261 | 313732
58018 | 322774
58348 | 1.2
1.5 | 0.4
0.5 | 0.8 | 0.8 | | Renewable energy forms | 49480 | 56250 | 81825 | 100150 | 118868 | 123187 | 125118 | 125536 | 126758 | 126907 | 123322 | 5.2 | 3.8 | 0.5 | -0.1 | | Other fuels (hydrogen, ethanol) | 0 | 0 | 0 | 67 | 264 | 427 | 620 | 843 | 1202 | 1571 | 1887 | 0.0 | 0.0 | 8.9 | 5.7 | | RES in Gross Final Energy Consumption (A) | 88147 | 104692 | 149354 | 194777 | 244433 | 264581 | 282698 | 300378 | 316888 | 331107 | 342063 | 5.4 | 5.0 | 1.5 | 1.0 | | TOTAL GHG emissions (Mt of CO2 eq.) | 5215.6 | 5321.9 | 4846.8 | 4626.1 | 4296.7 | 4142.4 | 3843.9 | 3600.6 | 3446.7 | 3272.6 | 3188.2 | -0.7 | -1.2 | -1.1 | -0.9 | | of which ETS sectors (2013 scope) GHG emissions | | 2513.8 | 2180.0 | 2091.0 | 1913.4 | 1831.8 | 1606.1 | 1400.4 | 1271.0 | 1106.6 | 1023.7 | | -1.3 | -1.7 | -2.2 | | of which non ETS sectors GHG
emissions | | 2808.1 | 2666.7 | 2535.1 | 2383.3 | 2310.6 | 2237.8 | 2200.2 | 2175.7 | 2166.0 | 2164.5 | | -1.1 | -0.6 | -0.2 | | CO ₂ Emissions (energy related) | 3985.8 | 4138.3 | 3779.7 | 3593.1 | 3265.4 | 3117.7 | 2876.1 | 2649.1 | 2509.9 | 2430.4 | 2363.9 | -0.5 | -1.5 | -1.3 | -1.0 | | Power generation/District heating | 1404.5 | 1483.1 | 1341.6 | 1201.1 | 1045.2 | 970.8 | 790.0 | 619.1 | 520.0 | 461.0 | 401.9 | -0.5 | -2.5 | -2.8 | -3.3 | | Energy Branch | 170.1 | 174.2 | 159.8
520.3 | 150.0
539.6 | 139.7
508.6 | 131.2
492.9 | 125.1
484.3 | 117.0 | 111.3 | 107.0 | 103.9
425.2 | -0.6
-2.8 | -1.3
-0.2 | -1.1
-0.5 | -0.9 | | Industry Residential | 693.6
461.0 | 640.7
491.2 | 457.9 | 430.7 | 392.6 | 492.9
380.3 | 484.3
360.3 | 458.1
350.9 | 433.4
340.0 | 425.5
332.9 | 323.8 | -2.8
-0.1 | -0.2
-1.5 | -0.5
-0.9 | -0.6
-0.5 | | Tertiary | 255.7 | 266.4 | 249.2 | 220.7 | 195.5 | 181.5 | 159.6 | 151.8 | 145.1 | 140.5 | 137.6 | -0.1 | -2.4 | -2.0 | -0.5 | | Transport | 1001.0 | 1082.7 | 1050.9 | 1051.0 | 983.7 | 961.2 | 956.7 | 952.2 | 960.2 | 963.4 | 971.5 | 0.5 | -0.7 | -0.3 | 0.1 | | CO ₂ Emissions (non energy related) | 262.3 | 280.3 | 236.1 | 257.0 | 273.7 | 277.8 | 239.5 | 226.8 | 211.5 | 110.4 | 86.3 | -1.0 | 1.5 | -1.3 | -5.0 | | Non-CO ₂ GHG emissions | 967.4 | 903.3 | 830.9 | 775.9 | 757.5 | 746.9 | 728.2 | 724.7 | 725.2 | 731.8 | 738.0 | -1.5 | -0.9 | -0.4 | 0.1 | | TOTAL GHG emissions Index (1990=100) | 91.8 | 93.6 | 85.3 | 81.4 | 75.6 | 72.9 | 67.6 | 63.3 | 60.6 | 57.6 | 56.1 | _ | | JMMARY ENERGY BALANCE AND INDICAT | ORS (B) | | | | | | | | | | | EU28: R | eferen | ce sce | ena | |---|--|---|---|---|---|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------|----------------------------|----------------------------|-----| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 ' | '30 | | | | | | | | | | | | | | An | nual % | Change | € | | in Energy System Indicators | | | | | | | | | | | | | | | | | pulation (Million) | 485.587 | 493.791 | 503.626 | 510.817 | 516.986 | 521.721 | 524.921 | 527.075 | 528.203 | 528.090 | 526.472 | 0.4 | 0.3 | 0.2 | | | P (in 000 M€10) | 10725.4 | 11777.0 | 12301.4 | 13210.2 | 14246.4 | 15448.3 | 16667.7 | 17866.6 | 19150.8 | 20517.0 | 21944.1 | 1.4 | 1.5 | 1.6 | | | oss Inl. Cons./GDP (toe/M€10) rbon intensity (t of CO₂/toe of GIC) | 161.6 | 155.7 | 143.7 | 132.2 | 116.8 | 105.7 | 96.7 | 89.8 | 84.1 | 79.4 | 74.3 | -1.2 | -2.0 | -1.9
-0.9 | | | port Dependency % | 2.30
46.7 | 2.26
52.5 | 2.14
52.7 | 2.06
53.8 | 1.96
53.0 | 1.91
54.2 | 1.78
55.1 | 1.65
54.7 | 1.56
54.8 | 1.49
55.4 | 1.45
56.6 | -0.7 | -0.9 | -0.9 | | | al energy-rel. and other mitigation costs ^(B) (in 000 M€10) | | | | | | | | | | | | 0.7 | 0.0 | 4.0 | | | | | 1338.5 | 1569.4 | 1892.2 | 2112.4 | 2233.1 | 2338.3 | 2410.8 | 2504.6 | 2608.5 | 2699.6 | 3.7 | 3.0 | 1.0 | | | s % of GDP | 10.2 | 11.4 | 12.8 | 14.3 | 14.8 | 14.5 | 14.0 | 13.5 | 13.1 | 12.7 | 12.3 | | | | | | ergy intensity indicators ustry (Energy on Value added, index 2000=100) | | | 100.0 | 97.0 | 91.2 | 85.4 | 81.1 | 76.9 | 73.2 | 70.8 | 68.3 | | -0.9 | -1.2 | | | sidential (Energy on Private Income, index 2000=100) | 105.6 | 104.3 | 100.0 | 94.2 | 84.2 | 77.9 | 71.5 | 66.9 | 62.6 | 58.5 | 54.1 | -0.5 | -0.9 | -1.6 | | | tiary (Energy on Value added, index 2000=100) | 0.0 | 0.0 | 100.0 | 90.1 | 78.9 | 71.9 | 64.6 | 60.2 | 56.2 | 53.0 | 49.3 | 0.0 | -2.3 | -2.0 | | | ssenger transport (toe/Mpkm) | 40.0 | 39.2 | 37.8 | 35.9 | 32.1 | 29.0 | 26.9 | 25.6 | 24.9 | 24.4 | 24.1 | -0.6 | -1.6 | -1.8 | | | ight transport (toe/Mtkm) | 47.1 | 47.5 | 48.4 | 46.8 | 44.2 | 41.9 | 40.0 | 38.8 | 37.7 | 37.0 | 36.5 | 0.3 | -0.9 | -1.0 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.39 | 0.37 | 0.33 | 0.29 | 0.25 | 0.23 | 0.18 | 0.14 | 0.11 | 0.09 | 0.08 | -1.6 | -2.8 | -3.3 | | | al energy demand (t of CO ₂ /toe) | 2.14 | 2.08 | 1.97 | 1.91 | 1.83 | 1.78 | 1.74 | 1.70 | 1.66 | 1.63 | 1.61 | -0.8 | -0.7 | -0.5 | | | ndustry | 2.09 | 1.94 | 1.79 | 1.77 | 1.66 | 1.61 | 1.58 | 1.50 | 1.43 | 1.39 | 1.38 | -1.5 | -0.7 | -0.5 | | | Residential | 1.61 | 1.58 | 1.47 | 1.38 | 1.31 | 1.27 | 1.21 | 1.17 | 1.13 | 1.10 | 1.07 | -0.9 | -1.1 | -0.8 | | | ertiary | 1.54 | 1.48 | 1.33 | 1.21 | 1.13 | 1.06 | 0.95 | 0.90 | 0.86 | 0.81 | 0.80 | -1.5 | -1.6 | -1.7 | | | ransport (C) | 2.92 | 2.94 | 2.86 | 2.82 | 2.74 | 2.72 | 2.70 | 2.69 | 2.68 | 2.67 | 2.66 | -0.2 | -0.4 | -0.1 | | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 7.5 | 8.4 | 12.4 | 16.1 | 20.9 | 22.7 | 24.4 | 25.9 | 27.1 | 28.0 | 28.7 | | | | | | S in transport (%) | 0.6 | 1.2 | 4.7 | 6.5 | 10.3 | 11.2 | 12.0 | 12.5 | 12.7 | 13.3 | 13.9 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 3007267 | 3287285 | 3328110 | 3416910 | 3428487 | 3530642 | 3664473 | 3806113 | 3991697 | 4202590 | 4338637 | 1.0 | 0.3 | 0.7 | | | uclear energy | 945027 | 997733 | 916685 | 887261 | 749295 | 705996 | 799389 | 868122 | 896436 | 922451 | 923898 | -0.3 | -2.0 | 0.6 | | | olids | 933660 | 974939 | 830048 | 804369 | 706358 | 637739 | 475702 | 343302 | 313974 | 349630 | 362710 | -1.2 | -1.6 | -3.9 | | | il (including refinery gas) | 181203 | 141358 | 86851 | 45900 | 26245 | 24658 | 20658 | 20977 | 21545 | 22478 | 22176 | -7.1 | -11.3 | -2.4 | | | as (including derived gases) | 514392 | 699743 | 795653 | 753663 | 708895 | 723849 | 738362 | 764991 | 791462 | 798815 | 793169 | 4.5 | -1.1 | 0.4 | | | iomass-waste | 46848 | 83787 | 145901 | 188902 | 221059 | 231132 | 243292 | 271722 | 314588 | 328910 | 343434 | 12.0 | 4.2 | 1.0 | | | ydro (pumping excluded) | 358408 | 311883 | 374576 | 368453 | 374203 | 383179 | 396372 | 408332 | 415145 | 418844 | 425214 | 0.4 | 0.0 | 0.6 | | | /ind | 22253 | 70453 | 149202 | 263506 | 487529 | 632113 | 768244 | 855332 | 907067 | 991599 | 1075357 | 21.0 | 12.6 | 4.7 | | | olar | 118 | 1459 | 22363 | 96144 | 142787 | 177015 | 206378 | 251189 | 304009 | 328694 | 347363 | 68.9 | 20.4 | 3.8 | | | eothermal and other renewables | 5358 | 5930 | 6831 | 8712 | 12116 | 14959 | 16077 | 22146 | 27472 | 41168 | 45316 | 2.5 | 5.9 | 2.9 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 650058 | 711660 | 838114 | 930128 | 1017923 | 1067357 | 1138323 | 1201184 | 1274366 | 1328626 | 1382012 | 2.6 | 2.0 | 1.1 | | | luclear energy | 136924 | 134494 | 131323 | 123150 | 111162 | 96912 | 107006 | 115171 | 118838 | 122076 | 121993 | -0.4 | -1.7 | -0.4 | | | enewable energy | 114281 | 147780 | 226757 | 318900 | 437092 | 517020 | 582765 | 639395 | 693700 | 741307 | 785504 | 7.1 | 6.8 | 2.9 | | | Hydro (pumping excluded) | 101207 | 105529 | 112159 | 118306 | 120602 | 122416 | 124904 | 128871 | 130562 | 132244 | 134453 | 1.0 | 0.7 | 0.4 | | | Wind | 12893 | 40510 | 84512 | 123698 | 204726 | 258081 | 305395 | 335743 | 355654 | 385234 | 413394 | 20.7 | 9.3 | 4.1 | | | Solar | 180 | 1740 | 29846 | 76309 | 110110 | 133723 | 149432 | 171589 | 203942 | 217561 | 230791 | 66.7 | 13.9 | 3.1 | | | Other renewables (tidal etc.) | 0 | 0 | 240 | 586 | 1655 | 2800 | 3033 | 3193 | 3542 | 6268 | 6865 | 0.0 | 21.3 | 6.2 | | | hermal power | 398853 | 429386 | 480034 | 488079 | 469669 | 453425 | 448552 | 446618 | 461828 | 465243 | 474514 | 1.9 | -0.2 | -0.5 | | | of which cogeneration units | 92439 | 98998 | 101203 | 103103 | 113668 | 114259 | 115758 | 120668 | 127236 | 135974 | 138054 | 0.9 | 1.2 | 0.2 | | | of which CCS units
Solids fired | - | 0
180630 | 175756 | 163211 | 904
141800 | 904
121501 | 1610
103961 | 7630
90682 | 18271
88121 | 34464
86837 | 38410
81632 | 0.0
-0.6 | 0.0
-2.1 | 5.9
-3.1 | | | Gas fired | 186470
129190 | 169054 | 224922 | 253142 | 258836 | 266000 | 280581 | 291299 | 295982 | 297331 | 301988 | 5.7 | 1.4 | 0.8 | | | Oil fired | 67499 | 59434 | 54039 | 42299 | 33495 | 27775 | 23784 | 20062 | 21343 | 20242 | 22106 | -2.2 | -4.7 | -3.4 | | | Biomass-waste fired | 15128 | 19615 | 24590 | 28633 | 34635 | 37238 | 39250 | 42948 | 54237 | 57890 | 65535 | 5.0 | 3.5 | 1.3 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 567 | 652 | 726 | 794 | 903 | 910 | 975 | 1627 | 2145 | 2943 | 3253 | 2.5 | 2.2 | 0.8 | | | Load factor of net power capacity (F) (%) | 50.0 | 50.0 | 43.1 | 40.0 | 36.8 | 36.3 | 35.4 | 34.9 | 34.4 | 34.7 | 34.3 | 2.0 | | 3.0 | | | ctricity indicators | 30.0 | 30.0 | 40.1 | 40.0 | 30.0 | 30.3 | 30.4 | 34.3 | 34.4 | 34.7 | 54.5 | | | | | | circity indicators ciency of gross thermal power generation (%) | 37.5 | 38.4 | 38.4 | 40.4 | 40.8 | 41.4 | 42.7 | 43.1 | 43.5 | 43.8 | 44.6 | | | | | | of gross electricity from CHP | 11.5 | 11.8 | 12.6 | 14.3 | 15.8 | 16.4 | 16.1 | 16.4 | 16.7 | 16.7 | 16.2 | | | | | | f electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.5 | 1.7 | 3.4 | 5.0 | 6.9 | | | | | | bon free gross electricity generation (%) | 45.8 | 44.8 | 48.5 | 53.1 | 58.0 | 60.7 | 66.3 | 70.3 | 71.8 | 72.1 | 72.8 | | | | | | uclear | 31.4 | 30.4 | 27.5 | 26.0 | 21.9 | 20.0 | 21.8 | 22.8 |
22.5 | 21.9 | 21.3 | | | | | | enewable energy forms | 14.4 | 14.4 | 21.0 | 27.1 | 36.1 | 40.7 | 44.5 | 47.5 | 49.3 | 50.2 | 51.6 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 5894.2 | 6251.6 | 6466.4 | 6755.8 | 7045.6 | 7491.4 | 7962.2 | 8288.2 | 8629.0 | 8885.6 | 9148.2 | 0.9 | 0.9 | 1.2 | | | ublic road transport | 519.6 | 527.2 | 512.8 | 531.5 | 551.0 | 575.5 | 602.4 | 623.2 | 644.5 | 659.3 | 674.6 | -0.1 | 0.7 | 0.9 | | | rivate cars and motorcycles | 4425.4 | 4694.5 | 4893.4 | 5052.9 | 5195.6 | 5455.5 | 5713.7 | 5884.8 | 6057.0 | 6182.6 | 6309.0 | 1.0 | 0.6 | 1.0 | | | ail | 447.8 | 459.7 | 496.4 | 536.7 | 581.1 | 643.0 | 714.0 | 763.3 | 816.2 | 852.9 | 890.2 | 1.0 | 1.6 | 2.1 | | | viation | 459.7 | 530.7 | 525.6 | 595.2 | 677.0 | 774.7 | 887.5 | 970.7 | 1063.8 | 1141.8 | 1224.2 | 1.4 | 2.6 | 2.7 | | | | 41.7 | 39.5 | 38.1 | 39.5 | 40.9 | 42.7 | 44.7 | 46.2 | 47.7 | 48.9 | 50.2 | -0.9 | 0.7 | 0.9 | | | aland navigation | 2227.6 | 2545.3 | 2493.4 | 2714.3 | 2938.5 | 3174.5 | 3430.2 | 3568.7 | 3713.1 | 3809.7 | 3907.6 | 1.1 | 1.7 | 1.6 | | | | | 1803.3 | 1764.4 | 1923.1 | 2076.4 | 2232.6 | 2399.4 | 2495.2 | 2594.8 | 2661.2 | 2729.6 | 1.5 | 1.6 | 1.5 | | | eight transport activity (Gtkm) | 1522.0 | | | | 485.8 | 540.5 | 602.3 | 632.2 | 663.9 | 684.3 | 704.0 | -0.3 | 2.2 | 2.2 | | | ight transport activity (Gtkm) rucks | 1522.0
405.5 | 416.0 | 392.5 | 435.5 | | | | | | | | | | 1.3 | | | ight transport activity (Gtkm)
rucks
ail | | | 392.5
336.6 | 355.7 | 376.2 | 401.4 | 428.5 | 441.2 | 454.4 | 464.2 | 474.0 | 1.2 | 1.1 | 1.0 | | | ight transport activity (Gtkm)
rucks
ail
ıland navigation | 405.5
300.1 | 416.0
325.9 | 336.6 | 355.7 | 376.2 | | | | | | | 0.7 | -0.2 | | | | ight transport activity (Gtkm) rucks ail alland navigation ergy demand in transport (ktoe) (a) | 405.5
300.1
340814 | 416.0
325.9
366066 | 336.6
364944 | 355.7
369793 | 376.2
356476 | 350461 | 351233 | 351069 | 354945 | 357888 | 362851 | 0.7 | -0.2 | -0.1 | | | ight transport activity (Gtkm) rucks all laland navigation ergy demand in transport (ktoe) (G) ublic road transport | 405.5
300.1 | 416.0
325.9 | 336.6 | 355.7 | 376.2 | | | | | | | | | | | | nland navigation sight transport activity (Gtkm) rucks tail land navigation ergy demand in transport (ktoe) (G) tublic road transport rivate cars and motorcycles rucks | 405.5
300.1
340814
7580
178015 | 416.0
325.9
366066
7663
181818 | 336.6
364944
7522
182270 | 355.7
369793
7717 | 376.2
356476
7802
157091 | 350461
7852
145721 | 351233
7928
141680 | 351069
8009
140423 | 354945
8135
140890 | 357888
8186
141428 | 362851
8270
142783 | 0.7
-0.1
0.2 | -0.2 0.4 | -0.1
0.2
-1.0 | | | ight transport activity (Gtkm) rucks tail nland navigation ergy demand in transport (ktoe) (G) tublic road transport trivate cars and motorcycles | 405.5
300.1
340814
7580
178015
95660 | 416.0
325.9
366066
7663
181818
111643 | 336.6
364944
7522 | 355.7
369793
7717
176038 | 376.2
356476
7802 | 350461
7852 | 351233
7928
141680
126128 | 351069
8009 | 354945
8135 | 357888
8186 | 362851
8270 | 0.7
-0.1
0.2
1.6 | -0.2
0.4
-1.5 | -0.1
0.2
-1.0
0.5 | | | ight transport activity (Gtkm) rucks all alland navigation ergy demand in transport (ktoe) (G) ublic road transport rivate cars and motorcycles rucks | 405.5
300.1
340814
7580
178015 | 416.0
325.9
366066
7663
181818 | 336.6
364944
7522
182270
112043 | 355.7
369793
7717
176038
117949 | 376.2
356476
7802
157091
120195 | 350461
7852
145721
122455 | 351233
7928
141680 | 351069
8009
140423
127299 | 354945
8135
140890
128780 | 357888
8186
141428
129671 | 362851
8270
142783
131469 | 0.7
-0.1
0.2 | -0.2
0.4
-1.5
0.7 | -0.1
0.2
-1.0 | | | EU27: Reference scenario | | | | | | | | SUI | /IMARY I | ENERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|--|--|--|---|--|--|---|---|---|--|---|---|---|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 944342
214627 | 900832 | 837269 163855 | 828717 149960 | 805878
139654 | 772881 127408 | 747783
88528 | 753374
79202 | 755340
74288 | 753106 72768 | 735318 69144 | -1.2
-2.7 | -0.4
-1.6 | -0.7
-4.5 | -0.1
-1.2 | | Oil | 174729 | 196059
135432 | 102804 | 90236 | 76958 | 64882 | 55168 | 43158 | 33881 | 22973 | 16113 | -2.7
-5.2 | -2.9 | -4.5 | -6.0 | | Natural gas | 208082 | 188813 | 156311 | 148399 | 140735 | 124505 | 109610 | 101917 | 95373 | 82682 | 69668 | -2.8 | -1.0 | -2.5 | -2.2 | | Nuclear | 243841 | 257516 | 236563 | 229122 | 193490 | 180877 | 201194 | 214924 | 217916 | 220665 | 215930 | -0.3 | -2.0 | 0.4 | 0.4 | | Renewable energy sources | 103064 | 123012 | 177738 | 211000 | 255042 | 275209 | 293284 | 314173 | 333881 | 354017 | 364463 | 5.6 | 3.7 | 1.4 | 1.1 | | Hydro | 30312 | 26273 | 31492 | 31099 | 31582 | 32336 | 33413 | 34427 | 34978 | 35279 | 35816 | 0.4 | 0.0 | 0.6 | 0.3 | | Biomass & Waste
Wind | 65696
1913 | 84522
6057 | 123862
12817 | 135363
22594 | 149828
41816 | 150803
54240 | 152022
65944 | 154005
73433 | 160523
77838 | 163680
85089 | 162971
92284 | 6.5
20.9 | 1.9
12.6 | 0.1
4.7 | 0.3
1.7 | | Solar and others | 430 | 806 | 3686 | 13983 | 22583 | 28390 | 31822 | 37117 | 41265 | 44517 | 45624 | 24.0 | 19.9 | 3.5 | 1.8 | | Geothermal | 4712 | 5354 | 5881 | 7961 | 9233 | 9441 | 10083 | 15192 | 19277 | 25452 | 27767 | 2.2 | 4.6 | 0.9 | 5.2 | | Net Imports | 825138 | 983457 | 952254 | 962484 | 905697 | 909485 | 914961 | 905605 | 911730 | 934342 | 956654 | 1.4 | -0.5 | 0.1 | 0.2 | | Solids | 97795 | 124587 | 110227 | 115797 | 96286 | 87928 | 85074 | 61859 | 54208 | 54715 | 54644 | 1.2 | -1.3 | -1.2 | -2.2 | | Oil | 532790 | 600393 | 560977 | 549056 | 525822 | 518548 | 519130 | 522940 | 525756 | 535671 | 541074 | 0.5 | -0.6 | -0.1 | 0.2 | | - Crude oil and Feedstocks | 514059 | 580747 | 537578 | 524410 | 503630 | 494705 | 491120 | 491490 | 490288 | 494530 | 493810 | 0.4 | -0.7 | -0.3 | 0.0 | | - Oil products | 18730 | 19646 | 23399 | 24645 | 22192 | 23843 | 28010 | 31450 | 35468 | 41141 | 47264 | 2.3 | -0.5 | 2.4 | 2.7 | | Natural gas
Electricity | 192527
1685 | 257287
972 | 275525
297 | 284075
-548 | 263726
-2087 | 281544
-1986 | 287422
-2021 | 296573
-2313 | 305137
-2304 | 316319
-2265 | 332519
-2534 | 3.6
-15.9 | -0.4
0.0 | 0.9 | 0.7 | | - | 1724865 | 1824307 | 1758899 | 1737735 | 1656059 | 1624704 | 1602873 | 1596577 | 1602634 | 1619850 | 1620981 | 0.2 | -0.6 | -0.3 | 0.0 | | Gross
Inland Consumption Solids | 320845 | 317303 | 279970 | 265757 | 235940 | 215336 | 173602 | 141061 | 128496 | 127483 | 123788 | -1.4 | -0.6
-1.7 | -0.3
-3.0 | -1.7 | | Oil | 661160 | 679353 | 617021 | 586043 | 548184 | 527692 | 516932 | 507745 | 500686 | 498134 | 494703 | -0.7 | -1.7 | -3.0
-0.6 | -0.2 | | Natural gas | 393935 | 446003 | 441796 | 432258 | 403541 | 404124 | 394526 | 394440 | 395026 | 391914 | 393679 | 1.2 | -0.9 | -0.2 | 0.0 | | Nuclear | 243841 | 257516 | 236563 | 229122 | 193490 | 180877 | 201194 | 214924 | 217916 | 220665 | 215930 | -0.3 | -2.0 | 0.4 | 0.4 | | Electricity | 1685 | 972 | 297 | -548 | -2087 | -1986 | -2021 | -2313 | -2304 | -2265 | -2534 | -15.9 | 0.0 | 0.0 | 0.0 | | Renewable energy forms | 103398 | 123159 | 183251 | 225103 | 276991 | 298660 | 318640 | 340720 | 362814 | 383919 | 395414 | 5.9 | 4.2 | 1.4 | 1.1 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 18.6 | 17.4 | 15.9 | 15.3 | 14.2 | 13.3 | 10.8 | 8.8 | 8.0 | 7.9 | 7.6 | | | | | | Oil | 38.3 | 37.2 | 35.1 | 33.7 | 33.1 | 32.5 | 32.3 | 31.8 | 31.2 | 30.8 | 30.5 | | | | | | Natural gas | 22.8 | 24.4
14.1 | 25.1
13.4 | 24.9 | 24.4
11.7 | 24.9
11.1 | 24.6
12.6 | 24.7
13.5 | 24.6
13.6 | 24.2 | 24.3 | | | | | | Nuclear
Renewable energy forms | 14.1
6.0 | 6.8 | 10.4 | 13.2
13.0 | 16.7 | 18.4 | 19.9 | 21.3 | 22.6 | 13.6
23.7 | 13.3
24.4 | | | | | | Gross Electricity Generation in GWh _a | 2996104 | 3274309 | 3313455 | 3402657 | 3413997 | 3516471 | 3649690 | 3790687 | 3974224 | 4182474 | 4318132 | 1.0 | 0.3 | 0.7 | 0.8 | | Self consumption and grid losses | 394494 | 404404 | 375229 | 366716 | 352276 | 357998 | 364937 | 382104 | 411365 | 444776 | 470483 | -0.5 | -0.6 | 0.4 | 1.3 | | Fuel Inputs to Thermal Power Generation | 383708 | 425514 | 416002 | 381831 | 351334 | 337023 | 298398 | 281799 | 287496 | 298037 | 297858 | 0.8 | -1.7 | -1.6 | 0.0 | | Solids | 222681 | 228404 | 197074 | 186584 | 159666 | 143772 | 105411 | 76961 | 68138 | 70192 | 68205 | -1.2 | -2.1 | -4.1 | -2.2 | | Oil (including refinery gas) | 39647 | 32795 | 20411 | 10813 | 5892 | 5241 | 4532 | 4005 | 4102 | 4089 | 4051 | -6.4 | -11.7 | -2.6 | -0.6 | | Gas (including derived gases) | 102348 | 133223 | 148579 | 131136 | 124086 | 125571 | 124119 | 126513 | 129143 | 127555 | 124256 | 3.8 | -1.8 | 0.0 | 0.0 | | Biomass & Waste | 14918 | 26447 | 45111 | 47322 | 54894 | 55586 | 56992 | 62066 | 69955 | 74033 | 76839 | 11.7 | 2.0 | 0.4 | 1.5 | | Geothermal heat | 4114 | 4645
0 | 4828 | 5976
0 | 6796 | 6853 | 7345 | 12254 | 16157 | 22167 | 24506 | 1.6 | 3.5 | 0.8 | 6.2 | | Hydrogen - Methanol | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 1070906 735155 | 1104746 757897 | 997096 665701 | 967473 642900 | 905985 611217 | 869474 590680 | 875489 578358 | 873609 567760 | 862979 557664 | 858566 551566 | 847511 543864 | -0.7
-1.0 | -1.0
-0.9 | -0.3
-0.6 | -0.2
-0.3 | | Biofuels and hydrogen production | 705 | 3101 | 13293 | 18195 | 26044 | 26354 | 27061 | 27299 | 27263 | 28082 | 29324 | 34.1 | 7.0 | 0.4 | 0.4 | | District heating | 18583 | 19414 | 20716 | 22414 | 20696 | 19715 | 19583 | 18457 | 17196 | 17543 | 18353 | 1.1 | 0.0 | -0.6 | -0.3 | | Derived gases, cokeries etc. | 316463 | 324334 | 297386 | 283964 | 248029 | 232725 | 250487 | 260093 | 260857 | 261375 | 255971 | -0.6 | -1.8 | 0.1 | 0.1 | | Energy Branch Consumption | 86159 | 91120 | 87583 | 81858 | 76734 | 73445 | 70575 | 68704 | 68096 | 68447 | 68588 | 0.2 | -1.3 | -0.8 | -0.1 | | Non-Energy Uses | 116435 | 120003 | 114288 | 118704 | 121702 | 120941 | 120958 | 120573 | 119179 | 118779 | 119364 | -0.2 | 0.6 | -0.1 | -0.1 | | Final Energy Demand | 1122342 | 1184339 | 1151237 | 1164352 | 1130486 | 1123692 | 1118669 | 1118521 | 1125525 | 1136865 | 1143392 | 0.3 | -0.2 | -0.1 | 0.1 | | by sector | | | | | | | | | | | | | | | | | Industry | 331020 | 328869 | 289602 | 303343 | 304636 | 304062 | 305330 | 302974 | 302354 | 305188 | 307133 | -1.3 | 0.5 | 0.0 | 0.0 | | - energy intensive industries | 217073 | 215974 | 187141 | 196349 | 196731 | 194351 | 193921 | 191287 | 188976 | 189124 | 187519 | -1.5 | 0.5 | -0.1 | -0.2 | | - other industrial sectors
Residential | 113947
284627 | 112895
309867 | 102460
309652 | 106994
310012 | 107905
297387 | 109710
298054 | 111409
295351 | 111687
296789 | 113378
299231 | 116063
301964 | 119613
301377 | -1.1
0.8 | 0.5
-0.4 | 0.3
-0.1 | 0.4 | | Tertiary | 165325 | 178847 | 186849 | 180916 | 171626 | 170601 | 166207 | 167105 | 168378 | 171175 | 171368 | 1.2 | -0.4 | -0.1 | 0.1 | | Transport | 341371 | 366756 | 365133 | 370082 | 356837 | 350975 | 351781 | 351653 | 355562 | 358538 | 363514 | 0.7 | -0.2 | -0.1 | 0.2 | | by fuel | | | | | | | | | | | | | | | | | Solids | | | | | | | | | 37795 | 36083 | 34358 | -2.2 | -0.7 | -1.1 | -0.9 | | | 61705 | 54278 | 49523 | 48249 | 46002 | 43008 | 41230 | 39771 | | | 04000 | | | -0.6 | -0.2 | | Oil | 483224 | 499695 | 454477 | 438055 | 405818 | 390845 | 382280 | 375771 | 372181 | 370727 | 368863 | -0.6 | -1.1 | | | | Oil
Gas | 483224
265916 | 499695
284196 | 454477
268632 | 438055
270154 | 405818
250372 | 390845
248241 | 382280
240576 | 375771
237136 | 372181
234343 | 370727
232867 | 368863
236942 | 0.1 | -0.7 | -0.4 | -0.1 | | Oil
Gas
Electricity | 483224
265916
216590 | 499695
284196
238178 | 454477
268632
243907 | 438055
270154
253155 | 405818
250372
254202 | 390845
248241
262890 | 382280
240576
274025 | 375771
237136
284243 | 372181
234343
297183 | 370727
232867
311900 | 368863
236942
320867 | 0.1
1.2 | -0.7
0.4 | -0.4
0.8 | -0.1
0.8 | | Oil Gas Electricity Heat (from CHP and District Heating) | 483224
265916
216590
45802 | 499695
284196
238178
52098 | 454477
268632
243907
53270 | 438055
270154
253155
55094 | 405818
250372
254202
55787 | 390845
248241
262890
55900 | 382280
240576
274025
55655 | 375771
237136
284243
56123 | 372181
234343
297183
56980 | 370727
232867
311900
57734 | 368863
236942
320867
58063 | 0.1
1.2
1.5 | -0.7
0.4
0.5 | -0.4
0.8
0.0 | -0.1
0.8
0.2 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 483224
265916
216590
45802
49105 | 499695
284196
238178
52098
55894 | 454477
268632
243907
53270
81428 | 438055
270154
253155
55094
99580 | 405818
250372
254202
55787
118042 | 390845
248241
262890
55900
122382 | 382280
240576
274025
55655
124282 | 375771
237136
284243
56123
124635 | 372181
234343
297183
56980
125842 | 370727
232867
311900
57734
125986 | 368863
236942
320867
58063
122416 | 0.1
1.2
1.5
5.2 | -0.7
0.4
0.5
3.8 | -0.4
0.8
0.0
0.5 | -0.1
0.8
0.2
-0.1 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 483224
265916
216590
45802
49105
0 | 499695
284196
238178
52098
55894
0 | 454477
268632
243907
53270
81428
0 | 438055
270154
253155
55094
99580
67 | 405818
250372
254202
55787
118042
264 | 390845
248241
262890
55900
122382
426 | 382280
240576
274025
55655
124282
619 | 375771
237136
284243
56123
124635
841 | 372181
234343
297183
56980
125842
1200 | 370727
232867
311900
57734
125986
1569 | 368863
236942
320867
58063
122416
1884 | 0.1
1.2
1.5
5.2
0.0 | -0.7
0.4
0.5
3.8
0.0 | -0.4
0.8
0.0
0.5
8.9 | -0.1
0.8
0.2
-0.1
5.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 483224
265916
216590
45802
49105
0 | 499695
284196
238178
52098
55894
0 | 454477
268632
243907
53270
81428
0 | 438055
270154
253155
55094
99580
67
193514 | 405818
250372
254202
55787
118042
264
242889 | 390845
248241
262890
55900
122382
426
262990 | 382280
240576
274025
55655
124282
619
280995 | 375771
237136
284243
56123
124635
841
298554 | 372181
234343
297183
56980
125842
1200
314930 | 370727
232867
311900
57734
125986
1569
329030 | 368863
236942
320867
58063
122416
1884
340005 | 0.1
1.2
1.5
5.2
0.0
5.4 | -0.7
0.4
0.5
3.8
0.0
5.0 | -0.4
0.8
0.0
0.5
8.9 | -0.1
0.8
0.2
-0.1
5.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 483224
265916
216590
45802
49105
0 | 499695
284196
238178
52098
55894
0
103846
5291.8 | 454477
268632
243907
53270
81428
0
148412
4818.9 | 438055
270154
253155
55094
99580
67
193514
4599.3 | 405818
250372
254202
55787
118042
264
242889
4271.7 | 390845
248241
262890
55900
122382
426
262990
4118.1 | 382280
240576
274025
55655
124282
619
280995
3820.4 | 375771
237136
284243
56123
124635
841
298554
3577.4 | 372181
234343
297183
56980
125842
1200
314930
3423.4 | 370727
232867
311900
57734
125986
1569
329030 |
368863
236942
320867
58063
122416
1884
340005 | 0.1
1.2
1.5
5.2
0.0 | -0.7
0.4
0.5
3.8
0.0
5.0 | -0.4
0.8
0.0
0.5
8.9
1.5 | -0.1
0.8
0.2
-0.1
5.7
1.0 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 483224
265916
216590
45802
49105
0 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8 | 405818
250372
254202
55787
118042
264
242889 | 390845
248241
262890
55900
122382
426
262990 | 382280
240576
274025
55655
124282
619
280995 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8 | 370727
232867
311900
57734
125986
1569
329030
3250.9
1099.9 | 368863
236942
320867
58063
122416
1884
340005
3166.5 | 0.1
1.2
1.5
5.2
0.0
5.4 | -0.7
0.4
0.5
3.8
0.0
5.0
-1.2
-1.3 | -0.4
0.8
0.0
0.5
8.9
1.5
-1.1
-1.7 | -0.1
0.8
0.2
-0.1
5.7
1.0 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 483224
265916
216590
45802
49105
0 | 499695
284196
238178
52098
55894
0
103846
5291.8 | 454477
268632
243907
53270
81428
0
148412
4818.9 | 438055
270154
253155
55094
99580
67
193514
4599.3 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2 | 375771
237136
284243
56123
124635
841
298554
3577.4 | 372181
234343
297183
56980
125842
1200
314930
3423.4 | 370727
232867
311900
57734
125986
1569
329030 | 368863
236942
320867
58063
122416
1884
340005 | 0.1
1.2
1.5
5.2
0.0
5.4 | -0.7
0.4
0.5
3.8
0.0
5.0 | -0.4
0.8
0.0
0.5
8.9
1.5 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 483224
265916
216590
45802
49105
0
87331
5189.9 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5 | 370727
232867
311900
57734
125986
1569
329030
3250.9
1099.9
2150.9 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7 | -0.7
0.4
0.5
3.8
0.0
5.0
-1.2
-1.3
-1.1 | -0.4
0.8
0.0
0.5
8.9
1.5
-1.1
-1.7
-0.6 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 483224
265916
216590
45802
49105
0
87331
5189.9 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6
3761.2
1337.3
158.0 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0
2633.5
616.6
115.9 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1 | 370727
232867
311900
57734
125986
1569
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5
2347.9
399.0
102.8 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 483224
265916
216590
45802
49105
0
87331
5189.9
3968.9
1400.3
168.1
690.7 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6
3761.2
1337.3
158.0
517.5 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9
481.5 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0
2633.5
616.6
115.9
455.3 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1
430.6 | 370727
232867
311900
57734
125986
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9
422.7 | 368863
236942
320867
58063
122416
34005
3166.5
1017.0
2149.5
2347.9
399.0
102.8
422.3 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1
-0.5 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 483224
265916
216590
4802
49105
0
87331
5189.9
3968.9
1400.3
168.1
690.7
459.1 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1
488.8 | 454477 268632 243907 53270 81428 0 148412 4818.9 2169.3 2649.6 3761.2 1337.3 158.0 517.5 455.7 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6
428.7 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7
390.7 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9
378.2 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9
481.5
358.2 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0
2633.5
616.6
115.9
455.3
348.8 |
372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1
430.6
338.0 | 370727
232867
311900
57734
125986
1569
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9
422.7
330.9 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5
2347.9
399.0
102.8
422.3
321.8 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7
-0.5
-0.5
-0.6
-2.8
-0.1 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2
-1.5 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1
-0.5
-0.9 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7
-0.5 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 483224
265916
216590
45802
49105
0
87331
5189.9
3968.9
1400.3
168.1
690.7
459.1
254.2 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1
488.8
265.0 | 454477 268632 243907 53270 81428 0 148412 4818.9 2169.3 2649.6 3761.2 1337.3 158.0 517.5 455.7 247.8 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6
428.7
219.3 | 405818
250372
254202
55787
118042
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7
390.7 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9
378.2
180.2 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9
481.5
358.2
158.4 | 375771
237136
284243
56123
124635
841
298554
1392.4
2185.0
2633.5
616.6
115.9
455.3
348.8
150.6 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1
430.6
338.0
143.9 | 370727
232867
311900
57734
125986
1569
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9
422.7
330.9
139.3 | 368863
236942
320867
58063
122416
1884
340005
1017.0
2149.5
2347.9
399.0
102.8
422.3
321.8
136.4 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7
-0.5
-0.5
-0.6
-2.8
-0.1
-0.3 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2
-1.5
-2.4 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1
-0.5
-0.9
-2.0 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7
-0.5
-0.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 483224
265916
216590
45802
49105
0
87331
5189.9
1400.3
168.1
690.7
459.1
254.2
996.5 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1
488.8
265.0
1077.0 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6
3761.2
1337.3
158.0
517.5
455.7
247.8
1044.8 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6
428.7
219.3
1044.6 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7
390.7
194.2
977.8 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9
378.2
180.2
955.4 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9
481.5
358.2
158.4
950.9 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0
2633.5
616.6
115.9
455.3
348.8
150.6
946.3 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1
430.6
338.0
954.2 | 370727
232867
311900
577734
125986
1569
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9
422.7
330.9
139.3
957.5 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5
2347.9
399.0
102.8
422.3
321.8
136.4
965.5 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7
-0.5
-0.5
-0.6
-2.8
-0.1
-0.3 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2
-1.5
-2.4
-0.7 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1
-0.5
-0.9
-2.0
-0.3 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7
-0.5
-0.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 483224
265916
216590
45802
49105
0
87331
5189.9
1400.3
168.1
690.7
459.1
254.2
996.5
259.7 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1
488.8
265.0
1077.0
277.2 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6
3761.2
1337.3
158.0
517.5
455.7
247.8
1044.8
233.6 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6
428.7
219.3
1044.6
254.3 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7
390.7
194.2
977.8
270.9 | 390845
248241
262890
55990
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9
378.2
180.2
955.4 | 382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
481.5
358.2
158.4
950.9
237.1 | 375771
237136
284243
56123
124635
841
298554
1392.4
2185.0
2633.5
455.3
348.8
150.6
946.3
224.5 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
430.6
338.0
143.9
954.2
209.2 | 370727
232867
311900
57734
125986
1569
329030
3250.9
20150.9
2414.4
458.2
105.9
422.7
330.9
1393.
957.5
109.9 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5
2347.9
399.0
102.8
422.3
321.8
136.4
965.5
85.9 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7
-0.5
-0.6
-2.8
-0.1
-0.3
0.5
-1.1 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2
-1.5
-2.4
-0.7
1.5 | -0.4 0.8 0.0 0.5 8.9 1.5 -1.1 -1.7 -0.6 -1.3 -2.8 -1.1 -0.5 -0.9 -2.0 -0.3 -1.3 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7
-0.5
-0.7 | | Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 483224
265916
216590
45802
49105
0
87331
5189.9
1400.3
168.1
690.7
459.1
254.2
996.5 | 499695
284196
238178
52098
55894
0
103846
5291.8
2501.2
2790.5
4118.1
1478.0
172.2
637.1
488.8
265.0
1077.0 | 454477
268632
243907
53270
81428
0
148412
4818.9
2169.3
2649.6
3761.2
1337.3
158.0
517.5
455.7
247.8
1044.8 | 438055
270154
253155
55094
99580
67
193514
4599.3
2080.8
2518.5
3575.1
1197.4
148.5
536.6
428.7
219.3
1044.6 | 405818
250372
254202
55787
118042
264
242889
4271.7
1904.2
2367.5
3248.6
1041.8
138.4
505.7
390.7
194.2
977.8 | 390845
248241
262890
55900
122382
426
262990
4118.1
1823.2
2294.9
3101.7
968.0
129.9
489.9
378.2
180.2
955.4 |
382280
240576
274025
55655
124282
619
280995
3820.4
1598.2
2222.2
2860.4
787.5
123.9
481.5
358.2
158.4
950.9 | 375771
237136
284243
56123
124635
841
298554
3577.4
1392.4
2185.0
2633.5
616.6
115.9
455.3
348.8
150.6
946.3 | 372181
234343
297183
56980
125842
1200
314930
3423.4
1262.8
2160.5
2494.1
517.3
110.1
430.6
338.0
954.2 | 370727
232867
311900
577734
125986
1569
329030
3250.9
1099.9
2150.9
2414.4
458.2
105.9
422.7
330.9
139.3
957.5 | 368863
236942
320867
58063
122416
1884
340005
3166.5
1017.0
2149.5
2347.9
399.0
102.8
422.3
321.8
136.4
965.5 | 0.1
1.2
1.5
5.2
0.0
5.4
-0.7
-0.5
-0.5
-0.6
-2.8
-0.1
-0.3 | -0.7
0.4
0.5
3.8
0.0
-1.2
-1.3
-1.1
-1.5
-2.5
-1.3
-0.2
-1.5
-2.4
-0.7 | -0.4
0.8
0.0
0.5
8.9
-1.1
-1.7
-0.6
-1.3
-2.8
-1.1
-0.5
-0.9
-2.0
-0.3 | -0.1
0.8
0.2
-0.1
5.7
1.0
-0.9
-2.2
-0.2
-1.0
-3.3
-0.9
-0.7
-0.5
-0.7 | | IMMARY ENERGY BALANCE AND INDICAT | ORS (B) | | | | | | | | | | | EU27: R | eferen | ce sce | na | |--|---|---|---|---|---|---|---|---|---|---|--|----------------------------------|-----------------------------------|-----------------------------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 | '30 | | | | | | | | | | | | | | An | nual % | Change |) | | in Energy System Indicators | | | | | | | | | | | | | | | | | oulation (Million) | 481.081 | 489.325 | 499.201 | 506.264 | 512.354 | 517.061 | 520.263 | 522.430 | 523.573 | 523.481 | 521.899 | 0.4 | 0.3 | 0.2 | | | P (in 000 M€10) | 10670.6 | 11722.3 | 12256.0 | 13159.1 | 14189.9 | 15386.1 | 16600.1 | 17793.2 | 19073.1 | 20435.2 | 21858.7 | 1.4 | 1.5 | 1.6 | | | oss Inl. Cons./GDP (toe/M€10) | 161.6 | 155.6 | 143.5 | 132.1 | 116.7 | 105.6 | 96.6 | 89.7 | 84.0 | 79.3 | 74.2 | -1.2 | -2.0 | -1.9 | | | bon intensity (t of CO ₂ /toe of GIC)
port Dependency % | 2.30
46.7 | 2.26
52.5 | 2.14
52.7 | 2.06
53.7 | 1.96
52.9 | 1.91
54.1 | 1.78
55.0 | 1.65
54.6 | 1.56
54.7 | 1.49
55.4 | 1.45
56.5 | -0.7 | -0.9 | -0.9 | | | al energy-rel. and other mitigation costs ^(B) (in 000 M€10) | | | | | | | | | | | | | | | | | | | 1332.4 | 1560.5 | 1880.9 | 2099.8 | 2219.4 | 2323.6 | 2395.3 | 2488.5 | 2591.6 | 2682.3 | 3.7 | 3.0 | 1.0 | | | s % of GDP | 10.2 | 11.4 | 12.7 | 14.3 | 14.8 | 14.4 | 14.0 | 13.5 | 13.0 | 12.7 | 12.3 | | | | | | ergy intensity indicators
ustry (Energy on Value added, index 2000=100) | 100.0 | 02.2 | 83.7 | 81.1 | 70.0 | 71.4 | 67.0 | 64.2 | 61.2 | 50.0 | 57.0 | 4.0 | 0.0 | 4.0 | | | sidential (Energy on Private Income, index 2000=100) | 100.0
100.0 | 93.2
98.7 | 94.7 | 89.2 | 76.3
79.7 | 71.4 | 67.9
67.7 | 64.3
63.3 | 59.3 | 59.2
55.4 | 57.0
51.2 | -1.8
-0.5 | -0.9
-1.7 | -1.2
-1.6 | | | tiary (Energy on Value added, index 2000=100) | 100.0 | 97.4 | 94.7 | 85.3 | 74.7 | 68.1 | 61.1 | 57.0 | 53.2 | 50.2 | 46.6 | -0.5 | -2.3 | -2.0 | | | ssenger transport (toe/Mpkm) | 40.0 | 39.2 | 37.8 | 35.9 | 32.1 | 29.0 | 26.9 | 25.6 | 24.9 | 24.4 | 24.1 | -0.6 | -1.6 | -1.8 | | | ight transport (toe/Mtkm) | 47.1 | 47.6 | 48.3 | 46.8 | 44.2 | 41.9 | 40.0 | 38.8 | 37.7 | 37.0 | 36.4 | 0.3 | -0.9 | -1.0 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.39 | 0.37 | 0.33 | 0.29 | 0.25 | 0.23 | 0.18 | 0.14 | 0.11 | 0.09 | 0.08 | -1.6 | -2.8 | -3.3 | | | al energy demand (t of CO ₂ /toe) | 2.14 | 2.08 | 1.97 | 1.91 | 1.83 | 1.78 | 1.74 | 1.70 | 1.66 | 1.63 | 1.61 | -0.8 | -0.7 | -0.5 | | | ndustry | 2.09 | 1.94 | 1.79 | 1.77 | 1.66 | 1.61 | 1.58 | 1.50 | 1.42 | 1.39 | 1.38 | -1.5 | -0.7 | -0.5 | | | esidential | 1.61 | 1.58 | 1.47 | 1.38 | 1.31 | 1.27 | 1.21 | 1.18 | 1.13 | 1.10 | 1.07 | -0.9 | -1.1 | -0.8 | | | ertiary | 1.54 | 1.48 | 1.33 | 1.21 | 1.13 | 1.06 | 0.95 | 0.90 | 0.85 | 0.81 | 0.80 | -1.5 | -1.6 | -1.7 | | | ransport (C) | 2.92 | 2.94 | 2.86 | 2.82 | 2.74 | 2.72 | 2.70 | 2.69 | 2.68 | 2.67 | 2.66 | -0.2 | -0.4 | -0.1 | | | icators for renewables | | | | | | | | | | | | | | | _ | | are of RES in Gross Final Energy Consumption (D) (%) | 7.5 | 8.4 | 12.4 | 16.1 | 20.9 | 22.7 | 24.4 | 25.9 | 27.1 | 28.0 | 28.7 | | | | | | S in transport (%) | 0.6 | 1.3 | 4.7 | 6.5 | 10.3 | 11.2 | 12.0 | 12.5 | 12.7 | 13.3 | 13.9 | | | | | | oss Electricity generation by source (in GWh _e) (E) | 2996677 | 3274931 | 3314111 | 3402657 | 3413997 | 3516471 | 3649690 | 3790687 | 3974224 | 4182474 | 4318132 | 1.0 | 0.3 | 0.7 | | | uclear energy | 945027 | 997733 | 916685 | 887261 | 749295 | 705996 | 799389 | 868122 | 896436 | 922451 | 923898 | -0.3 | -2.0 | 0.6 | | | olids | 932109 | 972611 | 827663 | 803081 | 705123 | 637045 | 475234 | 342551 | 313245 | 349227 | 362360 | -1.2 | -1.6 | -3.9 | | | il (including refinery gas) | 179609 | 139503 | 86291 | 45708 | 26060 | 24477 | 20476 | 20793 | 21249 | 22141 | 21840 | -7.1 | -11.3 | -2.4 | | | as (including derived gases) | 512821 | 697929 | 793100 | 748722 | 704250 | 719829 | 734499 | 761045 | 786904 | 792473 | 786463 | 4.5 | -1.2 | 0.4 | | | iomass-waste | 46848 | 83773 | 145868 | 188714 | 220932 | 230724 | 242597 | 270927 | 313747 | 327621 | 342281 | 12.0 | 4.2 | 0.9 | | | ydro (pumping excluded) | 352534 | 305550 | 366247 | 361611 | 367238 | 376000 | 388519 | 400310 | 406715 | 410219 | 416470 | 0.4 | 0.0 | 0.6 | | | rind | 22253 | 70443 | 149063 | 262722 | 486230 | 630696 | 766793 | 853875 | 905093 | 989403 | 1073065 | 20.9 | 12.6 | 4.7 | | | olar | 118 | 1459 | 22363 | 96127 | 142752 | 176745 | 206106 | 250918 | 303363 | 327771 | 346440 | 68.9 | 20.4 | 3.7 | | | eothermal and other renewables | 5358 | 5930 | 6831 | 8712 | 12116 | 14959 | 16077 | 22146 | 27472 | 41168 | 45316 | 2.5 | 5.9 | 2.9 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 646747 | 708073 | 834264 | 925354 | 1012725 | 1061915 | 1132393 | 1194810 | 1267489 | 1321250 | 1374366 | 2.6 | 2.0 | 1.1 | | | luclear energy | 136924 | 134494 | 131323 | 123150 | 111162 | 96912 | 107006 | 115171 | 118838 | 122076 | 121993 | -0.4 | -1.7 | -0.4 | | | enewable energy | 112494 | 145938 | 224768 | 316443 | 434378 | 514107 | 579666 | 636263 | 690015 | 737329 | 781473 | 7.2 | 6.8 | 2.9 | | | Hydro (pumping excluded) | 99421 | 103693 | 110259 | 116259 | 118555 | 120380 | 122700 | 126636 | 128250 | 129913 | 132107 | 1.0 | 0.7 | 0.3 | | | Wind | 12893 | 40504 | 84423 | 123304 | 204086 | 257384 | 304682 | 335027 | 354707 | 384193 | 412315 | 20.7 | 9.2 | 4.1 | | | Solar | 180 | 1740 | 29845 | 76293 | 110082 | 133542 | 149251 | 171407 | 203516 | 216954 | 230185 | 66.7 | 13.9 | 3.1 | | | Other renewables (tidal etc.) | 0 | 0 | 240 | 586 | 1655 | 2800 | 3033 | 3193 | 3542 | 6268 | 6865 | 0.0 | 21.3 | 6.2 | | | hermal power | 397328 | 427641 | 478173 | 485761 | 467185 | 450896 | 445720 | 443377 | 458636 | 461845 | 470900 | 1.9 | -0.2 | -0.5 | | | of which cogeneration units | 91881 | 98483 | 100717 | 102587 | 113107 | 113752 | 115255 | 120028 | 126663 | 134995 | 136995 | 0.9 | 1.2 | 0.2 | | | of which CCS units | 0 | 0 | 0 | 0 | 904 | 904 | 1610 | 7630 | 18271 | 34464 | 38410 | 0.0 | 0.0 | 5.9 | | | Solids fired | 186157 | 180309 | 175431 | 162895 | 141596 | 121297 | 103771 | 90492 | 87932 | 86647 | 81529 | -0.6 | -2.1 | -3.1 | | | Gas fired | 128409 | 168068 | 223825 | 251589 | 256995 | 264095 | 278350 | 288333 | 293082 | 294453 | 298817 | 5.7 | 1.4 | 0.8 | | | Oil fired | 67112 | 59040 | 53643 | 41899 | 33104 | 27415 | 23424 | 20018 | 21281 | 20185 | 22040 | -2.2 | -4.7 | -3.4 | | | Biomass-waste fired
Hydrogen plants | 15084
0 | 19571
0 | 24548
0 | 28584 | 34587
0 | 37179
0 | 39200
0 | 42907
0 | 54197
0 | 57616
0 | 65261
0 | 5.0 | 3.5
0.0 | 1.3 | | | , , , | 567 | 652 | 726 | 794 | 903 | 910 | 975 | 1627 | 2145 | 2943 | 3253 | 0.0
2.5 | 2.2 | 0.0 | | | Geothermal heat | | | | | | | | | | | | 2.5 | 2.2 | 0.6 | | | J. Load factor of net power capacity (F) (%) | 50.0 | 50.1 | 43.2 | 40.0 | 36.9 | 36.3 | 35.5 | 34.9 | 34.5 | 34.7 | 34.4 | | | | _ | | ctricity indicators | 27.0 | 20.4 | 20.4 | 40.6 | 40.7 | 44.0 | 40.7 | 40.0 | 40.5 | 40.0 | 44.5 | | | | | | ciency of gross thermal power generation (%) | 37.6 | 38.4 | 38.4 | 40.4 | 40.7 | 41.3 | 42.7 | 43.0 | 43.5 | 43.8 | 44.5 | | | | | | of gross electricity from CHP of electricity from CCS | 11.4 | 11.7 | 12.6 | 14.3 | 15.8 | 16.4 | 16.1 | 16.4 | 16.6 | 16.7 | 16.1 | | | | | | bon free gross electricity generation (%) | 0.0
45.8 | 0.0
44.7 | 0.0
48.5 | 0.0
53.1 | 0.2
58.0 | 0.2
60.7 | 0.5
66.3 | 1.7
70.3 | 3.4
71.8 | 5.0
72.2 | 6.9
72.9 | | | | | | uclear | 31.5 | 30.5 | 27.7 | 26.1 | 21.9 | 20.1 | 21.9 | 22.9 | 22.6 | 22.1 | 21.4 | | | | | | enewable energy
forms | 14.3 | 14.3 | 20.8 | 27.0 | 36.0 | 40.6 | 44.4 | 47.4 | 49.2 | 50.1 | 51.5 | | | | | | nsport sector | 14.5 | 14.3 | 20.0 | 21.0 | 30.0 | 40.0 | 74.4 | 47.4 | 43.2 | 30.1 | 31.3 | | | | | | | E000 C | 6040.6 | 6404 - | 6747.0 | 7000 0 | 7440.0 | 7040.0 | 0007.5 | 0570.0 | 0000 | 0004.0 | | | | | | ssenger transport activity (Gpkm) | 5866.2 | 6218.8 | 6431.5 | 6717.6 | 7003.9 | 7446.6
571.3 | 7913.9 | 8237.5 | 8576.0
639.7 | 8830.8
654.5 | 9091.6 | 0.9 | 0.9 | 1.2 | | | ublic road transport rivate cars and motorcycles | 516.2
4405.3 | 523.8
4670.3 | 509.5
4867.4 | 527.8
5024.8 | 547.0
5165.3 | 571.3
5423.4 | 597.9
5679.6 | 618.6
5849.7 | 639.7
6020.9 | 654.5
6146.3 | 669.7
6272.6 | -0.1
1.0 | 0.7
0.6 | 0.9 | | | ail | 4405.3 | 457.9 | 494.1 | 534.2 | 578.4 | 640.1 | 710.9 | 760.2 | 813.0 | 849.6 | 886.8 | 1.0 | 1.6 | 1.0
2.1 | | | un en | 456.9 | 527.3 | 522.5 | 591.3 | 672.3 | 769.1 | 880.8 | 962.9 | 1054.7 | 1131.4 | 1212.4 | 1.4 | 2.6 | 2.7 | | | viation | 430.9 | 39.5 | 38.1 | 39.4 | 40.9 | 42.7 | 44.7 | 46.1 | 47.6 | 48.9 | 50.1 | -0.9 | 0.7 | 0.9 | | | | | | 2481.9 | 2701.7 | 2924.8 | 3159.5 | 3413.8 | 3551.4 | 3694.9 | 3790.9 | 3888.2 | 1.1 | 1.7 | 1.6 | | | aland navigation | | 2533.0 | 4701.9 | 2/01./ | | 2221.1 | 2386.7 | 2481.9 | 2580.7 | 2646.5 | 2714.4 | 1.1 | 1.6 | 1.5 | | | land navigation ight transport activity (Gtkm) | 2222.9 | 2533.0
1794.0 | | 1013 F | 2065.0 | | 2000.7 | 2401.9 | 2000.7 | 2040.5 | 2114.4 | | 1.0 | | | | ıland navigation
ight transport activity (Gtkm)
rucks | 2222.9 1519.1 | 1794.0 | 1755.6 | 1913.5
432.7 | 2065.9
482.8 | | 508 7 | 628 F | 660.0 | 680.4 | 700.1 | -U 3 | 22 | ., ., | | | ıland navigation
ight transport activity (Gtkm)
rucks
ail | 2222.9
1519.1
403.7 | 1794.0
413.2 | 1755.6
389.9 | 432.7 | 482.8 | 537.2 | 598.7
428.3 | 628.5
441.0 | 660.0
454.2 | 680.4
463.9 | 700.1
473.8 | -0.3
1.2 | 2.2 | 2.2 | | | ıland navigation
ight transport activity (Gtkm)
rucks
ail
ıland navigation | 2222.9
1519.1
403.7
300.1 | 1794.0
413.2
325.8 | 1755.6
389.9
336.4 | 432.7
355.6 | 482.8
376.1 | 537.2
401.2 | 428.3 | 441.0 | 454.2 | 463.9 | 473.8 | 1.2 | 1.1 | 1.3 | | | land navigation
ight transport activity (Gtkm)
rucks
ail
land navigation
ergy demand in transport (ktoe) ^(G) | 2222.9
1519.1
403.7
300.1
339288 | 1794.0
413.2
325.8
364165 | 1755.6
389.9
336.4
362888 | 432.7
355.6
367610 | 482.8
376.1
354311 | 537.2
401.2
348358 | 428.3
349092 | 441.0
348902 | 454.2
352761 | 463.9
355707 | 473.8
360644 | 1.2
0.7 | 1.1
-0.2 | 1.3
-0.1 | | | Iland navigation ight transport activity (Gtkm) rucks ail land navigation ergy demand in transport (ktoe) (a) | 2222.9
1519.1
403.7
300.1
339288
7526 | 1794.0
413.2
325.8
364165
7609 | 1755.6
389.9
336.4
362888
7468 | 432.7
355.6
367610
7660 | 482.8
376.1
354311
7742 | 537.2
401.2
348358
7791 | 428.3
349092
7867 | 441.0
348902
7949 | 454.2
352761
8074 | 463.9
355707
8125 | 473.8
360644
8210 | 1.2
0.7
-0.1 | 1.1
-0.2
0.4 | 1.3
-0.1
0.2 | | | viation land navigation ight transport activity (Gtkm) rucks all laland navigation ergy demand in transport (ktoe) (G) tublic road transport rivate cars and motorcycles | 2222.9
1519.1
403.7
300.1
339288
7526
176833 | 1794.0
413.2
325.8
364165
7609
180606 | 1755.6
389.9
336.4
362888
7468
181000 | 432.7
355.6
367610
7660
174730 | 482.8
376.1
354311
7742
155832 | 537.2
401.2
348358
7791
144537 | 428.3
349092
7867
140525 | 441.0
348902
7949
139292 | 454.2
352761
8074
139768 | 463.9
355707
8125
140323 | 473.8
360644
8210
141691 | 1.2
0.7
-0.1
0.2 | 1.1
-0.2
0.4
-1.5 | 1.3
-0.1
0.2
-1.0 | | | nland navigation ight transport activity (Gtkm) rucks all nland navigation ergy demand in transport (ktoe) (G) ublic road transport rivate cars and motorcycles rucks | 2222.9
1519.1
403.7
300.1
339288
7526
176833
95514 | 1794.0
413.2
325.8
364165
7609
180606
111182 | 1755.6
389.9
336.4
362888
7468
181000
111506 | 432.7
355.6
367610
7660
174730
117343 | 482.8
376.1
354311
7742
155832
119585 | 537.2
401.2
348358
7791
144537
121853 | 428.3
349092
7867
140525
125482 | 441.0
348902
7949
139292
126617 | 454.2
352761
8074
139768
128090 | 463.9
355707
8125
140323
128985 | 473.8
360644
8210
141691
130764 | 1.2
0.7
-0.1
0.2
1.6 | 1.1
-0.2
0.4
-1.5
0.7 | 1.3
-0.1
0.2
-1.0
0.5 | | | nland navigation ight transport activity (Gtkm) rucks iail land navigation ergy demand in transport (ktoe) (a) ublic road transport | 2222.9
1519.1
403.7
300.1
339288
7526
176833 | 1794.0
413.2
325.8
364165
7609
180606 | 1755.6
389.9
336.4
362888
7468
181000 | 432.7
355.6
367610
7660
174730 | 482.8
376.1
354311
7742
155832 | 537.2
401.2
348358
7791
144537 | 428.3
349092
7867
140525 | 441.0
348902
7949
139292 | 454.2
352761
8074
139768 | 463.9
355707
8125
140323 | 473.8
360644
8210
141691 | 1.2
0.7
-0.1
0.2 | 1.1
-0.2
0.4
-1.5 | 1.3
-0.1
0.2
-1.0 | | | Austria: Reference scenario | | | | | | | | SUM | IMARY E | NERGY | BALAN | CE AND | INDIC | ATOR | S (A) | |---|--------------------|------------------|---------------|-------------------|-------------------|-------------------|-------------------|---------------|-------------------|---------------|---------------|---------------------|----------------------|-------------------|--------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | '30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 9799
293 | 9992
0 | 11837
0 | 12068
0 | 11850
0 | 11667
0 | 11793
0 | 11421 | 11173
0 | 11178 | 11248 | 1.9
-51.5 | 0.0
-100.0 | 0.0
0.0 | -0.2
0.0 | | Oil | 1114 | 1007 | 1107 | 965 | 694 | 302 | 251 | 167 | 11 | 0 | 0 | -0.1 | -4.6 | | -100.0 | | Natural gas | 1533 | 1404 | 1486 | 1414 | 969 | 918 | 738 | 575 | 307 | 14 | 0 | -0.3 | -4.2 | -2.7 | -100.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 6859 | 7580 | 9244 | 9689 | 10186 | 10447 | 10804 | 10679 | 10856 | 11163 | 11248 | 3.0 | 1.0 | 0.6 | 0.2 | | Hydro
Biomass & Waste | 3597
3169 | 3154
4189 | 3302
5559 | 3552
5506 | 3705
5471 | 3789
5344 | 3910
5193 | 3968
4911 | 4006
4880 | 4026
5024 | 4100
5018 | -0.9
5.8 | 1.2
-0.2 | 0.5
-0.5 | 0.2
-0.2 | | Wind | 6 | 114 | 177 | 288 | 617 | 870 | 1149 | 1149 | 1298 | 1319 | 1328 | 40.9 | 13.3 | 6.4 | 0.7 | | Solar and others | 63 | 93 | 171 | 324 | 367 | 420 | 518 | 627 | 643 | 771 | 774 | 10.6 | 7.9 | 3.5 | 2.0 | | Geothermal | 25 | 30 | 35 | 20 | 26 | 25 | 34 | 25 | 29 | 23 | 28 | 3.4 | -2.8 | 2.7 | -1.0 | | Net Imports | 19132 | 24570 | 21400 | 23534 | 22337 | 21799 | 20997 | 20785 | 21071 | 21271 | 21537 | 1.1 | 0.4 | -0.6 | 0.1 | | Solids | 3019 | 3969 | 2981 | 3701 | 3048 | 2533 | 2292 | 1929 | 1581 | 1522 | 1440 | -0.1 | 0.2 | -2.8 | -2.3 | | Oil - Crude oil and Feedstocks | 11012
7962 | 13257
8170 | 11638
7061 | 12035
7284 | 11951
7396 | 11411
7207 | 11112
7058 | 10953
7006 | 11007
7095 | 11005
7099 | 10969
7076 | 0.6
-1.2 | 0.3 | -0.7
-0.5 | -0.1
0.0 | | - Oil products | 3050 | 5088 | 4577 | 4750 | 4555 | 4205 | 4054 | 3947 | 3912 | 3906 | 3893 | 4.1 | 0.0 | -1.2 | -0.2 | | Natural gas | 5253 | 7153 | 6114 | 7075 | 6332 | 6647 | 6261 | 6568 | 7099 | 7275 | 7578 | 1.5 | 0.4 | -0.1 | 1.0 | | Electricity | -118 | 229 | 200 | 13 | 104 | 84 | 86 | 91 | 98 | 74 | 58 | 0.0 | -6.3 | -1.9 | -1.9 | | Gross Inland Consumption | 29179 | 34398 | 34618 | 35602 | 34187 | 33466 | 32790 | 32207 | 32244 | 32449 | 32785 | 1.7 | -0.1 | -0.4 | 0.0 | | Solids | 3597 | 3999 | 3397 | 3701 | 3048 | 2533 | 2292 | 1929 | 1581 | 1522 | 1440 | -0.6 | -1.1 | -2.8 | -2.3 | | Oil | 12356 | 14480 | 13091 | 12999 | 12646 | 11714 | 11363 | 11120 | 11017 | 11005 | 10969 | 0.6 | -0.3 | -1.1 | -0.2 | | Natural gas
Nuclear | 6519
0 | 8159
0 | 8214
0 | 8489
0 | 7301
0 | 7565
0 | 6999
0 | 7142
0 | 7405
0 | 7289
0 | 7578
0 | 2.3
0.0 | -1.2
0.0 | -0.4
0.0 | 0.4 | | Electricity | -118 | 229 | 200 | 13 | 104 | 84 | 86 | 91 | 98 | 74 | 58 | 0.0 | -6.3 | -1.9 | -1.9 | | Renewable energy forms | 6825 | 7531 | 9715 | 10399 | 11089 | 11571 | 12052 | 11924 | 12143 | 12559 | 12740 | 3.6 | 1.3 | 0.8 | 0.3 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 12.3 | 11.6 | 9.8 | 10.4 | 8.9 | 7.6 | 7.0 | 6.0 | 4.9 | 4.7 | 4.4 | | | | | | Oil | 42.3 | 42.1 | 37.8 | 36.5 | 37.0 | 35.0 | 34.7 | 34.5 | 34.2 | 33.9 | 33.5 | | | | | | Natural gas | 22.3 | 23.7 | 23.7 | 23.8 | 21.4 | 22.6 | 21.3 | 22.2 | 23.0 | 22.5 | 23.1 | | | | | | Nuclear Renewable energy forms |
0.0
23.4 | 0.0
21.9 | 0.0
28.1 | 0.0
29.2 | 0.0
32.4 | 0.0
34.6 | 0.0
36.8 | 0.0
37.0 | 0.0
37.7 | 0.0
38.7 | 0.0
38.9 | | | | | | Gross Electricity Generation in GWh _e | 59863 | 64054 | 67925 | 71196 | 70632 | 73628 | 76369 | 78451 | 81667 | 84906 | 88377 | 1.3 | 0.4 | 0.8 | 0.7 | | Self consumption and grid losses | 5961 | 7321 | 7594 | 8147 | 7748 | 7977 | 8255 | 8460 | 8851 | 9239 | 9615 | 2.5 | 0.4 | 0.6 | 0.8 | | Fuel Inputs to Thermal Power Generation | 3877 | 5425 | 5647 | 6005 | 4739 | 4509 | 4104 | 4037 | 4128 | 4380 | 4544 | 3.8 | -1.7 | -1.4 | 0.5 | | Solids | 1216 | 1512 | 1019 | 1142 | 346 | 94 | 82 | 164 | 0 | 0 | 0 | -1.8 | -10.2 | -13.4 | -100.0 | | Oil (including refinery gas) | 278 | 262 | 177 | 92 | 311 | 71 | 59 | 58 | 68 | 72 | 82 | -4.4 | 5.8 | -15.3 | 1.6 | | Gas (including derived gases) | 1961 | 2836 | 2871 | 3125 | 2448 | 2703 | 2333 | 2426 | 2492 | 2515 | 2565 | 3.9 | -1.6 | -0.5 | 0.5 | | Biomass & Waste Geothermal heat | 421
0 | 814
2 | 1580
1 | 1639
7 | 1627
7 | 1634
7 | 1623
7 | 1381
8 | 1560
8 | 1785
8 | 1890
8 | 14.1
0.0 | 0.3
19.1 | 0.0 | 0.8 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 11542 | 12016 | 11623 | 11822 | 11567 | 10799 | 10256 | 9611 | 9386 | 9315 | 9284 | 0.1 | 0.0 | -1.2 | -0.5 | | Refineries | 9060 | 9349 | 8155 | 8251 | 8103 | 7534 | 7336 | 7205 | 7143 | 7137 | 7114 | -1.0 | -0.1 | -1.0 | -0.2 | | Biofuels and hydrogen production | 16 | 45 | 472 | 556 | 586 | 587 | 595 | 607 | 630 | 668 | 716 | 40.5 | 2.2 | 0.2 | 0.9 | | District heating | 557 | 613 | 931 | 862 | 757 | 760 | 738 | 656 | 630 | 588 | 600 | 5.3 | -2.1 | -0.3 | -1.0 | | Derived gases, cokeries etc. | 1910 | 2009 | 2065 | 2153 | 2122 | 1918 | 1587 | 1143 | 983 | 924 | 853 | 0.8 | 0.3 | -2.9 | -3.1 | | Energy Branch Consumption | 1348 | 1615 | 1763 | 1832 | 1705 | 1570 | 1465 | 1342 | 1278 | 1253 | 1261 | 2.7 | -0.3 | -1.5 | -0.7 | | Non-Energy Uses | 1718 | 1716 | 1865 | 1968 | 2148 | 2098 | 2047 | 2022 | 2028 | 2061 | 2156 | 0.8 | 1.4 | -0.5 | 0.3 | | Final Energy Demand by sector | 23670 | 28141 | 27933 | 28470 | 27749 | 27316 | 26969 | 26727 | 26810 | 26968 | 27221 | 1.7 | -0.1 | -0.3 | 0.0 | | Industry | 7236 | 8762 | 8843 | 9147 | 9056 | 8833 | 8780 | 8622 | 8585 | 8632 | 8762 | 2.0 | 0.2 | -0.3 | 0.0 | | - energy intensive industries | 5276 | 6088 | 6004 | 6192 | 6132 | 5929 | 5882 | 5718 | 5612 | 5543 | 5507 | 1.3 | 0.2 | -0.4 | -0.3 | | - other industrial sectors | 1960 | 2674 | 2839 | 2955 | 2925 | 2904 | 2898 | 2904 | 2974 | 3089 | 3255 | 3.8 | 0.3 | -0.1 | 0.6 | | Residential | 6322 | 6817 | 6896 | 6911 | 6509 | 6534 | 6442 | 6371 | 6338 | 6332 | 6299 | 0.9 | -0.6 | -0.1 | -0.1 | | Tertiary | 3066
7046 | 3445
9118 | 3396
8797 | 3142
9270 | 2959
9223 | 3100
8849 | 3043
8704 | 3059
8675 | 3138
8748 | 3199
8806 | 3253
8907 | 1.0
2.2 | -1.4
0.5 | 0.3
-0.6 | 0.3 | | Transport by fuel | 7046 | 9110 | 6/9/ | 9270 | 9223 | 0049 | 8704 | 8675 | 0/40 | 0000 | 8907 | 2.2 | 0.5 | -0.6 | 0.1 | | Solids | 1367 | 1416 | 1133 | 1256 | 1385 | 1246 | 1281 | 1169 | 1087 | 1049 | 995 | -1.9 | 2.0 | -0.8 | -1.3 | | Oil | 9832 | 12095 | 10647 | 10783 | 10123 | 9537 | 9255 | 9062 | 9023 | 8987 | 8954 | 0.8 | -0.5 | -0.9 | -0.2 | | Gas | 4464 | 5125 | 4989 | 5022 | 4634 | 4605 | 4300 | 4125 | 4229 | 4075 | 4179 | 1.1 | -0.7 | -0.7 | -0.1 | | Electricity | 4432 | 5013 | 5274 | 5320 | 5402 | 5628 | 5848 | 6023 | 6274 | 6494 | 6742 | 1.8 | 0.2 | 8.0 | 0.7 | | Heat (from CHP and District Heating) | 1020 | 1353 | 1744 | 1792 | 1725 | 1698 | 1701 | 1706 | 1699 | 1742 | 1730 | 5.5 | -0.1 | -0.1 | 0.1 | | Renewable energy forms Other fuels (hydrogen, ethanol) | 2555
0 | 3140
0 | 4145
0 | 4296
1 | 4475
4 | 4595
7 | 4575
9 | 4631
10 | 4484
13 | 4604
17 | 4599
21 | 5.0
-100.0 | 0.8 | 0.2
8.0 | 0.0
4.3 | | RES in Gross Final Energy Consumption (A) | 6126 | 7090 | 8554 | 9041 | 9895 | 10233 | 10918 | 11061 | 11228 | 11607 | 11775 | 3.4 | 1.5 | 1.0 | 0.4 | | TOTAL GHG emissions (Mt of CO2 eq.) | 84.8 | 97.0 | 89.7 | 92.2 | 85.0 | 80.3 | 74.9 | 70.6 | 68.7 | 68.0 | 67.9 | 0.6 | -0.5 | -1.3 | -0.5 | | of which ETS sectors (2013 scope) GHG emissions | 04.0 | 38.1 | 34.9 | 37.7 | 33.0 | 30.5 | 27.1 | 24.6 | 23.2 | 22.9 | 22.8 | 0.0 | -0.5 | -1.9 | -0.9 | | of which non ETS sectors GHG emissions | | 58.9 | 54.9 | 54.5 | 52.0 | 49.9 | 47.8 | 46.1 | 45.5 | 45.1 | 45.2 | | -0.5 | -0.8 | -0.3 | | CO ₂ Emissions (energy related) | 65.6 | 78.6 | 71.9 | 73.9 | 66.8 | 62.2 | 57.4 | 53.9 | 52.3 | 51.6 | 51.6 | 0.9 | -0.7 | -1.5 | -0.5 | | Power generation/District heating | 12.5 | 17.0 | 15.5 | 15.5 | 11.7 | 10.3 | 8.1 | 7.1 | 6.3 | 6.4 | 6.6 | 2.1 | -2.8 | -3.6 | -1.1 | | Energy Branch | 3.4 | 3.9 | 4.3 | 4.5 | 4.3 | 3.9 | 3.4 | 2.8 | 2.5 | 2.4 | 2.3 | 2.2 | 0.0 | -2.4 | -1.8 | | Industry | 16.6 | 18.3 | 16.9 | 19.0 | 17.6 | 16.3 | 15.4 | 14.1 | 13.8 | 13.4 | 13.3 | 0.2 | 0.4 | -1.3 | -0.7 | | Residential
Tertiary | 8.9
3.9 | 8.6
4.4 | 7.6
3.2 | 6.9
2.5 | 5.9
2.1 | 5.7
2.1 | 5.4
1.7 | 5.1
1.6 | 4.9
1.6 | 4.7
1.5 | 4.4
1.5 | -1.5
-1.9 | -2.6
-4.1 | -0.9
-1.8 | -0.9
-0.7 | | Transport | 20.2 | 26.6 | 24.3 | 25.5 | 25.2 | 24.0 | 23.4 | 23.2 | 23.3 | 23.3 | 23.4 | 1.9 | 0.4 | -0.7 | 0.0 | | | | | | | | | | | | | | | | | -0.8 | | CO ₂ Emissions (non energy related) | 4.7 | 5.0 | 5.5 | 5.7 | 6.0 | 6.0 | 5.6 | 5.1 | 4.9 | 4.9 | 4.8 | 1.6 | 0.9 | -0.7 | | | CO ₂ Emissions (non energy related)
Non-CO ₂ GHG emissions | 4.7
14.5 | 5.0
13.4 | 5.5
12.4 | 5.7
12.6 | 6.0
12.2 | 6.0
12.2 | 5.6
11.9 | 5.1
11.6 | 4.9
11.5 | 4.9
11.5 | 4.8
11.6 | 1.6
-1.5 | -0.2 | -0.7 | -0.1 | | | | | | | | | | | | | | | | | | | JMMARY ENERGY BALANCE AND INDICATO | RS (B) | | | | | | | | | | Au | stria: R | eferen | ce sce | ina | |---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 | '30 | | | | | | | | | | | | | | Ar | nual % | Change | ð | | nin Energy System Indicators | | | | | | | | | | | | | | | | | pulation (Million) | 8.002 | 8.201 | 8.375 | 8.470 | 8.591 | 8.730 | 8.850 | 8.934 | 8.978 | 8.987 | 8.969 | 0.5 | 0.3 | 0.3 | | | P (in 000 M€10)
oss Inl. Cons./GDP (toe/M€10) | 245.5
118.9 | 266.8
128.9 | 286.2
121.0 | 312.5
113.9 | 337.7
101.2 | 361.3
92.6 | 385.4
85.1 | 412.5
78.1 | 442.5
72.9 | 474.2
68.4 | 507.4
64.6 | 1.5
0.2 | 1.7
-1.8 | 1.3
-1.7 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.25 | 2.29 | 2.08 | 2.08 | 1.95 | 1.86 | 1.75 | 1.67 | 1.62 | 1.59 | 1.57 | -0.8 | -0.6 | -1.1 | | | port Dependency % | 65.6 | 71.4 | 61.8 | 66.1 | 65.3 | 65.1 | 64.0 | 64.5 | 65.3 | 65.6 | 65.7 | 0.0 | 0.0 | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 22.2 | 29.6 | 35.0 | 41.3 | 47.2 | 49.4 | 51.7 | 53.3 | 55.6 | 57.7 | 59.6 | 4.7 | 3.0 | 0.9 | | | as % of GDP | 9.0 | 11.1 | 12.2 | 13.2 | 14.0 | 13.7 | 13.4 | 12.9 | 12.6 | 12.2 | 11.7 | 4.7 | 3.0 | 0.9 | | | ergy intensity indicators | J.U | | 12.2 | 10.2 | 14.0 | | 10.4 | 12.5 | 12.0 | 12.2 | | | | | | | ustry (Energy on Value added, index 2000=100) | 100.0 | 111.3 | 108.2 | 101.0 | 91.8 | 84.3 | 80.0 | 76.2 | 73.2 | 70.6 | 68.3 | 0.8 | -1.6 | -1.4 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 99.6 | 95.4 | 87.8 | 76.5 | 71.6 | 65.9 | 60.5 | 55.6 | 51.2 | 47.0 | -0.5 | -2.2 | -1.5 | | | tiary (Energy on Value added, index 2000=100) | 100.0 | 102.7 | 92.4 | 78.2 | 68.1 | 66.3 | 60.5 | 56.2 | 53.3 | 50.2 | 47.4 | -0.8 | -3.0 | -1.2 | | | ssenger transport (toe/Mpkm) | 44.5 | 47.6 | 47.7 | 44.9 | 38.3 | 33.6 | 31.5 | 30.7 | 30.2 | 29.8 | 29.4 | 0.7 | -2.2 | -1.9 | | | ight transport (toe/Mtkm) | 46.9 | 68.2 | 67.6 | 65.8 | 62.6 | 59.1 | 55.0 | 51.9 | 49.6 | 48.1 | 47.0 | 3.7 | -0.8 | -1.3 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.17 | 0.21 | 0.17 | 0.16 | 0.13 | 0.11 | 0.08 | 0.07 | 0.06 | 0.06 | 0.06 | 0.0 | -3.1 | -4.1 | | | al energy demand (t of CO ₂ /toe) | 2.10 | 2.05 | 1.86 | 1.90 | 1.83 | 1.76 | 1.70 | 1.65 | 1.62 | 1.59 | 1.57 | -1.2 | -0.2 | -0.7 | | | dustry | 2.30 | 2.08 | 1.92 | 2.08 | 1.95 | 1.85 | 1.75 | 1.63 | 1.60 | 1.55 | 1.52 | -1.8 | 0.2 | -1.0 | | | esidential | 1.41 | 1.26 | 1.11 | 1.01 | 0.90 | 0.87 | 0.83 | 0.80 | 0.77 | 0.74 | 0.71 | -2.4 | -2.0 | -0.8 | | | ertiary | 1.26 | 1.26 | 0.94 | 0.81 | 0.71 | 0.67 | 0.57 | 0.54 | 0.51 | 0.48 | 0.47 | -2.9 | -2.7 | -2.1 | | | ransport (C) | 2.87 | 2.91 | 2.76 | 2.75 | 2.73 | 2.71 | 2.69 | 2.67 | 2.66 | 2.64 | 2.62 | -0.4 | -0.1 | -0.2 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 25.1 | 24.4 | 29.6 | 30.7 | 34.5 | 36.1 | 39.0 | 39.8 | 40.2 | 41.3 | 41.4 | | | | | | S in transport (%) | 3.0 | 3.0 | 5.4 | 8.0 | 10.7 | 11.9 | 13.2 | 14.0 | 14.9 | 15.8 | 16.5 | | | | | | ss Electricity generation by source (in GWh _e) ^(E) | 59874 | 64066 | 67937 | 71196 | 70632 | 73628 | 76369 | 78451 | 81667 | 84906 | 88377 | 1.3 | 0.4 | 0.8 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 5727 | 7165 | 4918 | 6392 | 1821 | 467 | 408 | 300 | 0 | 0 | 0 | -1.5 | -9.5 | -13.9 | - | | il (including refinery gas) | 1702 | 1641 | 1275 | 390 | 416 | 383 | 329 | 314 | 392 | 401 | 473 | -2.8 | -10.6 | -2.3 | | | as (including derived gases) |
8864 | 14347 | 16132 | 12019 | 10092 | 10363 | 7712 | 9359 | 9253 | 9696 | 11460 | 6.2 | -4.6 | -2.7 | | | iomass-waste | 1675 | 2882 | 5052 | 7277 | 7138 | 7183 | 7122 | 6114 | 7268 | 8488 | 9193 | 11.7 | 3.5 | 0.0 | | | ydro (pumping excluded) | 41836 | 36677 | 38406 | 41300 | 43084 | 44055 | 45467 | 46136 | 46586 | 46810 | 47669 | -0.9 | 1.2 | 0.5 | | | /ind | 67 | 1331 | 2064 | 3346 | 7171 | 10114 | 13359 | 13359 | 15088 | 15343 | 15443 | 40.9 | 13.3 | 6.4 | | | olar | 3 | 21 | 89 | 459 | 899 | 1053 | 1961 | 2858 | 3068 | 4156 | 4126 | 39.3 | 26.1 | 8.1 | | | eothermal and other renewables | 0 | 2 | 1 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 0.0 | 25.0 | 0.0 | | | other fuels (hydrogen, methanol) | 0
45720 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 15729
0 | 16866
0 | 19497
0 | 20951
0 | 23378
0 | 24148
0 | 26360
0 | 27311
0 | 28379
0 | 28854
0 | 27824
0 | 2.2
0.0 | 1.8
0.0 | 1.2
0.0 | | | luclear energy
Lenewable energy | 9585 | 10399 | 11867 | 12950 | 15106 | 16721 | 19177 | 19861 | 20931 | 21939 | 22304 | 2.2 | 2.4 | 2.4 | | | Hydro (pumping excluded) | 9503 | 9558 | 10773 | 11021 | 11205 | 11340 | 11661 | 11797 | 11925 | 11943 | 12275 | 1.3 | 0.4 | 0.4 | | | Wind | 77 | 819 | 1014 | 1529 | 3114 | 4507 | 6051 | 6051 | 6873 | 6994 | 7042 | 29.4 | 11.9 | 6.9 | | | Solar | 5 | 22 | 80 | 400 | 787 | 874 | 1466 | 2014 | 2133 | 3002 | 2987 | 32.0 | 25.7 | 6.4 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 6144 | 6467 | 7630 | 8001 | 8272 | 7426 | 7182 | 7450 | 7447 | 6914 | 5520 | 2.2 | 0.8 | -1.4 | | | of which cogeneration units | 2632 | 3383 | 4597 | 2709 | 2953 | 3021 | 2804 | 3283 | 3283 | 3469 | 3685 | 5.7 | -4.3 | -0.5 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1713 | 1589 | 1380 | 1360 | 1352 | 313 | 305 | 305 | 68 | 68 | 68 | -2.1 | -0.2 | -13.8 | | | Gas fired | 3221 | 3570 | 5048 | 5232 | 5390 | 5786 | 5624 | 5929 | 6041 | 5459 | 3854 | 4.6 | 0.7 | 0.4 | | | Oil fired | 708 | 723 | 439 | 413 | 411 | 207 | 123 | 132 | 122 | 117 | 137 | -4.7 | -0.7 | -11.4 | | | Biomass-waste fired | 501 | 584 | 761 | 995 | 1118 | 1118 | 1130 | 1082 | 1216 | 1270 | 1459 | 4.3 | 3.9 | 0.1 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (*) (%) | 41.9 | 41.5 | 38.2 | 36.9 | 33.0 | 33.4 | 31.8 | 31.6 | 31.6 | 32.4 | 34.9 | | | | _ | | ctricity indicators | 00.0 | 4 | | | 0=0 | 0= 1 | 00 = | 0 | 0= 0 | 00.5 | | | | | | | ciency of gross thermal power generation (%) | 39.9 | 41.3 | 41.7 | 37.4 | 35.3 | 35.1 | 32.7 | 34.3 | 35.3 | 36.5 | 40.0 | | | | | | of gross electricity from CHP | 10.4 | 15.4 | 15.4 | 16.1 | 17.5 | 19.6 | 16.8 | 18.9 | 19.1 | 20.3 | 23.0 | | | | | | of electricity from CCS bon free gross electricity generation (%) | 0.0
72.8 | 0.0
63.9 | 0.0
67.1 | 0.0
73.6 | 0.0
82.5 | 0.0
84.8 | 0.0
88.9 | 0.0
87.3 | 0.0
88.2 | 0.0
88.1 | 0.0
86.5 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 72.8 | 63.9 | 67.1 | 73.6 | 82.5 | 84.8 | 88.9 | 87.3 | 88.2 | 88.1 | 86.5 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 95.6 | 101.5 | 106.4 | 112.0 | 117.7 | 123.4 | 129.3 | 134.4 | 139.6 | 143.8 | 148.1 | 1.1 | 1.0 | 0.9 | | | ublic road transport | 9.2 | 9.3 | 9.9 | 10.3 | 10.8 | 11.1 | 11.5 | 11.8 | 12.2 | 12.4 | 12.7 | 0.7 | 0.9 | 0.7 | | | rivate cars and motorcycles | 67.8 | 71.9 | 74.6 | 77.4 | 80.0 | 82.8 | 85.4 | 88.1 | 90.8 | 93.1 | 95.5 | 1.0 | 0.7 | 0.7 | | | ail | 12.3 | 13.3 | 14.8 | 15.9 | 17.1 | 18.1 | 19.1 | 19.9 | 20.8 | 21.7 | 22.5 | 1.9 | 1.5 | 1.1 | | | viation | 6.1 | 7.0 | 7.1 | 8.3 | 9.8 | 11.4 | 13.2 | 14.4 | 15.7 | 16.5 | 17.4 | 1.4 | 3.3 | 3.0 | | | land navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.2 | 0.9 | 0.7 | | | ight transport activity (Gtkm) | 54.2 | 58.4 | 50.9 | 59.9 | 70.4 | 74.3 | 78.4 | 81.3 | 84.5 | 86.9 | 89.4 | -0.6 | 3.3 | 1.1 | | | rucks | 35.1 | 37.0 | 28.7 | 36.4 | 45.4 | 47.7 | 50.0 | 51.5 | 53.0 | 54.1 | 55.1 | -2.0 | 4.7 | 1.0 | | | ail | 16.6 | 19.0 | 19.8 | 21.0 | 22.3 | 23.8 | 25.4 | 26.8 | 28.3 | 29.5 | 30.8 | 1.8 | 1.2 | 1.3 | | | nland navigation | 2.4 | 2.4 | 2.4 | 2.5 | 2.7 | 2.8 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | -0.3 | 1.4 | 0.9 | | | ergy demand in transport (ktoe) (G) | 6795 | 8822 | 8518 | 8963 | 8917 | 8534 | 8385 | 8347 | 8411 | 8465 | 8559 | 2.3 | 0.5 | -0.6 | Ī | | ublic road transport | 123 | 122 | 132 | 137 | 141 | 141 | 141 | 141 | 143 | 143 | 143 | 0.7 | 0.7 | 0.0 | | | | | 4011 | 4219 | 4084 | 3542 | 3146 | 2995 | 2996 | 3030 | 3063 | 3111 | 1.8 | -1.7 | -1.7 | | | | 3514 | 7011 | | | | | | | | | | | | | | | rivate cars and motorcycles | 2326 | 3774 | 3240 | 3739 | 4205 | 4174 | 4092 | 4000 | 3974 | 3970 | 3991 | 3.4 | 2.6 | -0.3 | | | trivate cars and motorcycles
rucks
tail | | | | | 4205
219 | 4174
224 | 4092
228 | 4000
228 | 3974
228 | 3970
224 | 3991
221 | 3.4
-1.2 | 2.6
0.4 | -0.3
0.4 | | | rivate cars and motorcycles rucks | 2326 | 3774 | 3240 | 3739 | | | | | | | | | | | | | Belgium: Reference scenario | | | | | | | | SUM | IMARY E | NERGY | BALAN | CE AND | INDIC | CATORS | S (A) | |--|--|--|---|--|--|---|---|--|--|--|--|---|--|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) | 13606 | 13717 | 16357 | 14316 | 14330 | 7650 | 6637 | 6837 | 7062 | 7792 | 8407 | 1.9 | -1.3 | -7.4 | 1.2 | | Solids
Oil | 206
0 | 57
6 | 0
1241 -96.7
254.2 | -100.0
0.0 | 0.0 | 0.0 | | Natural gas | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | 0.0 | | Nuclear | 12422 | 12277 | 12367 | 9721 | 8538 | 1249 | 0 | 0 | 0 | 0 | 0 | 0.0 | -3.6 | -100.0 | 0.0 | | Renewable energy sources | 976 | 1377 | 2748 | 3353 | 4550 | 5160 | 5395 | 5596 | 5820 | 6550 | 7165 | 10.9 | 5.2 | 1.7 | 1.4 | | Hydro | 40 | 25 | 27 | 45 | 46 | 48 | 46 | 46 | 46 | 47 | 48 | -3.8 | 5.6 | -0.1 | 0.3 | | Biomass & Waste | 931 | 1327 | 2545 | 2584 | 2953 | 3017 | 3017 | 3042 | 3059 | 3250 | 3293 | 10.6 | 1.5 | 0.2 | 0.4 | | Wind | 1 | 20 | 111 | 410 | 1038 | 1309 | 1512 | 1627 | 1752 | 2122 | 2553 | 55.1 | 25.0 | 3.8 | 2.7 | | Solar and others Geothermal | 3 | 3 | 60
4 | 314
1 | 491
21 | 744
42 | 774
47 | 830
50 | 912
51 | 1081
51 | 1219
51 | 50.3
3.1 | 23.3
17.3 | 4.7
8.2 | 2.3
0.4 | | Net Imports | 50407 | 53362 | 53093 | 52536 | 50645 | 52563 | 53027 | 54197 | 55481 | 55869 | 56520 | 0.5 | -0.5 | 0.5 | 0.4 | | Solids | 7159 | 5093 | 3131 | 2082 | 2001 | 1916 | 1891 | 1433 | 1371 | 1312 | 1243 | -7.9 |
-4.4 | -0.6 | -2.1 | | Oil | 29493 | 32628 | 32552 | 31339 | 30423 | 29962 | 30255 | 30641 | 30639 | 31309 | 31744 | 1.0 | -0.7 | -0.1 | 0.2 | | - Crude oil and Feedstocks | 34069 | 32211 | 29849 | 29153 | 28335 | 27919 | 27989 | 28127 | 28026 | 28344 | 28519 | -1.3 | -0.5 | -0.1 | 0.1 | | - Oil products | -4576 | 417 | 2703 | 2186 | 2088 | 2043 | 2265 | 2514 | 2613 | 2965 | 3224 | 0.0 | -2.5 | 0.8 | 1.8 | | Natural gas | 13278 | 14817 | 16791 | 17873 | 16857 | 18358 | 17932 | 19131 | 20694 | 20487 | 20790 | 2.4 | 0.0 | 0.6 | 0.7 | | Electricity | 372 | 542 | 47 | 474 | 283 | 1181 | 1807 | 1832 | 1654 | 1694 | 1799 | -18.6 | 19.6 | 20.4 | 0.0 | | Gross Inland Consumption | 59212 | 58981 | 61503 | 58457 | 56163 | 51053 | 50028 | 50825 | 52024 | 52468 | 53135 | 0.4 | -0.9 | -1.2 | 0.3 | | Solids | 7861 | 5024 | 3186 | 2082 | 2001 | 1916 | 1891 | 1433 | 1371 | 1312 | 1243 | -8.6 | -4.5 | -0.6 | -2.1 | | Oil
Natural gas | 24107
13369 | 24752
14728 | 25630
16960 | 24229
17830 | 23034
16675 | 22424
17976 | 22371
17422 | 22477
18327 | 22479
19577 | 22752
19093 | 22830
19154 | 0.6
2.4 | -1.1
-0.2 | -0.3
0.4 | 0.1
0.5 | | Nuclear | 12422 | 12277 | 12367 | 9721 | 8538 | 1249 | 0 | 10327 | 0 | 19093 | 19154 | 0.0 | -3.6 | -100.0 | 0.0 | | Electricity | 372 | 542 | 47 | 474 | 283 | 1181 | 1807 | 1832 | 1654 | 1694 | 1799 | -18.6 | 19.6 | 20.4 | 0.0 | | Renewable energy forms | 1081 | 1658 | 3313 | 4120 | 5632 | 6306 | 6537 | 6756 | 6942 | 7617 | 8110 | 11.9 | 5.4 | 1.5 | 1.1 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 13.3 | 8.5 | 5.2 | 3.6 | 3.6 | 3.8 | 3.8 | 2.8 | 2.6 | 2.5 | 2.3 | | | | | | Oil | 40.7 | 42.0 | 41.7 | 41.4 | 41.0 | 43.9 | 44.7 | 44.2 | 43.2 | 43.4 | 43.0 | | | | | | Natural gas | 22.6 | 25.0 | 27.6 | 30.5 | 29.7 | 35.2 | 34.8 | 36.1 | 37.6 | 36.4 | 36.0 | | | | | | Nuclear | 21.0 | 20.8 | 20.1 | 16.6 | 15.2 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 1.8 | 2.8 | 5.4 | 7.0 | 10.0 | 12.4 | 13.1 | 13.3 | 13.3 | 14.5 | 15.3 | | | | | | Gross Electricity Generation in GWh _e | 82758 | 85694 | 93748 | 89940 | 90551 | 78958 | 75446 | 78778 | 87198 | 93230 | 95927 | 1.3 | -0.3 | -1.8 | 1.2 | | Self consumption and grid losses | 7932 | 8243 | 8395 | 8157 | 7706 | 6709 | 6675 | 6918 | 7425 | 7930 | 8086 | 0.6 | -0.9 | -1.4 | 1.0 | | Fuel Inputs to Thermal Power Generation
Solids | 7098 2629 | 7677 1833 | 8360
936 | 8016
414 | 7681
415 | 9110
415 | 8595
415 | 8434
0 | 8959
0 | 8947
0 | 8288
0 | 1.7
-9.8 | -0.8
-7.8 | 1.1
0.0 | -0.2
-100.0 | | Oil (including refinery gas) | 187 | 411 | 33 | 96 | 118 | 241 | 201 | 169 | 162 | 176 | 175 | -15.9 | 13.5 | 5.5 | -0.7 | | Gas (including derived gases) | 3790 | 4612 | 5669 | 5842 | 5330 | 6418 | 6001 | 6294 | 6953 | 6855 | 6353 | 4.1 | -0.6 | 1.2 | 0.3 | | Biomass & Waste | 492 | 821 | 1722 | 1664 | 1799 | 1998 | 1937 | 1926 | 1798 | 1871 | 1715 | 13.4 | 0.4 | 0.7 | -0.6 | | Geothermal heat | 0 | 0 | 0 | 0 | 19 | 38 | 41 | 45 | 45 | 45 | 45 | 0.0 | 0.0 | 8.2 | 0.4 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 54601 | 52924 | 50598 | 45690 | 43967 | 36076 | 34860 | 34926 | 34797 | 35111 | 35288 | -0.8 | -1.4 | -2.3 | 0.1 | | Refineries | 38493 | 37443 | 35526 | 33819 | 33068 | 32629 | 32711 | 32857 | 32771 | 33134 | 33357 | -0.8 | -0.7 | -0.1 | 0.1 | | Biofuels and hydrogen production | 0 | 0 | 362 | 444 | 739 | 741 | 785 | 793 | 824 | 870 | 920 | 0.0 | 7.4 | 0.6 | 0.8 | | District heating Derived gases, cokeries etc. | 44
16064 | 29
15452 | 6
14704 | 17
11409 | 78
10082 | 54
2652 | 28
1336 | 38
1238 | 67
1134 | 69
1038 | 72
939 | -17.9
-0.9 | 29.0
-3.7 | -9.7
-18.3 | 4.8
-1.7 | | | 2313 | 15452
2124 | 3279 | 3155 | 3055 | 2869 | 2867 | 1236
2887 | 2907 | 2930 | | -0.9 | -3.7 | -10.3
-0.6 | 0.1 | | Energy Branch Consumption Non-Energy Uses | | | | | ასაა | | 2007 | 2007 | 2907 | 2930 | | 2.6 | | | 0.1 | | | | | | | 7006 | | 7004 | 7065 | 9004 | 9074 | 2936 | 3.6 | -0.7 | | 0.3 | | Final Francis Damand | 6739 | 7516 | 7593 | 7520 | 7896 | 7879 | 7884 | 7965 | 8001 | 8074 | 8238 | 1.2 | 0.4 | 0.0 | 0.2 | | Final Energy Demand | | | | | 7896
34867 | | 7884
34667 | 7965
35503 | 8001
36310 | 8074
37022 | | | | | 0.2
0.4 | | by sector | 6739
37358 | 7516
36585 | 7593
36427 | 7520
36226 | 34867 | 7879
34456 | 34667 | 35503 | 36310 | 37022 | 8238
37775 | 1.2
-0.3 | 0.4
-0.4 | 0.0
-0.1 | 0.4 | | by sector
Industry | 6739 | 7516 | 7593 | 7520 | | 7879 | | | | | 8238 | 1.2 | 0.4 | 0.0 | | | by sector | 6739
37358
14059 | 7516
36585
11711 | 7593 36427 11182 | 7520
36226
11021 | 34867
10872 | 7879
34456
10649 | 34667
10694 | 35503
10985 | 36310
11350 | 37022
11484 | 8238
37775
11856 | 1.2
-0.3
-2.3 | 0.4
-0.4
-0.3 | 0.0
-0.1
-0.2 | 0.4
0.5 | | by sector
Industry
- energy intensive industries | 6739
37358
14059
10570
3489
9474 | 7516
36585
11711
9049
2662
9920 | 7593
36427
11182
8227
2956
8970 | 7520
36226
11021
8014
3007
9019 | 34867
10872
7908
2964
8572 | 7879
34456
10649
7724 | 34667
10694
7696
2997
8307 | 35503
10985
7814
3171
8396 | 36310
11350
7921
3429
8406 | 37022
11484
7899
3585
8516 | 8238
37775
11856
7997
3860
8518 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5 | -0.1
-0.2
-0.3
0.1
-0.3 | 0.4
0.5
0.2
1.3
0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 6739
37358
14059
10570
3489
9474
4164 | 7516
36585
11711
9049
2662
9920
5028 | 7593
36427
11182
8227
2956
8970
5976 | 7520
36226
11021
8014
3007
9019
5865 | 34867
10872
7908
2964
8572
5614 | 7879
34456
10649
7724
2926
8560
5542 | 34667
10694
7696
2997
8307
5661 | 35503
10985
7814
3171
8396
5867 | 36310
11350
7921
3429
8406
5938 | 37022
11484
7899
3585
8516
6140 | 8238
37775
11856
7997
3860
8518
6251 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7 | -0.4
-0.3
-0.4
-0.0
-0.5
-0.6 | -0.1
-0.2
-0.3
0.1
-0.3
0.1 | 0.4
0.5
0.2
1.3
0.1
0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport | 6739
37358
14059
10570
3489
9474 | 7516
36585
11711
9049
2662
9920 | 7593
36427
11182
8227
2956
8970 | 7520
36226
11021
8014
3007
9019 | 34867
10872
7908
2964
8572 | 7879
34456
10649
7724
2926
8560 | 34667
10694
7696
2997
8307 | 35503
10985
7814
3171
8396 | 36310
11350
7921
3429
8406 | 37022
11484
7899
3585
8516 | 8238
37775
11856
7997
3860
8518 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5 | -0.1
-0.2
-0.3
0.1
-0.3 | 0.4
0.5
0.2
1.3
0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 6739
37358
14059
10570
3489
9474
4164
9661 | 7516
36585
11711
9049
2662
9920
5028
9927 | 7593
36427
11182
8227
2956
8970
5976
10299 | 7520
36226
11021
8014
3007
9019
5865
10321 | 34867
10872
7908
2964
8572
5614
9809 | 7879
34456
10649
7724
2926
8560
5542
9704 | 34667
10694
7696
2997
8307
5661
10006 | 35503
10985
7814
3171
8396
5867
10256 | 36310
11350
7921
3429
8406
5938
10616 | 37022
11484
7899
3585
8516
6140
10883 | 8238
37775
11856
7997
3860
8518
6251
11150 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 6739
37358
14059
10570
3489
9474
4164
9661 | 7516
36585
11711
9049
2662
9920
5028
9927 | 7593
36427
11182
8227
2956
8970
5976
10299 | 7520
36226
11021
8014
3007
9019
5865
10321 | 34867
10872
7908
2964
8572
5614
9809 | 7879
34456
10649
7724
2926
8560
5542
9704 | 34667
10694
7696
2997
8307
5661
10006 | 35503
10985
7814
3171
8396
5867
10256 | 36310
11350
7921
3429
8406
5938
10616 | 37022
11484
7899
3585
8516
6140
10883 | 8238
37775
11856
7997
3860
8518
6251
11150 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523 | 7593 36427 11182 8227 2956 8970 5976 10299
1180 14935 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469 | 34867
10872
7908
2964
8572
5614
9809
918
13108 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 | 34667
10694
7696
2997
8307
5661
10006
883
12773 | 35503
10985
7814
3171
8396
5867
10256 | 36310
11350
7921
3429
8406
5938
10616 | 37022
11484
7899
3585
8516
6140
10883
824
13190 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
-0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304 | 7879
34456
10649
7724
2926
8560
5542
9704
886
12764
10215 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
-0.5
-0.6
-0.5
-2.5
-1.3
-0.7 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2
-0.4
-0.3
-0.3 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
-0.5
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010
6667 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030
7495 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488
8752 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824
9058 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5
-1.3
-0.7
0.0 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2
-0.4
-0.3
-0.3
-0.4 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
0.2
0.4
1.0 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304 | 7879
34456
10649
7724
2926
8560
5542
9704
886
12764
10215 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6 | 0.4
-0.4
-0.3
-0.4
-0.5
-0.6
-0.5
-2.5
-1.3
-0.7 | 0.0
-0.1
-0.2
-0.3
0.1
-0.3
0.1
0.2
-0.4
-0.3
-0.3 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
-0.5
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010
6667
492 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188
914 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030
7495
957 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257
687 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488
8752
987 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824
9058
990 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1 | 0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5
-1.3
-0.7
0.0
3.2 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 0.2 -0.4 -0.3 -0.3 0.4 0.5 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
0.2
0.4
1.0
0.2
0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010
6667
492
533 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668
1411 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188
914
2431 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030
7495
957
2515 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257
687
2635 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488
8752
987
2727 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824
9058
990
2786 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2 | 0.4
-0.4
-0.3
-0.4
0.0
-0.5
-0.6
-0.5
-1.3
-0.7
0.0
3.2
5.6 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 0.2 -0.4 -0.3 -0.3 0.4 0.5 0.3 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
0.2
0.4
1.0
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010
6667
492
533
0 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668
1411 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188
914
2431
4 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030
7495
957
2515
14 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583
23 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257
687
2635
38 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488
8752
987
2727
54 | 8238
37775
11856
7997
3860
8518
6251
11150
792
13258
10824
9058
990
2786
67 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0 | 0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 0.0 3.2 5.6 0.0 | 0.0 -0.1 -0.2 -0.3 0.1
-0.2 -0.4 -0.3 -0.3 0.1 0.2 | 0.4
0.5
0.2
1.3
0.1
0.5
0.5
-0.5
0.2
0.4
1.0
0.2
0.5
8.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiany Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 6739
37358
14059
10570
3489
9474
4164
9661
3343
16312
10010
6667
492
533
0 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668
1411
0 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188
914
2431
4 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 | 34667
10694
7696
2997
8307
5661
10006
883
12773
10030
7495
957
2515
14 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583
23 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257
687
2635
38 | 37022
11484
7899
3585
8516
6140
10883
824
13190
10488
8752
987
2727
54 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0 | 0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 0.0 3.2 5.6 0.0 9.8 | 0.0 -0.1 -0.2 -0.3 0.1 -0.2 -0.3 0.1 0.2 -0.4 -0.3 -0.3 0.4 0.5 0.3 13.0 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668
1441
0 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
3011
127.4
55.99
71.5 | 34867
10872
7908
2964
8572
5614
9809
918
13108
10304
7188
914
2431
4
4870
120.2
53.6
66.5 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 14 5719 118.8 54.3 64.4 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
2583
23
5858
118.8
54.2
64.6 | 36310
11350
7921
3429
8406
5938
10616
849
13040
10803
8257
687
2635
38
5882
121.9
57.3
64.6 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 65.0 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.1 | 0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 0.0 3.2 5.6 0.0 9.8 -1.1 -0.9 -1.2 | -0.0 -0.1 -0.2 -0.3 -0.1 -0.3 -0.1 -0.2 -0.4 -0.3 -0.3 -0.3 -0.4 -0.5 -0.3 13.0 -0.6 -0.1 -0.1 -0.3 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.2 0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0 | 7593
36427
11182
8227
2956
8970
5976
10299
1180
14935
11069
7163
668
1411
0
1908
134.1
58.9
75.2
105.4 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
3011
127.4
55.9
71.5
99.8 | 34867 10872 7908 2964 8572 5614 9809 918 13108 130304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583
23
5858
118.8
54.2
64.6
91.5 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 65.0 93.3 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.4 | 0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 -0.9 -1.1 -0.9 -1.1 -1.2 -1.4 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 -0.2 -0.4 -0.3 -0.3 0.4 0.5 -0.1 -0.1 -0.3 -0.1 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2_Emissions (energy related) Power generation/District heating | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0 | 7593 36427 11182 8227 2956 8970 10299 1180 14935 11069 7163 668 1411 0 1998 134.1 58.9 75.2 105.4 20.3 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
127.4
55.9
71.5
98.8 | 34867 10872 7908 2964 8572 5614 9809 918 13108 10304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 8 121.4 56.3 65.1 92.9 18.2 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
887
2583
23
5858
118.8
54.2
64.6
91.5 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 65.0 93.3 16.5 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.1 | -0.4 -0.3 -0.4 -0.0 -0.5 -0.6 -0.5 -1.3 -0.7 -0.0 3.2 -0.6 -0.0 -0.0 -0.1 -1.1 -0.9 -1.4 -2.8 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 -0.2 -0.4 -0.3 -0.3 -0.3 1.6 -0.1 -0.1 -0.3 -0.1 -0.9 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.1 0.1 0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0 | 7593 36427 11182 8227 2956 8970 5976 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 75.2 105.4 20.3 6.9 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
1
3011
127.4
55.9
71.5
99.8
16.6 | 34867 10872 7908 2964 8572 5614 9809 918 13108 10304 7188 914 4870 120.2 53.6 66.5 92.0 15.4 6.2 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 14 5719 118.8 64.4 91.3 16.9 5.8 | 35503
10985
7814
3171
8396
10256
874
12930
10464
7772
857
2583
23
5858
118.8
54.2
64.6
91.5
15.9 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 16.7 6.1 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 65.0 93.3 16.5 6.0 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 |
1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.1 | -0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 -0.0 3.2 -1.1 -0.9 -1.2 -1.4 -1.0 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 0.2 -0.4 -0.3 -0.3 0.4 0.5 0.3 13.0 1.6 -0.1 0.1 -0.3 -0.1 0.7 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.1 0.1 0.1 0.3 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0
4.0
24.5 | 7593 36427 11182 8227 2956 8970 5976 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 105.4 20.3 6.9 19.5 | 7520
36226
11021
8014
3007
9019
5865
10321
945
11060
7284
636
1831
1
3011
127.4
55.99.8
16.8
6.6 | 34867 10872 7908 2964 8572 5614 9809 918 13108 13084 7188 914 44870 120.2 53.6 66.5 92.0 15.4 6.2 17.4 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.4 91.3 16.9 5.8 | 35503 10985 7814 3171 8396 5867 10256 874 12930 10464 7772 2583 23 5858 118.8 54.6 91.5 15.4 5.9 18.0 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 16.7 6.1 18.9 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 93.3 16.5 6.0 18.1 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 6.1 18.4 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.1 | -0.4 -0.4 -0.3 -0.4 -0.5 -0.6 -0.5 -1.3 -0.7 -0.7 -0.9 -1.1 -1.4 -2.8 -1.0 -1.1 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 -0.3 -0.3 -0.3 0.4 0.5 0.3 13.0 1.6 -0.1 0.1 0.9 -0.7 -0.2 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.1 0.1 0.3 0.4 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0
4.0
24.5
20.5 | 7593 36427 11182 8227 2956 8970 5976 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 75.2 105.4 20.3 6.95 19.5 18.8 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
127.4
55.9
71.5
99.8
16.8
6.6
6.8 | 34867 10872 7908 2964 8572 5614 9809 918 13108 13108 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 6.2 17.4 17.5 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 17.2 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 16.9 5.8 17.1 16.2 | 35503 10985 7814 3171 8396 5867 10256 874 12930 10464 7772 857 2583 23 5858 118.8 54.2 64.6 91.5 15.4 5.9 18.0 16.0 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 16.7 6.1 18.9 15.6 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 65.0 93.3 16.5 6.0 18.1 15.4 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 62.7 62.8 15.3 6.1 18.4 15.0 | 1.2
-0.3
-2.3
-2.5
-1.6
-0.5
-3.7
0.6
-9.9
-0.9
1.0
0.7
3.1
10.2
0.0
14.3
-1.1
-1.4
-2.1
3.4
-0.7 | -0.4 -0.4 -0.3 -0.4 -0.6 -0.5 -0.6 -0.5 -1.3 -0.0 -0.5 -1.1 -0.9 -0.1 -1.1 -0.9 -1.2 -1.4 -1.0 -1.1 -0.7 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 -0.2 -0.4 -0.3 -0.3 0.4 0.5 0.3 13.0 -0.1 -0.1 -0.1 -0.9 -0.2 -0.8 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 1.1 0.1 0.1 0.2 0.1 0.4 -0.5 0.3 0.4 -0.4 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
467
0
858
858
146.6
70.5
76.1
113.3
24.0
24.5
20.5
20.5 | 7593 36427 11182 8227 2956 8970 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 75.2 105.4 20.3 6.9 19.5 18.5 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
127.4
55.9
71.5
99.8
6.6
18.8
18.6 | 34867 10872 7908 2964 8572 5614 9809 918 13108 10304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 6.2 17.4 17.5 8.5 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 17.2 8.1 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 16.9 5.8 17.1 16.2 8.0 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583
23
5858
118.8
54.2
64.6
91.5
15.4
5.9
18.0
16.0
8.3 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 54.6 94.1 16.7 6.1 18.9 15.6 7.9 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 65.0 93.3 16.5 6.0 18.1 15.4 7.8 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 6.1 18.4 15.0 7.9 | 1.2 -0.3 -2.3 -2.5 -1.6 -0.5 -3.7 0.6 -9.9 -0.9 1.0 0.7 3.1 10.2 0.0 14.3 -1.1 -1.4 -2.1 3.4 -5.7 -2.1 | -0.4 -0.4 -0.4 -0.4 -0.5 -0.6 -0.5 -1.3 -0.0 3.2 5.6 -0.0 -1.1 -0.9 -1.2 -1.4 -1.1 -1.7 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 -0.3 -0.3 -0.3 0.4 -0.3 -0.3 -0.1 0.5 0.3 13.0 1.6 -0.1 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -0.1 -0.6 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 -0.5 0.3 0.4 -0.4 -0.4 -0.4 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0
4.0
24.5
20.5
10.6
29.8 | 7593 36427 11182 8227 2956 8970 10299 1180 14935 11069 7163 668 14411 0 1908 134.1 58.9 15.2 105.4 20.3 6.9 19.5 18.8 10.1 29.9 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
3011
127.4
55.9
99.8
16.6
18.8
18.8
18.6
9.4
29.7 | 34867 10872 7908 2964 8572 5614 9809 918 13108 10304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 17.4 17.5 8.5 27.1 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 17.2 8.1 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 14 5719 118.8 54.3 64.4 91.3 16.9 5.8 17.1 16.2 8.0 27.3 | 35503 10985 7814 3171 8396 5867 10256 874 12930 10464 7772 857 2583 23 5658 118.8 54.2 64.6 91.5 15.9 18.0 16.0 8.3 28.0 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 16.7 6.1 18.9 15.6 7.9 28.9 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.0 93.3 16.5 6.0 18.1 15.4 7.8 29.5 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 6.1 18.4 15.0 7.9 30.1 | 1.2 -0.3 -2.3 -2.5 -1.6 -0.5 -3.7 0.6 -9.9 -0.9 1.0 0.7 3.1 10.2 0.0 14.3 -1.1 -1.4 -2.1 3.4 -5.4 -0.7 2.1 0.3 | -0.4 -0.4 -0.4 -0.4 -0.0 -0.5 -0.6 -0.5 -1.3 -0.7 -0.0 -0.9 -0.8 -1.1 -0.7 -1.1 -0.7 -1.0 | 0.0 -0.1 -0.2 -0.3 0.1 -0.2 -0.4 -0.3 -0.3 0.4 0.5 0.3 13.0 1.6 -0.1 0.1 -0.3 -0.1 0.1 -0.3 -0.1 0.1 -0.3 -0.1 0.1 -0.3 -0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.5 0.3 0.4 -0.4 -0.4 -0.1 0.5 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil
Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
467
0
858
858
146.6
70.5
76.1
113.3
24.0
24.5
20.5
20.5 | 7593 36427 11182 8227 2956 8970 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 75.2 105.4 20.3 6.9 19.5 18.5 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
127.4
55.9
71.5
99.8
6.6
18.8
18.6 | 34867 10872 7908 2964 8572 5614 9809 918 13108 10304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 6.2 17.4 17.5 8.5 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 17.2 8.1 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 16.9 5.8 17.1 16.2 8.0 | 35503
10985
7814
3171
8396
5867
10256
874
12930
10464
7772
857
2583
23
5858
118.8
54.2
64.6
91.5
15.4
5.9
18.0
16.0
8.3 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 54.6 94.1 16.7 6.1 18.9 15.6 7.9 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 65.0 93.3 16.5 6.0 18.1 15.4 7.8 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 6.1 18.4 15.0 7.9 | 1.2 -0.3 -2.3 -2.5 -1.6 -0.5 -3.7 0.6 -9.9 -0.9 1.0 0.7 3.1 10.2 0.0 14.3 -1.1 -1.4 -2.1 3.4 -5.7 -2.1 | -0.4 -0.4 -0.4 -0.4 -0.5 -0.6 -0.5 -1.3 -0.0 3.2 5.6 -0.0 -1.1 -0.9 -1.2 -1.4 -1.1 -1.7 | 0.0 -0.1 -0.2 -0.3 0.1 -0.3 -0.3 -0.3 -0.3 0.4 -0.3 -0.3 -0.1 0.5 0.3 13.0 1.6 -0.1 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -0.1 -0.3 -0.1 -0.6 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 -0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.1 -0.5 0.3 0.4 -0.4 -0.4 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 6739 37358 14059 10570 3489 9474 4164 9661 3343 16312 10010 6667 492 533 0 500 150.3 | 7516
36585
11711
9049
2662
9920
5028
9927
1962
16523
10009
6896
428
767
0
858
146.6
70.5
76.1
113.3
24.0
4.0
4.0
50.2
80.5
80.5
80.5
80.5
80.5
80.5
80.5
80.5 | 7593 36427 11182 8227 2956 8970 10299 1180 14935 11069 7163 668 1411 0 1908 134.1 58.9 105.4 20.3 6.9 19.5 18.8 10.1 29.9 11.8 | 7520
36226
11021
8014
3007
9019
5865
10321
945
14469
11060
7284
636
1831
1
3011
127.4
55.99.8
16.8
6.6
6.8
6.8
9.4
29.7
12.4 | 34867 10872 7908 2964 8572 5614 9809 918 13108 130304 7188 914 2431 4 4870 120.2 53.6 66.5 92.0 15.4 6.2 17.4 17.5 8.5 27.1 13.4 | 7879 34456 10649 7724 2926 8560 5542 9704 886 12764 10215 7176 945 2461 8 5396 121.4 56.3 65.1 92.9 18.2 5.7 17.0 17.2 8.1 26.6 13.7 | 34667 10694 7696 2997 8307 5661 10006 883 12773 10030 7495 957 2515 14 5719 118.8 54.3 64.4 91.3 16.9 5.8 17.1 16.2 8.0 27.3 12.9 | 35503 10985 7814 3171 8396 5867 10256 874 12930 10464 7772 8583 23 5858 118.8 54.2 64.6 91.5 15.4 5.9 18.0 16.0 8.3 28.0 12.9 | 36310 11350 7921 3429 8406 5938 10616 849 13040 10803 8257 687 2635 38 5882 121.9 57.3 64.6 94.1 16.7 6.1 18.9 15.6 7.9 28.9 13.5 | 37022 11484 7899 3585 8516 6140 10883 824 13190 10488 8752 987 2727 54 6673 121.7 56.7 93.3 16.5 6.0 93.3 15.4 7.8 29.5 14.0 | 8238 37775 11856 7997 3860 8518 6251 11150 792 13258 10824 9058 990 2786 67 7108 121.9 56.2 65.7 92.8 15.3 6.1 18.4 15.0 7.9 30.1 14.5 | 1.2 -0.3 -2.3 -2.5 -1.6 -0.5 -3.7 -0.6 -9.9 -0.9 1.0 -7 -3.1 10.2 -1.1 -1.4 -2.1 -3.4 -5.4 -0.7 -2.1 0.3 -4.2 | -0.4 -0.3 -0.4 -0.0 -0.5 -0.6 -0.5 -1.3 -0.7 -0.0 3.2 -1.1 -0.9 -1.1 -0.9 -1.1 -1.0 -1.1 -1.7 -1.7 -1.0 -1.3 | -0.0 -0.1 -0.2 -0.3 0.1 -0.3 0.1 -0.3 -0.3 -0.3 0.4 -0.3 -0.3 -0.1 -0.1 -0.3 -0.1 -0.2 -0.8 -0.6 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | 0.4 0.5 0.2 1.3 0.1 0.5 0.5 0.2 0.4 1.0 0.2 0.5 8.2 1.1 0.1 0.1 0.3 0.4 -0.4 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 | | UMMARY ENERGY BALANCE AND INDICATO | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | gium: R | | | | |--|----------------|---------------|---------------|---------------|--------------|--------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|-------------------|-------------------|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | ' 10'-00'
An | 10-'20
nnual % | | | | ain Energy System Indicators | | | | | | | | | | | | | | Onlange | | | ppulation (Million) | 10.239 | 10.446 | 10.840 | 11.239 | 11.593 | 11.911 | 12.204 | 12.473 | 12.718 | 12.936 | 13.126 | 0.6 | 0.7 | 0.5 | | | OP (in 000 M€10) | 308.9 | 334.4 | 354.7 | 382.1 | 409.2 | 439.2 | 474.6 | 516.3 | 563.4 | 614.4 | 668.8 | 1.4 | 1.4 | 1.5 | | | ross Inl. Cons./GDP (toe/M€10) | 191.7 | 176.4 | 173.4 | 153.0 | 137.2 | 116.2 | 105.4 | 98.4 | 92.3 | 85.4 | 79.4 | -1.0 | -2.3 | -2.6 | | | urbon intensity (t of CO ₂ /toe of GIC) | 2.05 | 1.92 | 1.71 | 1.71 | 1.64 | 1.82 | 1.82 | 1.80 | 1.81 | 1.78 | 1.75 | -1.8 | -0.5 | 1.1 | | | port Dependency % | 78.1 | 80.1 | 76.8 | 78.6 | 77.9 | 87.3 | 88.9 | 88.8 | 88.7 | 87.8 | 87.1 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 34.0 | 39.5 | 47.8 | 60.3 | 67.7 | 71.0 | 74.9 | 77.4 | 81.0 | 85.5 | 89.5 | 3.5 | 3.5 | 1.0 | | | s % of GDP | 11.0 | 11.8 | 13.5 | 15.8 | 16.5 | 16.2 | 15.8 | 15.0 | 14.4 | 13.9 | 13.4 | | | | | | ergy intensity indicators | | | | | | | | | == . | | | | | | | | dustry (Energy on Value added, index 2000=100) esidential (Energy on Private Income, index 2000=100) | 100.0 | 82.3 | 89.3 | 80.2 | 74.4 | 68.5 | 64.1 | 60.8 | 58.1 | 54.4 | 52.2
41.1 | -1.1 | -1.8
-1.6 | -1.5 | | | rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 99.1
110.1 | 82.3
121.2 | 79.4
110.7 | 70.0
98.6 | 64.7
90.3 | 57.7
85.1 | 53.3
80.8 | 48.6
74.7 | 44.9
70.6 | 65.8 | -1.9
1.9 | -1.6
-2.0 | -1.9
-1.5 | | | ussenger transport (toe/Mpkm) | 47.7 | 43.8 | 47.8 | 44.9 | 38.4 | 34.6 | 32.8 | 32.1 | 31.5 | 31.1 | 30.6 | 0.0 | -2.2 | -1.6 | | | eight transport (toe/Mtkm) | 47.1 | 58.4 | 63.3 | 58.2 | 55.9 | 52.2 | 50.0 | 48.2 | 47.1 | 46.0 | 45.2 | 3.0 | -1.2 | -1.1 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.28 | 0.26 | 0.20 | 0.17 | 0.15 | 0.20 | 0.19 | 0.17 | 0.17 | 0.15 | 0.14 | -3.5 | -2.8 | 2.4 | | | all energy demand (t of CO ₂ /toe) | 2.44 | 2.33 | 2.15 | 2.11 | 2.02 | 2.00 | 1.98 | 1.98 | 1.96 | 1.91 | 1.89 | -1.3 | -0.6 | -0.2 | | | ndustry | 2.42 | 2.09 | 1.74 | 1.71 | 1.60 | 1.60 | 1.60 | 1.64 | 1.67 | 1.57 | 1.55 | -3.2 | -0.8 | 0.0 | | | Residential | 2.13 | 2.06 | 2.09 | 2.07 | 2.04 | 2.00 | 1.95 | 1.90 | 1.85 | 1.81 | 1.76 | -0.2 | -0.2 | -0.5 | | | ertiary | 1.98 | 2.11 | 1.69 | 1.59 | 1.51 | 1.47 | 1.42 | 1.41 | 1.33 | 1.27 | 1.27 | -1.6 | -1.1 | -0.6 | | | ransport (C)
 2.99 | 3.00 | 2.90 | 2.87 | 2.76 | 2.74 | 2.73 | 2.73 | 2.72 | 2.71 | 2.70 | -0.3 | -0.5 | -0.1 | | | licators for renewables | | | | | | | | | | | | | | | Ī | | are of RES in Gross Final Energy Consumption (D) (%) | 1.3 | 2.3 | 5.1 | 8.2 | 13.7 | 15.4 | 16.2 | 16.2 | 15.9 | 17.7 | 18.5 | | | | | | S in transport (%) | 0.0 | 0.0 | 4.2 | 5.5 | 10.1 | 10.9 | 11.3 | 11.2 | 11.4 | 11.9 | 12.4 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 82773 | 85709 | 93764 | 89940 | 90551 | 78958 | 75446 | 78778 | 87198 | 93230 | 95927 | 1.3 | -0.3 | -1.8 | | | luclear energy | 48157 | 47595 | 47944 | 37679 | 33094 | 4852 | 0 | 0 | 0 | 0 | 0 | 0.0 | -3.6 | -100.0 | | | colids | 12916 | 8199 | 4190 | 1883 | 1883 | 1883 | 1882 | 0 | 0 | 0 | 0 | -10.6 | -7.7 | 0.0 | | | Oil (including refinery gas) | 797 | 1740 | 406 | 488 | 611 | 1227 | 987 | 819 | 906 | 988 | 936 | -6.5 | 4.2 | 4.9 | | | Gas (including derived gases) | 19091 | 25143 | 33178 | 35547 | 31866 | 41545 | 40229 | 44064 | 49330 | 48938 | 45429 | 5.7 | -0.4 | 2.4 | | | liomass-waste | 1336 | 2516 | 5882 | 7129 | 7807 | 8789 | 8779 | 8769 | 9107 | 9548 | 8953 | 16.0 | 2.9 | 1.2 | | | lydro (pumping excluded) | 460 | 288 | 312 | 519 | 539 | 560 | 534 | 533 | 539 | 548 | 563 | -3.8 | 5.6 | -0.1 | | | /ind | 16 | 227 | 1292 | 4766 | 12075 | 15220 | 17582 | 18919 | 20369 | 24669 | 29690 | 55.1 | 25.0 | 3.8 | | | Solar | 0 | 1 | 560 | 1930 | 2654 | 4837 | 5405 | 5620 | 6895 | 8466 | 10275 | 0.0 | 16.8 | 7.4 | | | Geothermal and other renewables | 0 | 0 | 0 | 0 | 22
0 | 44
0 | 48
0 | 53 | 53
0 | 72 | 81
0 | 0.0 | 0.0 | 8.2 | | | Other fuels (hydrogen, methanol) t Generation Capacity in MW _e | 13891 | 14651 | 17015 | 20031 | 23556 | 24844 | 27061 | 0
28404 | 31069 | 0
34850 | 38790 | 0.0
2.0 | 0.0
3.3 | 0.0
1.4 | | | luclear energy | 5801 | 5817 | 5941 | 4596 | 4037 | 590 | 0 | 0 | 0 | 0 | 0 | 0.2 | -3.8 | -100.0 | | | Renewable energy | 116 | 273 | 1933 | 3971 | 7378 | 10336 | 12068 | 13025 | 14869 | 17863 | 21152 | 32.5 | 14.3 | 5.0 | | | Hydro (pumping excluded) | 103 | 104 | 117 | 165 | 177 | 178 | 186 | 187 | 188 | 190 | 196 | 1.3 | 4.2 | 0.5 | | | Wind | 13 | 167 | 912 | 1966 | 4772 | 5864 | 7068 | 7849 | 8581 | 10141 | 11728 | 53.0 | 18.0 | 4.0 | | | Solar | 0 | 2 | 904 | 1840 | 2429 | 4295 | 4813 | 4989 | 6100 | 7522 | 9213 | 0.0 | 10.4 | 7.1 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 15 | 0.0 | 0.0 | 0.0 | | | Thermal power | 7975 | 8561 | 9141 | 11464 | 12141 | 13918 | 14993 | 15379 | 16200 | 16987 | 17638 | 1.4 | 2.9 | 2.1 | | | of which cogeneration units | 1112 | 1631 | 2309 | 2634 | 3188 | 3825 | 4120 | 2888 | 2526 | 4486 | 4878 | 7.6 | 3.3 | 2.6 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1785 | 1667 | 1176 | 245 | 246 | 246 | 246 | 0 | 0 | 0 | 0 | -4.1 | -14.5 | 0.0 | | | Gas fired | 4951 | 5618 | 6451 | 9326 | 9397 | 11453 | 12896 | 13532 | 13619 | 14225 | 14879 | 2.7 | 3.8 | 3.2 | | | Oil fired | 702 | 690 | 426 | 572 | 617 | 439 | 365 | 343 | 360 | 269 | 205 | -4.9 | 3.8 | -5.1 | | | Biomass-waste fired | 537 | 587 | 1088 | 1320 | 1878 | 1775 | 1480 | 1498 | 2216 | 2487 | 2549 | 7.3 | 5.6 | -2.4 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 3 | 5 | 6 | 6 | 6 | 6 | 6 | 0.0 | 0.0 | 8.2 | | | g. Load factor of net power capacity (F) (%) | 64.9 | 64.0 | 60.4 | 49.3 | 42.4 | 35.3 | 31.1 | 31.0 | 31.4 | 29.9 | 27.7 | | | | _ | | ectricity indicators | 44.4 | 40.4 | 44.0 | 40.0 | 47.0 | E0 E | F2.0 | F4.0 | 57.0 | 57.0 | F7 5 | | | | | | iciency of gross thermal power generation (%) | 41.4 | 42.1 | 44.9
16.0 | 48.3 | 47.2 | 50.5 | 52.0 | 54.8 | 57.0
16.0 | 57.2 | 57.5
24.1 | | | | | | of gross electricity from CHP | 6.5 | 8.5 | 16.0 | 17.1 | 18.1 | 22.0
0.0 | 24.4 | 20.9 | 16.9
0.0 | 24.4 | 24.1 | | | | | | of electricity from CCS
rbon free gross electricity generation (%) | 0.0
60.4 | 0.0
59.1 | 0.0
59.7 | 0.0
57.8 | 0.0
62.1 | 43.4 | 0.0
42.9 | 0.0
43.0 | 42.4 | 0.0
46.4 | 0.0
51.7 | | | | | | uclear | 58.2 | 55.5 | 51.1 | 41.9 | 36.5 | 6.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 2.2 | 3.5 | 8.6 | 15.9 | 25.5 | 37.3 | 42.9 | 43.0 | 42.4 | 46.4 | 51.7 | | | | | | ansport sector | | | 5.0 | .5.5 | 20.0 | 00 | .2.0 | .5.0 | | | U | | | | | | ssenger transport activity (Gpkm) | 137.1 | 145.6 | 149.4 | 156.7 | 162.8 | 172.7 | 182.9 | 192.4 | 202.5 | 211.8 | 221.5 | 0.9 | 0.9 | 1.2 | | | Public road transport | 13.3 | 17.5 | 18.9 | 19.8 | 21.0 | 21.9 | 22.8 | 23.9 | 24.9 | 25.8 | 26.7 | 3.6 | 1.0 | 0.9 | | | Private cars and motorcycles | 106.5 | 110.1 | 110.5 | 114.8 | 117.5 | 123.6 | 129.4 | 135.2 | 141.4 | 147.4 | 153.5 | 0.4 | 0.6 | 1.0 | | | tail | 8.6 | 10.1 | 11.1 | 12.0 | 13.0 | 14.3 | 15.9 | 16.9 | 18.0 | 18.9 | 19.7 | 2.6 | 1.6 | 2.1 | | | viation | 8.4 | 7.6 | 8.6 | 9.7 | 11.0 | 12.6 | 14.5 | 16.0 | 17.7 | 19.4 | 21.2 | 0.3 | 2.4 | 2.8 | | | nland navigation | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | -0.8 | 0.9 | 0.9 | | | eight transport activity (Gtkm) | 66.3 | 60.9 | 49.9 | 56.4 | 63.7 | 71.4 | 80.0 | 84.7 | 89.7 | 93.0 | 96.3 | -2.8 | 2.5 | 2.3 | | | rucks | 51.0 | 43.8 | 35.0 | 39.6 | 44.6 | 49.7 | 55.2 | 58.4 | 61.8 | 63.9 | 66.1 | -3.7 | 2.5 | 2.1 | | | Rail | 7.7 | 8.1 | 6.3 | 7.5 | 9.0 | 10.4 | 12.1 | 12.8 | 13.6 | 14.2 | 14.8 | -2.0 | 3.7 | 3.0 | | | nland navigation | 7.6 | 8.9 | 8.6 | 9.3 | 10.0 | 11.3 | 12.7 | 13.5 | 14.3 | 14.8 | 15.4 | 1.2 | 1.5 | 2.4 | | | ergy demand in transport (ktoe) ^(G) | 9660 | 9926 | 10293 | 10312 | 9800 | 9695 | 9997 | 10246 | 10607 | 10873 | 11140 | 0.6 | -0.5 | 0.2 | Г | | Public road transport | 216 | 279 | 317 | 329 | 334 | 335 | 337 | 344 | 352 | 359 | 367 | 3.9 | 0.5 | 0.1 | | | Private cars and motorcycles | 4690 | 4712 | 5199 | 4955 | 4134 | 3796 | 3822 | 3916 | 4026 | 4149 | 4292 | 1.0 | -2.3 | -0.8 | | | | | | | 3008 | 3253 | 3388 | 3617 | 3688 | 3816 | 3868 | 3942 | 0.2 | 1.1 | 1.1 | | | Trucks | 2837 | 3250 | 2903 | | | | | | | | | | | | | | the contract of o | 2837
184 | 3250
186 | 177 | 188 | 211 | 235 | 261 | 269 | 276 | 278 | 277 | -0.4 | 1.8 | 2.2 | | | Trucks | | | | | | | | | | | | | 1.8
0.9 | 2.2
0.3 | | | Bulgaria: Reference scenario | | | | | | | | SUM | MARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|---|---|---|---|--|--|--|---|---|--|---|--|---|--|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 9868
4295 | 10630
4178 | 10437
4942 | 11045
5214 | 11030
4810 | 11434
5025 | 1 0647
3994 | 10283
3890 | 11398
1757 | 12082
2175 | 12922
2818 | 0.6
1.4 | 0.6
-0.3 | -0.4
-1.8 | 1.0
-1.7 | | Oil | 4295
70 | 60 | 4942 | 5214
46 | 4610 | 46 | 3994
46 | 3690
46 | 46 | 46 | 46 | -4.1 | 0.0 | 0.0 | 0.0 | | Natural gas | 12 | 384 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -96.6 | -100.0 | 0.0 | 0.0 | | Nuclear | 4699 | 4826 | 3956 |
4015 | 4042 | 4042 | 4042 | 3574 | 6474 | 6474 | 6474 | -1.7 | 0.2 | 0.0 | 2.4 | | Renewable energy sources | 792 | 1182 | 1493 | 1771 | 2133 | 2321 | 2565 | 2774 | 3121 | 3388 | 3584 | 6.5 | 3.6 | 1.9 | 1.7 | | Hydro | 230 | 373 | 435 | 403 | 400 | 394 | 398 | 402 | 406 | 410 | 414 | 6.6 | -0.8 | -0.1 | 0.2 | | Biomass & Waste Wind | 562
0 | 776
0 | 955
59 | 1054
115 | 1383
120 | 1478
124 | 1512
231 | 1624
231 | 1843
328 | 1986
335 | 2151
336 | 5.5
0.0 | 3.8
7.4 | 0.9
6.8 | 1.8
1.9 | | Solar and others | 0 | 0 | 12 | 155 | 182 | 267 | 377 | 421 | 454 | 569 | 592 | 0.0 | 31.8 | 7.6 | 2.3 | | Geothermal | 0 | 33 | 33 | 43 | 48 | 59 | 47 | 95 | 90 | 89 | 91 | 0.0 | 3.9 | -0.1 | 3.3 | | Net Imports | 8725 | 9589 | 7230 | 7228 | 7012 | 6799 | 6710 | 6910 | 6499 | 6225 | 6254 | -1.9 | -0.3 | -0.4 | -0.4 | | Solids | 2258 | 2553 | 1700 | 1213 | 1202 | 1116 | 1364 | 1220 | 1050 | 1187 | 1421 | -2.8 | -3.4 | 1.3 | 0.2 | | Oil | 4125 | 5257 | 4180 | 3832 | 3639 | 3510 | 3510 | 3534 | 3562 | 3547 | 3544 | 0.1 | -1.4 | -0.4 | 0.0 | | - Crude oil and Feedstocks | 5396 | 6457 | 6071 | 5729 | 5445 | 5188 | 5020 | 4870 | 4731 | 4555 | 4388 | 1.2 | -1.1 | -0.8 | -0.7 | | - Oil products | -1271 | -1201 | -1891 | -1897 | -1806 | -1679 | -1511 | -1336 | -1169 | -1008 | -844 | 4.1 | -0.5 | -1.8 | -2.9 | | Natural gas
Electricity | 2742
-397 | 2458
-652 | 2131
-726 | 3163
-883 | 3318
-960 | 3400
-967 | 3518
-1356 | 3930
-1363 | 3784
-1366 | 3518
-1386 | 3424
-1373 | -2.5
6.2 | 4.5
2.8 | 0.6
3.5 | -0.1
0.1 | | Gross Inland Consumption | 18707 | 20077 | 17831 | -003
18136 | 17877 | 18050 | 17162 | 16991 | 17688 | 18089 | 18949 | -0.5 | 0.0 | -0.4 | 0.1 | | Solids | 6433 | 6895 | 6887 | 6427 | 6012 | 6141 | 5358 | 5110 | 2807 | 3361 | 4240 | 0.7 | -1.3 | -0.4
-1.1 | -1.2 | | Oil | 4252 | 5047 | 4027 | 3741 | 3520 | 3375 | 3364 | 3383 | 3405 | 3380 | 3370 | -0.5 | -1.3 | -0.5 | 0.0 | | Natural gas | 2932 | 2804 | 2241 | 3162 | 3317 | 3398 | 3515 | 3925 | 3779 | 3512 | 3418 | -2.7 | 4.0 | 0.6 | -0.1 | | Nuclear | 4699 | 4826 | 3956 | 4015 | 4042 | 4042 | 4042 | 3574 | 6474 | 6474 | 6474 | -1.7 | 0.2 | 0.0 | 2.4 | | Electricity | -397 | -652 | -726 | -883 | -960 | -967 | -1356 | -1363 | -1366 | -1386 | -1373 | 6.2 | 2.8 | 3.5 | 0.1 | | Renewable energy forms | 788 | 1157 | 1446 | 1674 | 1946 | 2061 | 2239 | 2363 | 2589 | 2748 | 2821 | 6.3 | 3.0 | 1.4 | 1.2 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 34.4 | 34.3 | 38.6 | 35.4 | 33.6 | 34.0 | 31.2 | 30.1 | 15.9 | 18.6 | 22.4 | | | | | | Oil | 22.7 | 25.1 | 22.6 | 20.6 | 19.7 | 18.7 | 19.6 | 19.9 | 19.2 | 18.7 | 17.8 | | | | | | Natural gas | 15.7 | 14.0 | 12.6
22.2 | 17.4 | 18.6 | 18.8 | 20.5 | 23.1 | 21.4 | 19.4 | 18.0 | | | | | | Nuclear Renewable energy forms | 25.1
4.2 | 24.0
5.8 | 8.1 | 22.1
9.2 | 22.6
10.9 | 22.4
11.4 | 23.5
13.0 | 21.0
13.9 | 36.6
14.6 | 35.8
15.2 | 34.2
14.9 | | | | | | Gross Electricity Generation in GWh _e | 40639 | 43964 | 46009 | 50140 | 51374 | 52206 | 58405 | 60581 | 62802 | 66106 | 71088 | 1.2 | 1.1 | 1.3 | 1.0 | | Self consumption and grid losses | 10533 | 9116 | 9220 | 8340 | 7953 | 8001 | 8278 | 8656 | 8435 | 9036 | 11601 | -1.3 | -1.5 | 0.4 | 1.7 | | Fuel Inputs to Thermal Power Generation | 5986 | 6689 | 7552 | 7041 | 6692 | 6921 | 6410 | 6726 | 4292 | 4706 | 5534 | 2.4 | -1.2 | -0.4 | -0.7 | | Solids | 4928 | 5817 | 6611 | 5899 | 5500 | 5682 | 4935 | 4726 | 2442 | 3014 | 3907 | 3.0 | -1.8 | -1.1 | -1.2 | | Oil (including refinery gas) | 171 | 174 | 218 | 25 | 29 | 31 | 92 | 39 | 43 | 44 | 45 | 2.5 | -18.1 | 12.0 | -3.5 | | Gas (including derived gases) | 884 | 697 | 719 | 1079 | 1121 | 1168 | 1330 | 1700 | 1460 | 1214 | 1042 | -2.0 | 4.5 | 1.7 | -1.2 | | Biomass & Waste | 3 | 2 | 4 | 38 | 42 | 40 | 53 | 204 | 291 | 374 | 478 | 1.4 | 27.1 | 2.5 | 11.6 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 56 | 61 | 62 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 12382 5479 | 13822
6738 | 11449
6205 | 10360
5844 | 10286
5560 | 9850 5303 | 9664
5135 | 9055
4986 | 11863
4847 | 11728
4671 | 11563 4504 | -0.8
1.3 | -1.1
-1.1 | -0.6
-0.8 | 0.9
-0.7 | | Biofuels and hydrogen production | 0 | 0/30 | 13 | 47 | 214 | 202 | 209 | 202 | 191 | 189 | 178 | 0.0 | 31.9 | -0.2 | -0.8 | | District heating | 324 | 368 | 304 | 409 | 430 | 274 | 258 | 275 | 336 | 380 | 396 | -0.6 | 3.5 | -5.0 | 2.2 | | Derived gases, cokeries etc. | 6579 | 6717 | 4927 | 4060 | 4081 | 4071 | 4062 | 3592 | 6489 | 6487 | 6486 | -2.9 | -1.9 | 0.0 | 2.4 | | Energy Branch Consumption | 1062 | 1015 | 1002 | 880 | 832 | 827 | 831 | 849 | 805 | 846 | 1048 | | | 0.0 | 1.2 | | | 1002 | 1013 | | | | | | ~ | 811 | | | -0.6 | -1.8 | | | | Non-Energy Uses | 1265 | 1069 | 443 | 619 | 785 | 799 | 810 | 812 | 011 | 797 | 807 | -0.6
-10.0 | -1.8
5.9 | 0.3 | 0.0 | | Non-Energy Uses Final Energy Demand | | | | 619
9387 | 785
9461 | 799
9552 | 810
9676 | 812
9876 | 10205 | 797
10422 | 807
10680 | | | 0.3
0.2 | 0.0
0.5 | | | 1265 | 1069 | 443 | | | | | | | | | -10.0 | 5.9 | | | | Final Energy Demand by sector Industry | 1265
8640
3523 | 1069
9814
3714 | 443
8842
2541 | 9387
2695 | 9461
2774 | 9552
2836 | 9676
2868 | 9876
2926 | 10205
3031 | 10422
3053 | 10680
3120 | -10.0
0.2
-3.2 | 5.9
0.7
0.9 | 0.2 | 0.5
0.4 | | Final Energy Demand by sector Industry - energy intensive industries | 1265
8640
3523
2681 | 1069
9814
3714
2839 | 443
8842
2541
1768 | 9387
2695
1842 | 9461
2774
1896 | 9552
2836
1957 | 9676
2868
1974 | 9876
2926
2014 | 10205 3031 2086 | 3053
2093 | 10680
3120
2122 | -10.0
0.2
-3.2
-4.1 | 5.9
0.7
0.9
0.7 | 0.2
0.3
0.4 | 0.5
0.4
0.4 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors | 3523
2681
842 | 1069
9814
3714
2839
875 | 443
8842
2541
1768
772 | 9387
2695
1842
853 | 9461
2774
1896
878 | 9552
2836
1957
878 | 9676
2868
1974
894 | 9876
2926
2014
912 | 3031
2086
945 | 3053
2093
960 | 3120
2122
998 | -10.0
0.2
-3.2
-4.1
-0.9 | 5.9
0.7
0.9
0.7
1.3 | 0.2
0.3
0.4
0.2 | 0.5
0.4
0.4
0.6 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential | 1265
8640
3523
2681
842
2155 | 1069
9814
3714
2839
875
2117 | 443
8842
2541
1768
772
2246 | 9387
2695
1842
853
2426 | 9461
2774
1896
878
2435 | 9552
2836
1957
878
2507 | 9676
2868
1974
894
2543 | 9876
2926
2014
912
2664 | 3031
2086
945
2809 | 3053
2093
960
2957 | 3120
2122
998
3077 | -10.0
0.2
-3.2
-4.1
-0.9
0.4 | 5.9
0.7
0.9
0.7
1.3
0.8 | 0.2
0.3
0.4
0.2
0.4 | 0.5
0.4
0.4
0.6
1.0 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 1265
8640
3523
2681
842
2155
969 | 1069
9814
3714
2839
875
2117
1126 | 2541
1768
772
2246
1175 | 9387
2695
1842
853
2426
1309 | 9461
2774
1896
878
2435
1352 | 9552
2836
1957
878
2507
1371 | 2868
1974
894
2543
1381 | 9876
2926
2014
912 | 3031
2086
945
2809
1359 | 3053
2093
960
2957
1381 | 3120
2122
998
3077
1402 | -10.0
0.2
-3.2
-4.1
-0.9 | 5.9
0.7
0.9
0.7
1.3 | 0.2
0.3
0.4
0.2
0.4
0.2 | 0.5
0.4
0.4
0.6
1.0
0.1 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport | 1265
8640
3523
2681
842
2155 | 1069
9814
3714
2839
875
2117 | 443
8842
2541
1768
772
2246 | 9387
2695
1842
853
2426 | 9461
2774
1896
878
2435 | 9552
2836
1957
878
2507 | 9676
2868
1974
894
2543 | 9876
2926
2014
912
2664
1341 | 3031
2086
945
2809 | 3053
2093
960
2957 | 3120
2122
998
3077 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4 | 0.2
0.3
0.4
0.2
0.4 | 0.5
0.4
0.4
0.6
1.0 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 1265
8640
3523
2681
842
2155
969 | 1069
9814
3714
2839
875
2117
1126 | 2541
1768
772
2246
1175 | 9387
2695
1842
853
2426
1309 | 9461
2774
1896
878
2435
1352 | 9552
2836
1957
878
2507
1371 | 2868
1974
894
2543
1381 | 9876
2926
2014
912
2664
1341 | 3031
2086
945
2809
1359 | 3053
2093
960
2957
1381 | 3120
2122
998
3077
1402 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4 | 0.2
0.3
0.4
0.2
0.4
0.2 | 0.5
0.4
0.4
0.6
1.0
0.1 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 1265
8640
3523
2681
842
2155
969
1993 | 1069
9814
3714
2839
875
2117
1126
2856 | 2541
1768
772
2246
1175
2880 |
9387
2695
1842
853
2426
1309
2957 | 9461
2774
1896
878
2435
1352
2901 | 9552
2836
1957
878
2507
1371
2839 | 9676
2868
1974
894
2543
1381
2884 | 9876
2926
2014
912
2664
1341
2945 | 3031
2086
945
2809
1359
3006 | 3053
2093
960
2957
1381
3031 | 3120
2122
998
3077
1402
3081 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4 | 0.2
0.3
0.4
0.2
0.4
0.2
-0.1 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 1265
8640
3523
2681
842
2155
969
1993 | 1069
9814
3714
2839
875
2117
1126
2856 | 2541
1768
772
2246
1175
2880 | 9387
2695
1842
853
2426
1309
2957 | 9461
2774
1896
878
2435
1352
2901 | 9552
2836
1957
878
2507
1371
2839 | 9676
2868
1974
894
2543
1381
2884 | 9876
2926
2014
912
2664
1341
2945 | 3031
2086
945
2809
1359
3006 | 3053
2093
960
2957
1381
3031 | 3120
2122
998
3077
1402
3081 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1 | 0.2
0.3
0.4
0.2
0.4
0.2
-0.1 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 1265
8640
3523
2681
842
2155
969
1993 | 1069
9814
3714
2839
875
2117
1126
2856 | 443
8842
2541
1768
772
2246
1175
2880
470
3142 | 9387
2695
1842
853
2426
1309
2957
486
3105 | 9461
2774
1896
878
2435
1352
2901
468
2899 | 9552
2836
1957
878
2507
1371
2839
433
2789 | 9676 2868 1974 894 2543 1381 2884 398 2791 | 9876
2926
2014
912
2664
1341
2945
361
2818 | 3031
2086
945
2809
1359
3006 | 3053
2093
960
2957
1381
3031
328
2836 | 3120
2122
998
3077
1402
3081
312
2839 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8
-6.1
0.5 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1 | 0.2
0.3
0.4
0.2
0.4
0.2
-0.1 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963 | 9387
2695
1842
853
2426
1309
2957
486
3105
1188
2615
1000 | 9461
2774
1896
878
2435
1352
2901
468
2899
1130
2684
1033 | 9552
2836
1957
878
2507
1371
2839
433
2789
1304
2743
957 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8
-6.1
0.5
-2.3
1.1
0.9 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3
-1.2
0.1
0.3
1.2 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777 | 2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956 | 9387
2695
1842
853
2426
1309
2957
486
3105
1188
2615
1000
993 | 9461
2774
1896
878
2435
1352
2901
468
2899
1130
2684
1033
1249 | 9552
2836
1957
878
2507
1371
2839
433
2789
1304
2743
957
1327 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 | 3031
2086
945
2809
3006
347
2850
1314
3240
1221
1232 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8
-6.1
0.5
-2.3
1.1
0.9
5.6 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3
-1.2
0.1
0.3
1.2
-0.4 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 | 9461
2774
1896
878
2435
1352
2901
468
2899
1130
2684
1033
1249
0 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 | 3031
2086
945
2809
3006
347
2850
1314
3240
1221
1232
0 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8
-6.1
0.5
-2.3
1.1
0.9
5.6
0.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 13.0 | 0.5
0.4
0.6
1.0
0.1
0.3
-1.2
0.1
0.3
1.2
-0.4
8.4 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
0 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 13.0 1.3 | 0.5
0.4
0.4
0.6
1.0
0.1
0.3
-1.2
0.1
0.3
1.2
-0.4
8.4 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 |
10205
3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
0 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621 | -10.0
0.2
-3.2
-4.1
-0.9
0.4
1.9
3.8
-6.1
0.5
-2.3
1.1
0.9
5.6
0.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 13.0 1.3 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 0.3 1.2 -0.4 8.4 1.0 -1.6 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0
1336
61.2
35.8 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
423
19.8 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
1
2621
37.8 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4
-1.1
-1.2 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 1.3 -0.5 -0.7 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 0.3 1.2 -0.4 8.4 1.0 -1.6 -3.2 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
5555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0
1008
66.4
40.6
25.8 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
965
0
1336
61.2
35.8
25.4 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
0
2427
42.3
19.8
22.5 | 10422
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4
-1.1
-1.2
-0.9 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 13.0 -0.5 -0.7 -0.3 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 1.2 -0.4 8.4 1.0 -1.6 -3.2 0.0 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (CD13 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0
1336
61.2
35.8 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 22.7 38.5 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
0
2427
42.3
19.8
22.5
28.6 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
29.5 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 -0.2 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4
-1.1
-1.2 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 13.0 1.3 -0.5 -0.7 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 0.3 1.2 -0.4 8.4 1.0 -1.6 -3.2 0.0 -2.2 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 555 0 679 62.7 | 1069
9814
3714
2839
875
2117
1126
2856
978
3665
1243
2211
939
777
0
1008
66.4
40.6
25.8
48.5 | 443 8842 2541 1768 772 2246 1175 2880 470 3142 981 2330 963 963 966 0 1336 61.2 35.8 25.4 45.9 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 38.5 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
0
2427
42.3
19.8
22.5 | 10422
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4
-1.1
-1.2
-0.9 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 0.6 13.0 -0.5 -0.7 -0.3 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 0.3 1.2-0.4 1.0 -1.6 -3.2 -0.0 -2.2 -4.1 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating | 1265
8640
3523
2681
842
2155
969
1993
879
3003
1238
2085
879
555
0
0 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 66.4 40.6 25.8 48.5 27.9 | 443
8842
2541
1768
772
2246
1175
2880
470
3142
981
2330
963
956
0
1336
61.2
35.8
25.4
45.9
31.2 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 26.9 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 27.4 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 38.5 24.6 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 22.7 38.5 24.5 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
2
2427
42.3
19.8
22.5
28.6
14.4 |
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3
5
15.7 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.7 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 -0.2 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
0.0
-0.8
1.4
1.4
0.7
2.7
0.0
3.4
-1.1
-1.2
-0.9 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 13.0 1.3 -0.5 -0.7 -0.9 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 0.3 1.2 -0.4 8.4 1.0 -1.6 -3.2 0.0 -2.2 -4.1 -0.3 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 555 0 679 62.7 43.5 24.6 2.5 3.1.4 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 66.4 40.6 25.8 48.5 27.9 1.8 8.2 1.2 | 443 8842 2541 1768 772 2246 1175 2880 470 3142 981 2330 963 956 61.2 35.8 25.4 45.9 31.2 0.8 3.8 1.0 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 0.8 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 26.9 0.7 4.0 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 27.4 0.7 4.3 0.9 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 3.8.5 24.6 0.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 22.7 38.5 24.5 0.7 4.0 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
0
2427
42.3
19.8
22.5
28.6
14.4
0.7 | 3053
2093
960
2957
1381
3031
328
2836
2836
1214
3448
1332
1263
21.0
22.3
21.0
22.3
29.5
15.7
0.7
3.8 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.7
0.6
3.7 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 -0.2 0.5 2.4 -10.3 -7.6 -3.1 | 0.9 0.7 1.3 0.8 1.4 0.1 0.0 0.0 1.4 1.4 1.4 1.4 1.1 1.1 1.5 1.3 0.0 0.0 0.2 0.9 0.9 1.1 1.5 1.3 0.0 0.2 0.2 0.9 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | 0.2 0.3 0.4 0.2 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.6 0.7 0.6 0.7 0.6 0.7 0.0 0.7 0.0 0.7 0.0 0.0 0.7 0.0 0.0 | 0.5 0.4 0.4 0.6 0.1 0.3 -1.2 0.1 1.2 -0.4 1.0 -1.6 -3.2 -0.0 -2.2 -4.1 -0.4 -1.3 | | Final Energy Demand by sector Industry Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which nor ETS sectors CHG emissions of which nor ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 555 0 679 62.7 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 40.6 25.8 48.5 27.9 1.8 8.2 1.2 | 443 8842 2541 1768 772 2246 11775 2880 470 3142 981 2330 963 956 0 1336 61.2 35.8 25.4 45.9 31.2 0.8 3.8 1.0 0.8 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 0.8 4.1 1.0 0.8 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 26.9 0.7 4.0 1.0 0.8 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 27.4 0.7 4.3 0.9 0.7 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 38.5 6 0.7 4.0 0.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 11222 0 2195 52.5 29.7 22.7 38.5 0.7 4.0 0.7 | 10205 3031 2086 945 2809 1359 3006 347 2850 1314 3240 1221 1232 0 2427 42.3 19.8 22.5 28.6 14.4 0.7 4.1 0.7 | 10422
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3
29.5
15.7
0.7
3.8
0.6 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.6
3.7
0.6 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 -0.2 | 5.9
0.7
0.9
0.7
1.3
0.8
1.4
0.1
0.0
0.8
1.4
1.4
1.4
0.0
2.7
0.0
3.4
1.1
1.1
1.1
1.1
1.1
1.3
0.8
0.8
0.8
0.9
1.1
1.4
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 -0.6 0.6 0.6 -0.7 -0.3 -0.7 -0.7 -0.1 -3.2 -1.1 | 0.5 0.4 0.4 0.6 1.0 0.1 0.3 -1.2 0.1 1.2 -0.4 8.4 1.0 -1.6 -3.2 0.0 -2.2 -4.1 -0.3 -0.4 -1.3 -0.6 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which FTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 62.7 43.5 62.5 8.3 1.4 1.2 5.7 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 66.4 40.6 25.8 48.5 27.9 1.8 8.2 1.1 | 443 8842 2541 1768 772 2246 11775 2880 470 3142 981 2330 963 956 0 1336 61.2 35.8 35.8 35.8 36.8 38.8 1.0 0.8 8.3 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 0.8 4.1 1.0 0.8 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 26.9 0,7 4.0 1.0 0.8 7.8 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 27.4 0.7 7.6 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 38.5 24.6 0.7 4.0 0.7 7.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 38.5 24.5 0.7 4.0 0.7 7.9 | 10205 3031 2086 945 2809 1359 3006 347 2850 1314 3240 1221 1232 0 2427 42.3 19.8 22.5 28.6 14.4 0.7 4.1 0.7 6.6 8.1 | 10422
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3
29.5
15.7
3.8
0.6
0.6
8.1 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.7
0.6
0.6
8.2 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 -0.2 | 0.9 0.7 1.3 0.8 1.4 0.1 0.0 0.3 4.4 1.4 1.1 1.1 1.1 1.5 0.0 0.0 0.8 1.4 1.4 0.7 0.0 0.5 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 13.0 1.3 -0.7 -0.3 -0.7 -0.3 -1.1 -0.1 | 0.5 0.4 0.4 0.6 0.6 0.0 0.1 0.3 -1.2 0.1 0.3 1.2 -1.4 0.4 -1.6 -3.2 -4.1 -0.3 -0.4 -1.3 -0.6 0.3 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 555 0 679 62.7 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 66.4 40.6 25.8 48.5 27.9 1.8 8.2 1.2 1.1 4.1 | 443 8842 2541 1768 772 2246 11775 2880 470 3142 981 2330 963 956 0 1336 61.2 35.8 45.9 31.2 0.8 3.8 1.0 0.8 8.3 3.1 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 0.8 4.1 1.0 0.8 8.4 3.1 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 41.2 26.9 0.7 4.0 1.0 0.8 7.8 3.7 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 41.6 27.4 0.7 4.3 0.9 0.7 6 3.7 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 4.0 0.7 0.7 7.7 3.8 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 38.5 24.5 0.7 4.0 0.7 0.7 7.9 4.1 | 3031
2086
945
2809
1359
3006
347
2850
1314
3240
1221
1232
0
2427
42.3
19.8
22.5
28.6
14.4
0.7
0.7 | 3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
43.3
21.0
2573
43.3
21.0
22.3
29.5
15.7
0.6
0.6
0.6
0.6 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.7
0.6
0.6
0.6
0.6 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 -0.2 0.5 2.4 -10.3 -7.6 -3.1 -3.9 3.9 -2.3 | 0.9 0.7 1.3 0.8 1.4 0.1 0.0 0.0 3.4 1.1 1.1 1.5 1.3 0.6 0.2 0.5 0.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 | 0.2 0.3 0.4 0.2 0.4 0.2 0.4 0.2 -0.1 -1.6 0.6 0.7 0.6 0.6 13.0 -0.5 -0.7 -0.9 -0.1 -3.2 -1.1 -0.1 0.4 | 0.5 0.4 0.4 0.6 0.1 0.3 -1.2
0.1 0.3 1.2 -0.4 8.4 1.0 -1.6 -3.2 0.0 -2.2 -0.4 -1.3 -0.6 0.3 0.1 | | Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which FTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 1265 8640 3523 2681 842 2155 969 1993 879 3003 1238 2085 879 62.7 43.5 62.5 8.3 1.4 1.2 5.7 | 1069 9814 3714 2839 875 2117 1126 2856 978 3665 1243 2211 939 777 0 1008 66.4 40.6 25.8 48.5 27.9 1.8 8.2 1.1 | 443 8842 2541 1768 772 2246 11775 2880 470 3142 981 2330 963 956 0 1336 61.2 35.8 35.8 35.8 36.8 38.8 1.0 0.8 8.3 | 9387 2695 1842 853 2426 1309 2957 486 3105 1188 2615 1000 993 0 1598 57.3 33.3 24.0 43.6 28.5 0.8 4.1 1.0 0.8 | 9461 2774 1896 878 2435 1352 2901 468 2899 1130 2684 1033 1249 0 1871 55.0 31.8 23.1 41.2 26.9 0,7 4.0 1.0 0.8 7.8 | 9552 2836 1957 878 2507 1371 2839 433 2789 1304 2743 957 1327 0 1986 55.3 32.5 22.8 41.6 27.4 0.7 7.6 | 9676 2868 1974 894 2543 1381 2884 398 2791 1198 2872 1093 1323 0 2137 52.1 29.7 22.4 38.5 24.6 0.7 4.0 0.7 7.7 | 9876 2926 2014 912 2664 1341 2945 361 2818 1277 3021 1177 1222 0 2195 52.5 29.7 38.5 24.5 0.7 4.0 0.7 7.9 | 10205 3031 2086 945 2809 1359 3006 347 2850 1314 3240 1221 1232 0 2427 42.3 19.8 22.5 28.6 14.4 0.7 4.1 0.7 6.6 8.1 | 10422
3053
2093
960
2957
1381
3031
328
2836
1214
3448
1332
1263
1
2573
43.3
21.0
22.3
29.5
15.7
3.8
0.6
0.6
0.6 | 3120
2122
998
3077
1402
3081
312
2839
1267
3663
1385
1214
1
2621
37.8
15.6
22.2
24.5
10.7
0.6
0.6
8.2 | -10.0 0.2 -3.2 -4.1 -0.9 0.4 1.9 3.8 -6.1 0.5 -2.3 1.1 0.9 5.6 0.0 7.0 -0.2 | 0.9 0.7 1.3 0.8 1.4 0.1 0.0 0.3 4.4 1.4 1.1 1.1 1.1 1.5 0.0 0.0 0.8 1.4 1.4 0.7 0.0 0.5 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 | 0.2 0.3 0.4 0.2 0.4 0.2 -0.1 -1.6 -0.4 0.6 0.7 0.6 13.0 1.3 -0.7 -0.3 -0.7 -0.3 -1.1 -0.1 | 0.5 0.4 0.4 0.6 0.6 0.0 0.1 0.3 -1.2 0.1 0.3 1.2 -1.4 0.4 -1.6 -3.2 -4.1 -0.3 -0.4 -1.3 -0.6 0.3 | | UMMARY ENERGY BALANCE AND INDICATO | ORS (B) | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | garia: R | | | | |---|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|--------------|-------------|----| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 '
Ar | 10-'20 ' | | | | ain Energy System Indicators | | | | | | | | | | | | | | Onunge | | | opulation (Million) | 8.191 | 7.761 | 7.564 | 7.362 | 7.121 | 6.856 | 6.611 | 6.406 | 6.235 | 6.070 | 5.899 | -0.8 | -0.6 | -0.7 | | | OP (in 000 M€10) | 24.2 | 31.6 | 36.1 | 40.9 | 45.1 | 48.0 | 51.5 | 55.4 | 59.2 | 62.3 | 64.9 | 4.1 | 2.3 | 1.3 | | | ross Inl. Cons./GDP (toe/M€10) | 774.0 | 636.2 | 494.6 | 443.5 | 396.3 | 376.4 | 333.1 | 306.8 | 298.9 | 290.2 | 291.9 | -4.4 | -2.2 | -1.7 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.33 | 2.41 | 2.57 | 2.40 | 2.31 | 2.30 | 2.24
38.7 | 2.27 | 1.61 | 1.63 | 1.29 | 1.0 | -1.1 | -0.3 | | | port Dependency %
tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 46.5 | 47.5 | 40.3 | 39.6 | 38.9 | 37.3 | | 40.2 | 36.3 | 34.0 | 32.6 | | | 4.0 | | | | 5.3 | 7.6 | 9.2 | 11.8 | 13.7 | 15.0 | 16.1 | 16.8 | 18.6 | 19.5 | 20.8 | 5.7 | 4.1 | 1.6 | | | as % of GDP | 21.7 | 24.0 | 25.5 | 28.9 | 30.3 | 31.3 | 31.2 | 30.3 | 31.4 | 31.3 | 32.1 | | | | | | ergy intensity indicators
lustry (Energy on Value added, index 2000=100) | 100.0 | 78.7 | 40.5 | 38.3 | 36.2 | 35.0 | 32.8 | 31.3 | 30.2 | 28.9 | 28.2 | -8.6 | -1.1 | -1.0 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 71.6 | 40.5
67.1 | 63.9 | 57.8 | 55.6 | 51.9 | 49.8 | 48.3 | 47.5 | 47.4 | -3.9 | -1.1
-1.5 | -1.0 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 89.1 | 83.8 | 81.7 | 75.8 | 71.7 | 67.1 | 60.4 | 57.3 | 55.2 | 53.9 | -1.8 | -1.0 | -1.1 | | | ssenger transport (toe/Mpkm) | 26.2 | 26.8 | 23.8 | 23.1 | 20.8 | 19.1 | 18.4 | 17.9 | 17.6 | 17.5 | 17.4 | -0.9 | -1.3 | -1.2 | | | eight transport (toe/Mtkm) | 46.9 | 55.8 | 49.5 | 47.9 | 46.2 | 43.2 | 41.5 | 40.6 | 39.7 | 38.7 | 38.3 | 0.5 | -0.7 | -1.1 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.46 | 0.49 | 0.51 | 0.44 | 0.40 | 0.41 | 0.33 | 0.32 | 0.18 | 0.18 | 0.12 | 1.2 | -2.4 | -2.0 | | | al energy demand (t of CO ₂ /toe) | 1.91 | 1.91 | 1.57 | 1.53 | 1.43 | 1.42 | 1.36 | 1.35 | 1.32 | 1.26 | 1.23 | -1.9 | -0.9 | -0.5 | | | ndustry | 2.35 | 2.22 | 1.48 | 1.50 | 1.44 | 1.50 | 1.40 | 1.38 | 1.35 | 1.23 | 1.20 | -4.5 | -0.3 | -0.3 | | | Residential | 0.63 | 0.58 | 0.44 | 0.43 | 0.42 | 0.35 | 0.29 | 0.27 | 0.23 | 0.21 | 0.18 | -3.5 | -0.6 | -3.6 | | | ertiary | 1.24 | 0.97 | 0.69 | 0.60 | 0.57 | 0.54 | 0.50 | 0.49 | 0.46 | 0.45 | 0.43 | -5.7 | -1.9 | -1.3 | | | ransport (C) | 2.84 | 2.87 | 2.88 | 2.85 | 2.69 | 2.69 | 2.68 | 2.68 | 2.68 | 2.67 | 2.68 | 0.1 | -0.7 | 0.0 | | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 6.8 | 9.1 | 13.2 | 15.6 | 18.2 | 19.2 | 20.3 | 20.4 | 21.9 | 22.7 | 22.1 | | | | | | S in transport (%) | 0.1 | 0.2 | 0.8 | 2.5 | 10.1 | 10.1 | 10.6 | 10.5 | 10.2 | 10.4 | 10.0 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 40646 | 43972 | 46017 | 50140 | 51374 | 52206 | 58405 | 60581 | 62802 | 66106 | 71088 | 1.2 | 1.1 | 1.3 | | | luclear energy | 18178 | 18653 | 15249 | 15310 | 15310 | 15310 | 15310 | 15450 | 28197 | 28197 | 28197 | -1.7 | 0.0 | 0.0 | | | olids | 16941 | 18458 | 22606 | 22209 | 21343 | 22026 | 24062 | 23239 | 12612 | 15771 | 21005 | 2.9 | -0.6 | 1.2 | | | Dil (including refinery gas) | 661 | 606 | 393 | 101 | 101 | 81 | 473 | 218 | 101 | 178 | 204 | -5.1 | -12.7 | 16.7 | | | Gas (including derived gases) | 2178 | 1896 | 1967 | 4913 | 6868 | 6892 | 8611 | 10789 | 9285 | 7800 | 6737 | -1.0 | 13.3 | 2.3 | | | iomass-waste | 15 | 17 | 49 | 172 | 187 | 179 | 260 | 1025 | 1499 | 1948 | 2520 | 12.6 | 14.3 | 3.3 | | | lydro (pumping excluded)
Vind | 2673
0 | 4337
5 | 5057
681 | 4686
1337 | 4657
1395 | 4585
1440 | 4631
2684 | 4680
2684 | 4723
3813 | 4762
3892 | 4810
3908 | 6.6
0.0 | -0.8
7.4 | -0.1
6.8 | | | Solar | 0 | 0 | 15 | 1414 | 1515 | 1693 | 2375 | 2430 | 2506 | 3488 | 3634 | 0.0 | 58.8 | 4.6 | | | Seothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 2373 | 65 | 65 | 70 | 72 | 0.0 | | -100.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 9723 | 9899 | 8665 | 10234 | 11232 | 11922 | 13355 | 12888 | 14946 | 15645 | 16385 | -1.1 | 2.6 | 1.7 | | | luclear energy | 3473 | 2678 | 1885 | 1910 | 1923 | 1923 | 1923 | 1939 | 3539 | 3539 | 3539 | -5.9 | 0.2 | 0.0 | | | Renewable energy | 977 | 1977 | 2607 | 4194 | 4323 | 4412 | 5333 | 5360 | 6227 | 6868 | 6972 | 10.3 | 5.2 | 2.1 | | | Hydro (pumping excluded) | 977 | 1967 | 2207 | 2284 | 2284 | 2284 | 2284 | 2284 | 2284 | 2284 | 2284 | 8.5 | 0.3 | 0.0 | | | Wind | 0 | 10 | 375 | 850 | 923 | 923 | 1515 | 1515 | 2346 | 2346 | 2354 | 0.0 | 9.4 | 5.1 | | | Solar | 0 | 0 | 25 | 1060 | 1116 | 1205 | 1534 | 1561 | 1598 | 2238 | 2334 | 0.0 | 46.2 | 3.2 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | <u>hermal power</u> | 5273 | 5244 | 4174 | 4130 | 4986 | 5587 | 6099 | 5588 | 5180 | 5238 | 5874 | -2.3 | 1.8 | 2.0 | | | of which cogeneration units | 1129 | 1177 | 970 | 1093 | 1510 | 2020 | 2368 | 2503 | 2553 | 2769 | 2892 | -1.5 | 4.5 | 4.6 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 104 | 1235 | 0.0 | 0.0 | 0.0 | | | Solids fired Gas fired | 4426
578 | 4375
600 | 3285
615 | 2711
1105 | 2891
1803 | 2866
2346 | 3518
2283 | 2943
2384 | 2563
2308 | 2631
2292 | 3762
1773 | -2.9
0.6 | -1.3
11.4 | 2.0
2.4 | | | Oil fired | 235 | 234 | 262 | 264 | 237 | 320 | 239 | 192 | 195 | 158 | 158 | 1.1 | -1.0 | 0.1 | | | Biomass-waste fired | 35 | 35 | 11 | 50 | 55 | 55 | 59 | 62 | 106 | 149 | 174 | -11.1 | 17.6 | 0.7 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 8 | 8 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 43.0 | 46.0 | 54.8 | 52.3 | 49.3 | 47.1 | 47.2 | 50.6 | 45.6 | 45.6 | 45.4 | | | | | | ectricity indicators | | | 20 | | | | | 23.0 | | | | | | | f | | iciency of gross thermal power generation (%) | 28.4 | 27.0 | 28.5 | 33.5 | 36.6 | 36.3 | 44.8 | 45.2 | 47.2 | 47.1 | 47.5 | | | | | | of gross electricity from CHP | 7.8 | 6.1 | 8.0 | 12.1 | 17.0 | 19.3 | 22.9 | 24.5 | 23.4 | 24.1 | 23.7 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 18.4 | | | | | | rbon free gross electricity generation (%) | 51.3 | 52.3 | 45.7 | 45.7 | 44.9 | 44.5 | 43.2 | 43.5 | 65.0 | 64.1 | 60.7 | | | | | | uclear | 44.7 | 42.4 | 33.1 | 30.5 | 29.8 | 29.3 | 26.2 | 25.5 | 44.9 | 42.7 | 39.7 | | | | | | enewable energy forms | 6.6 | 9.9 | 12.6 | 15.2 | 15.1 | 15.1 | 17.0 | 18.0 | 20.1 | 21.4 | 21.0 | | | | | | ansport sector | | | | | | | | | | | | | | | 11 | | ssenger transport activity (Gpkm) | 47.7 | 56.0 | 65.5 | 68.3 | 71.0 | 73.8 | 76.8 | 79.4 | 82.0 | 83.7 | 85.5 | 3.2 | 8.0 |
8.0 | | | Public road transport | 14.6 | 13.7 | 10.6 | 10.9 | 11.2 | 11.5 | 11.9 | 12.2 | 12.5 | 12.6 | 12.7 | -3.1 | 0.6 | 0.6 | | | rivate cars and motorcycles | 27.5 | 35.8 | 47.9 | 49.1 | 50.0 | 50.9 | 51.8 | 52.9 | 53.7 | 54.0 | 54.1 | 5.7 | 0.4 | 0.4 | | | ail | 3.9 | 2.8 | 3.0 | 3.4 | 3.8 | 4.1 | 4.4 | 4.5 | 4.7 | 4.8 | 4.9 | -2.5 | 2.4 | 1.4 | | | viation | 1.7 | 3.6 | 3.9 | 4.8 | 6.0 | 7.2 | 8.7 | 9.8 | 11.1 | 12.3 | 13.7 | 8.9 | 4.5 | 3.8 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -2.4 | 0.6 | 0.4 | | | eight transport activity (Gtkm) | 12.3 | 20.3 | 23.7 | 25.4 | 27.3 | 29.3 | 31.5 | 33.4 | 35.3 | 36.5 | 37.7 | 6.8 | 1.4 | 1.5 | | | rucks | 6.4 | 14.4 | 19.4 | 20.6 | 21.8 | 23.1 | 24.5 | 26.0 | 27.5 | 28.4 | 29.3 | 11.7 | 1.1 | 1.2 | | | Rail | 5.5 | 5.2 | 3.1 | 3.5 | 4.0 | 4.6 | 5.2 | 5.5 | 5.8 | 6.0 | 6.2 | -5.7 | 2.7 | 2.7 | | | land navigation | 0.3 | 0.8 | 1.2 | 1.4 | 1.5 | 1.6 | 1.8 | 1.9 | 2.0 | 2.1 | 2.1 | 14.3 | 2.4 | 1.6 | _ | | | | 2632 | 2730 | 2792 | 2738 | 2678 | 2722 | 2778 | 2843 | 2875 | 2929 | 4.1 | 0.0 | -0.1 | | | ergy demand in transport (ktoe) ^(G) | 1822 | | | | | | | | 100 | | | | | -0.1 | | | ergy demand in transport (ktoe) ^(G)
Public road transport | 142 | 131 | 99 | 99 | 101 | 99 | 99 | 99 | 100 | 98 | 98 | -3.6 | 0.2 | | | | ergy demand in transport (ktoe) ^(G)
Public road transport
Private cars and motorcycles | 142
987 | 1156 | 1270 | 1246 | 1119 | 1023 | 993 | 982 | 972 | 961 | 953 | 2.6 | -1.3 | -1.2 | | | nland navigation ergy demand in transport (ktoe) ^(©) Public road transport Private cars and motorcycles Flucks | 142
987
513 | 1156
1075 | 1270
1129 | 1246
1171 | 1119
1207 | 1023
1213 | 993
1248 | 982
1296 | 972
1341 | 961
1356 | 953
1388 | 2.6
8.2 | -1.3
0.7 | -1.2
0.3 | | | ergy demand in transport (ktoe) ^(G)
Public road transport
Private cars and motorcycles | 142
987 | 1156 | 1270 | 1246 | 1119 | 1023 | 993 | 982 | 972 | 961 | 953 | 2.6 | -1.3 | -1.2 | | | Croatia: Reference scenario | | | | | | | | SUM | MARY E | NERGY I | BALAN | CE AND | INDIC | ATORS | (A) | |---|---|---|--|---|--|--|--|--|---|--|---|--|--|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | '00-'10 | | | | | | | | | | | | | | | | | Ar | nnual % | Change | | | Production (incl.recovery of products) | 3590 | 3808 | 4216 | 3021 | 2248 | 2265 | 2385 | 2463 | 2583 | 2657 | 2595 | 1.6 | -6.1 | 0.6 | 0.4 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -91.0 | -100.0 | 0.0 | 0.0 | | Oil
Natural gas | 1355
1355 | 1037
1865 | 761
2215 | 634
995 | 552
0 | 482
0 | 428
0 | 380 | 332
0 | 284
0 | 234 | -5.6
5.0 | -3.2
-100.0 | -2.5
0.0 | -3.0
0.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 880 | 906 | 1239 | 1392 | 1696 | 1783 | 1957 | 2083 | 2251 | 2374 | 2361 | 3.5 | 3.2 | 1.4 | 0.9 | | Hydro | 505 | 545 | 716 | 588 | 599 | 617 | 675 | 690 | 725 | 742 | 752 | 3.6 | -1.8 | 1.2 | 0.5 | | Biomass & Waste | 375 | 360 | 499 | 666 | 849 | 847 | 934 | 1031 | 1090 | 1135 | 1113 | 2.9 | 5.4 | 1.0 | 0.9 | | Wind | 0 | 1 | 12 | 67 | 112 | 122 | 125 | 125 | 170 | 189 | 197 | 0.0 | 25.0 | 1.1 | 2.3 | | Solar and others
Geothermal | 0 | 0 | 5
7 | 57
13 | 122
15 | 185
12 | 213
10 | 226
10 | 255
11 | 296
12 | 286
12 | 0.0
0.0 | 37.1
8.1 | 5.7
-4.1 | 1.5
1.1 | | Net Imports | 4176 | 5262 | 4481 | 5693 | 6363 | 6258 | 6220 | 6217 | 6225 | 6302 | 6450 | 0.7 | 3.6 | -0.2 | 0.2 | | Solids | 478 | 624 | 699 | 505 | 483 | 323 | 262 | 345 | 343 | 245 | 229 | 3.9 | -3.6 | -5.9 | -0.7 | | Oil | 2448 | 3637 | 3000 | 2914 | 2800 | 2775 | 2856 | 2873 | 2904 | 2934 | 2968 | 2.1 | -0.7 | 0.2 | 0.2 | | - Crude oil and Feedstocks | 3987 | 4374 | 3662 | 3526 | 3416 | 3370 | 3402 | 3377 | 3362 | 3347 | 3332 | -0.8 | -0.7 | 0.0 | -0.1 | | - Oil products | -1539 | -737 | -662 | -613 | -615 | -595 | -546 | -504 | -458 | -413 | -364 | -8.1 | -0.7 | -1.2 | -2.0 | | Natural gas | 905 | 562 | 475 | 1969 | 2718 | 2799 | 2692 | 2566 | 2643 | 2877 | 2953 | -6.2 | 19.0 | -0.1 | 0.5 | | Electricity | 344 | 440 | 410 | 419 | 486 | 478 | 532 | 573 | 486 | 385 | 439 | 1.8 | 1.7 | 0.9 | -1.0 | | Gross Inland Consumption | 7847 | 8961 | 8575 | 8707 | 8604 | 8516 | 8598 | 8672 | 8800 | 8952 | 9037 | 0.9 | 0.0 | 0.0 | 0.2 | | Solids | 431 | 683 | 683 | 505
3541 | 483 | 323 | 262 | 345 | 343 | 245 | 229 | 4.7 | -3.4 | -5.9
-0.2 | -0.7 | | Oil
Natural gas | 3983
2209 | 4556
2377 | 3713
2632 | 3541
2964 | 3345
2718 | 3250
2799 | 3277
2692 | 3246
2565 | 3229
2643 | 3210
2876 | 3195
2953 | -0.7
1.8 | -1.0
0.3 | -0.2
-0.1 | -0.1
0.5 | | Nuclear | 2209 | 23// | 2032 | 2964 | 0 | 2799 | 2092 | 2565 | 2043 | 2076 | 2953 | 0.0 | 0.0 | 0.0 | 0.0 | | Electricity | 344 | 440 | 410 | 419 | 486 | 478 | 532 | 573 | 486 | 385 | 439 | 1.8 | 1.7 | 0.9 | -1.0 | | Renewable energy forms | 880 | 906 | 1137 | 1278 | 1571 | 1667 | 1835 | 1943 | 2101 | 2235 | 2221 | 2.6 | 3.3 | 1.6 | 1.0 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 5.5 | 7.6 | 8.0 | 5.8 | 5.6 | 3.8 | 3.0 | 4.0 | 3.9 | 2.7 | 2.5 | | | | | | Oil | 50.8 | 50.8 | 43.3 | 40.7 | 38.9 | 38.2 | 38.1 | 37.4 | 36.7 | 35.9 | 35.4 | | | | | | Natural gas | 28.2 | 26.5 | 30.7 | 34.0 | 31.6 | 32.9 | 31.3 | 29.6 | 30.0 | 32.1 | 32.7 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 11.2 | 10.1 | 13.3 | 14.7 | 18.3 | 19.6 | 21.3 | 22.4 | 23.9 | 25.0 | 24.6 | | | | | | Gross Electricity Generation in GWh _e | 10588 | 12352 | 13997 | 14253 | 14490 | 14171 | 14783 | 15426 | 17474 | 20116 | 20504 | 2.8 | 0.3 | 0.2 | 1.6 | | Self consumption and grid losses | 2476 | 2639 | 2538 | 2391 | 2469 | 2438 | 2589 | 2747 | 2886 | 3026 | 3158 | 0.2 | -0.3 | 0.5 | 1.0 | | Fuel Inputs to Thermal Power Generation | 1249 | 1481 | 1271 | 1259 | 1127 | 1026 | 1015 | 983 | 1085 | 1303 | 1317 | 0.2 | -1.2 | -1.0 | 1.3 | | Solids Oil (including refinery gas) | 357
395 | 537
450 | 532
121 | 364
37 | 343
32 | 197
31 | 134
31 | 215
29 | 213
48 | 116
55 | 100
55 | 4.1
-11.1 | -4.3
-12.5 | -9.0
-0.2 | -1.4
2.9 | | Gas (including ferritery gas) | 497 | 490 | 611 | 813 | 724 | 705 | 687 | 554 | 628 | 868 | 916 | 2.1 | 1.7 | -0.2 | 1.4 | | Biomass & Waste | 0 | 4 | 7 | 44 | 28 | 93 | 163 | 185 | 196 | 265 | 246 | 38.4 | 15.1 | 19.4 | 2.1 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 5440 | 5375 | 4419 | 4198 | 4163 | 4031 | 4006 | 3943 | 3875 | 3789 | 3744 | -2.1 | -0.6 | -0.4 | -0.3 | | Refineries | 5345 | 5259 | 4314 | 4057 | 3865 | 3747 | 3720 | 3648 | 3588 | 3526 | 3465 | -2.1 | -1.1 | -0.4 | -0.4 | | Biofuels and hydrogen production | 0 | 0 | 3 | 43 | 180 | 167 | 166 | 165 | 158 | 149 | 152 | 0.0 | 51.3 | -0.8 | -0.4 | | District heating | 83 | 104 | 97 | 98 | 118 | 115 | 119 | 128 | 127 | 113 | 125 | 1.6 | 2.0 | 0.0 | 0.3 | | Derived gases, cokeries etc. | 12 | 13 | 4 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | -9.8 | -21.8 | 11.4 | 1.7 | | Energy Branch Consumption | 831 | 832 | 744 | 612 | 512 | 498 | 491 | 484 | 479 | 473 | 464 | -1.1 | -3.7 | -0.4 | -0.3 | | Non-Energy Uses | 682 | 715 | 596 | 612 | 594 | 599 | 589 | 584 | 578 | 571 | 564 | -1.3 | 0.0 | -0.1 | -0.2 | | Final Energy Demand | 5345 | 6335 | 6333 | 6715 | 6811 | 6778 | 6867 | 7013 | 7104 | 7230 | 7315 | 1.7 | 0.7 | 0.1 | 0.3 | | by sector
Industry | 1392 | 1580 | 1377 | 1495 | 1562 | 1600 | 1599 | 1650 | 1689 | 1761 | 1790 | -0.1 | 1.3 | 0.2 | 0.6 | | - energy intensive industries | 847 | 911 | 752 | 790 | 815 | 827 | 843 | 872 | 905 | 987 | 1015 | -1.2 | 0.8 | 0.2 | 0.9 | | - other industrial sectors | 545 | 668 | 624 | 705 | 747 | 773 | 757 | 778 | 784 | 774 | 775 | 1.4 | 1.8 | 0.1 | 0.1 | | Residential | 1664 | 1926 | 1892 | 2000 | 1989 | 1987 | 1977 | 2004 | 2002 | 2019 | 2018 | 1.3 |
0.5 | -0.1 | 0.1 | | Tertiary | 758 | 921 | 1006 | 1032 | 1091 | 1084 | 1145 | 1187 | 1224 | 1264 | 1296 | 2.9 | 0.8 | 0.5 | 0.6 | | Transport | 1531 | 1908 | 2058 | 2188 | 2169 | 2107 | 2146 | 2171 | 2188 | 2186 | 2212 | 3.0 | 0.5 | -0.1 | 0.2 | | by fuel | | | | | | | | | | | | | | | | | Solids | 74 | 146 | 150 | 141 | 138 | 126 | 128 | 130 | 130 | 129 | 129 | 7.3 | -0.9 | -0.7 | 0.0 | | Oil | 2665 | 3093 | 2888 | 2891 | 2721 | 2639 | 2665 | 2642 | 2636 | 2624 | 2616 | 0.8 | -0.6 | -0.2 | -0.1 | | Gas | 1009 | 1243
1240 | 1288
1364 | 1425
1412 | 1346
1498 | 1454
1465 | 1392
1559 | 1409
1642 | 1421
1718 | 1435
1832 | 1467
1908 | 2.5
3.1 | 0.4
0.9 | 0.3 | 0.3
1.0 | | Electricity | 1000 | | 1304 | 1412 | | | 287 | 287 | 281 | 1832
285 | 1908 | 1.4 | 1.4 | 0.4 | 0.0 | | Heat (from CHP and District Heating) | 1009 | | 245 | 276 | | | | | | 200 | | | | 0.2 | 0.0 | | Heat (from CHP and District Heating) | 213 | 257 | 245
398 | 276
570 | 281
827 | 288
806 | | | 916 | 922 | 906 | | 7.6 | 0.1 | 0.4 | | Renewable energy forms | | | 245
398
0 | 276
570
0 | 281
827
0 | 806
1 | 836
1 | 901 | 916
2 | 922
3 | 906
3 | 0.6
0.0 | 7.6
51.2 | 0.1
12.1 | | | Renewable energy forms Other fuels (hydrogen, ethanol) | 213
375
0 | 257
356
0 | 398
0 | 570
0 | 827
0 | 806
1 | 836
1 | 901
1 | 2 | 3 | 3 | 0.6
0.0 | 51.2 | 12.1 | 5.3 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption ^(A) | 213
375
0
815 | 257
356
0
847 | 398
0
942 | 570
0
1263 | 827
0
1544 | 806
1
1591 | 836
1
1703 | 901
1
1824 | 2
1958 | 3
2077 | 3
2057 | 0.6
0.0
1.5 | 51.2
5.1 | 12.1
1.0 | 5.3
1.0 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 213
375
0 | 257
356
0 | 398
0 | 570
0 | 827
0 | 806
1 | 836
1 | 901
1 | 2 | 2077
21.7 | 2057
21.7 | 0.6
0.0 | 51.2 | 12.1
1.0
-0.6 | 5.3
1.0
-0.4 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption ^(A) | 213
375
0
815 | 257
356
0
847
30.1 | 398
0
942
27.9 | 570
0
1263
26.8 | 827
0
1544
24.9 | 806
1
1591
24.3 | 836
1
1703
23.4 | 901
1
1824
23.2 | 2
1958
23.3 | 3
2077 | 3
2057 | 0.6
0.0
1.5 | 51.2
5.1
-1.1 | 12.1
1.0 | 5.3
1.0
-0.4
-0.8 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 213
375
0
815 | 257
356
0
847
30.1
12.6 | 398
0
942
27.9
10.7 | 570
0
1263
26.8
10.2 | 827
0
1544
24.9
9.2 | 806
1
1591
24.3
8.5 | 836
1
1703
23.4
7.9 | 901
1
1824
23.2
8.0 | 2
1958
23.3
8.2 | 3
2077
21.7
6.7 | 2057
21.7
6.7 | 0.6
0.0
1.5 | 51.2
5.1
-1.1
-1.6 | 12.1
1.0
-0.6
-1.5 | 5.3
1.0
-0.4
-0.8
-0.2 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption ^(A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating | 213
375
0
815
25.7 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1 | 398
0
942
27.9
10.7
17.1
18.5
4.3 | 570
0
1263
26.8
10.2
16.6
18.0
3.7 | 827
0
1544
24.9
9.2
15.8
16.8
3.5 | 806
1
1591
24.3
8.5
15.8
16.1
2.8 | 836
1
1703
23.4
7.9
15.5
15.7
2.5 | 901
1824
23.2
8.0
15.2
15.7
2.5 | 2
1958
23.3
8.2
15.1
15.8
2.7 | 3
2077
21.7
6.7
15.0
15.9
2.8 | 2057
21.7
6.7
15.0
16.0
2.9 | 0.6
0.0
1.5
0.8 | 51.2
5.1
-1.1
-1.6
-0.8
-1.0
-2.1 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 213
375
0
815
25.7
16.9
4.1
2.0 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1 | 2057
21.7
6.7
15.0
16.0
2.9
1.1 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1 | 51.2
5.1
-1.1
-1.6
-0.8
-1.0
-2.1
-3.2 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which no ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry | 213
375
0
815
25.7
16.9
4.1
2.0
2.9 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8 | 2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1 | 51.2
5.1
-1.1
-1.6
-0.8
-1.0
-2.1
-3.2
0.2 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6
0.0 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 213
375
0
815
25.7
16.9
4.1
2.0
2.9
1.9 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5
2.4 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8
2.1 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0
2.0 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9
1.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9
2.0 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9
2.0 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8
2.1 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8
2.0 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8
2.0 | 3
2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8
2.0 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1
-0.2 | 51.2
5.1
-1.1
-1.6
-0.8
-1.0
-2.1
-3.2
0.2
-0.9 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1
0.5 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6
0.0
-0.2 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 213
375
0
815
25.7
16.9
4.1
2.0
2.9
1.9 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5
2.4
1.5 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8
2.1 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0
2.0
1.4 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9
1.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9
2.0
1.3 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9
2.0
1.2 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8
2.1 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8
2.0
1.2 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8
2.0 | 3
2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8
2.0
1.2 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1
-0.2
1.0
-0.6 | 51.2
5.1
-1.1
-1.6
-0.8
-1.0
-2.1
-3.2
0.2
-0.9
-0.4 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1
0.5
-1.0 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6
0.0
-0.2
-0.1 | | Renewable energy
forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 213
375
0
815
25.7
16.9
4.1
2.0
2.9
1.9
1.5
4.5 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5
2.4
1.5
5.7 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8
2.1
1.4
6.1 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0
2.0
1.4
6.4 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9
1.9
1.3
5.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9
2.0
1.3
5.7 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9
2.0
1.2
5.8 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8
2.1
1.2
5.9 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8
2.0
1.2
6.0 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8
2.0
1.2
6.0 | 3
2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8
2.0
1.2 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1
-0.2
1.0
-0.6
3.1 | 51.2 5.1 -1.1 -1.6 -0.8 -1.0 -2.1 -3.2 0.2 -0.9 -0.4 -0.4 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1
0.5
-1.0
-0.1 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6
0.0
-0.2
-0.1
0.2 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 213
375
0
815
25.7
16.9
4.1
2.0
2.9
1.9
1.5
4.5
2.6 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5
2.4
1.5
5.7
3.1 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8
2.1
1.4
6.1
2.5 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0
2.0
1.4
6.4
2.7 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9
1.9
1.3
5.9
2.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9
2.0
1.3
5.7
2.9 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9
2.0
1.2
5.8
2.4 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8
2.1
1.2
5.9
2.3 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8
2.0
1.2
6.0
2.3 | 3 2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8
2.0
1.2
6.0
0.5 | 3
2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8
2.0
1.2
6.0
0.4 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1
-0.2
1.0
-0.6
3.1 | 51.2 5.1 -1.1 -1.6 -0.8 -1.0 -2.1 -3.2 0.2 -0.9 -0.4 -0.4 1.2 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1
0.5
-1.0
-0.1
-1.8 | 5.3
1.0
-0.4
-0.8
-0.2
0.1
0.8
-0.6
0.0
-0.2
-0.1
0.2
-8.6 | | Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 213
375
0
815
25.7
16.9
4.1
2.0
2.9
1.9
1.5
4.5 | 257
356
0
847
30.1
12.6
17.6
20.2
5.1
2.0
3.5
2.4
1.5
5.7 | 398
0
942
27.9
10.7
17.1
18.5
4.3
1.8
2.8
2.1
1.4
6.1 | 570
0
1263
26.8
10.2
16.6
18.0
3.7
1.5
3.0
2.0
1.4
6.4 | 827
0
1544
24.9
9.2
15.8
16.8
3.5
1.3
2.9
1.9
1.3
5.9 | 806
1
1591
24.3
8.5
15.8
16.1
2.8
1.2
2.9
2.0
1.3
5.7 | 836
1
1703
23.4
7.9
15.5
15.7
2.5
1.2
2.9
2.0
1.2
5.8 | 901
1
1824
23.2
8.0
15.2
15.7
2.5
1.2
2.8
2.1
1.2
5.9 | 2
1958
23.3
8.2
15.1
15.8
2.7
1.2
2.8
2.0
1.2
6.0 | 3
2077
21.7
6.7
15.0
15.9
2.8
1.1
2.8
2.0
1.2
6.0 | 3
2057
21.7
6.7
15.0
16.0
2.9
1.1
2.8
2.0
1.2 | 0.6
0.0
1.5
0.8
0.9
0.3
-1.1
-0.2
1.0
-0.6
3.1 | 51.2 5.1 -1.1 -1.6 -0.8 -1.0 -2.1 -3.2 0.2 -0.9 -0.4 -0.4 | 12.1
1.0
-0.6
-1.5
-0.1
-0.7
-3.2
-0.6
-0.1
0.5
-1.0
-0.1 | 0.8
-0.6
0.0
-0.2 | | JMMARY ENERGY BALANCE AND INDICATO | • • | | | | | | | | | | | oatia: R | | | | |---|---|---|---|--|---|--|--|---|---|---|--|--|---|---|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | in Energy System Indicators | | | | | | | | | | | | Ar | nnual % | Change | • | | pulation (Million) | 4.506 | 4.466 | 4.426 | 4.554 | 4.632 | 4.659 | 4.658 | 4.646 | 4.629 | 4.609 | 4.573 | -0.2 | 0.5 | 0.1 | | | PP (in 000 M€10) | 35.3 | 43.9 | 45.9 | 51.0 | 56.6 | 62.2 | 67.6 | 73.4 | 77.7 | 81.8 | 85.4 | 2.7 | 2.1 | 1.8 | | | oss Inl. Cons./GDP (toe/M€10) | 222.5 | 204.3 | 186.8 | 170.7 | 152.0 | 136.9 | 127.2 | 118.1 | 113.2 | 109.4 | 105.8 | -1.7 | -2.0 | -1.8 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.16 | 2.25 | 2.16 | 2.07 | 1.96 | 1.89 | 1.82 | 1.81 | 1.80 | 1.78 | 1.77 | 0.0 | -1.0 | -0.7 | | | port Dependency % | 53.1 | 58.6 | 52.2 | 65.3 | 73.9 | 73.4 | 72.3 | 71.6 | 70.7 | 70.3 | 71.3 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 4.2 | 6.1 | 9.0 | 11.3 | 12.6 | 13.7 | 14.7 | 15.5 | 16.2 | 16.9 | 17.3 | 7.9 | 3.4 | 1.6 | | | s % of GDP | 11.9 | 14.0 | 19.6 | 22.1 | 22.2 | 22.0 | 21.8 | 21.1 | 20.8 | 20.7 | 20.2 | | | | | | ergy intensity indicators
lustry (Energy on Value added, index 2000=100) | 0.0 | 0.0 | 100.0 | 00.0 | 04.0 | 00.0 | 02.5 | 04.5 | 00.4 | 04.7 | 04.0 | 0.0 | 0.0 | 0.0 | | | sidential (Energy on Private Income, index 2000=100) | 0.0
112.1 | 0.0
102.7 | 100.0
100.0 | 98.2
92.5 | 91.8
80.9 | 86.3
71.8 | 83.5
64.5 | 81.5
59.0 | 80.1
54.9 | 81.7
52.0 | 81.2
49.3 | 0.0
-1.1 | -0.8
-2.1 | -0.9
-2.2 | | | rtiary (Energy on Value added, index 2000=100) | 0.0 | 0.0 | 100.0 | 89.6 | 86.3 | 77.5 | 75.5 | 73.0 | 71.8 | 71.5 | 71.4 | 0.0 | -1.5 | -1.3 | | | ssenger transport (toe/Mpkm) | 47.4 | 41.7 | 41.6 | 39.6 | 35.6 | 31.8 | 29.4 | 27.8 | 26.7 | 25.9 | 25.2 | -1.3 | -1.5 | -1.9 | | | ight transport (toe/Mtkm) | 42.1 | 43.1 | 52.5 | 53.4 | 49.5 | 44.9 | 43.9 | 43.9 | 42.2 | 40.7 | 40.4 | 2.2 | -0.6 | -1.2 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.31 | 0.32 | 0.25 | 0.21 | 0.19 | 0.16 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | -2.2 | -2.6 | -3.4 | | | nal energy demand (t of CO ₂ /toe) | 2.01 | 2.06 | 1.97 | 1.90 | 1.77 | 1.77 | 1.74 | 1.70 | 1.68 | 1.65 | 1.64 | -0.2 | -1.1 | -0.2 | | | ndustry | 2.07 | 2.22 | 2.06 | 2.00 | 1.85 | 1.82 | 1.79 | 1.69 | 1.66 | 1.59 | 1.58 | 0.0 | -1.1 | -0.3 | | | Residential | 1.15 | 1.25 | 1.12 | 1.02 | 0.97 | 1.03 | 1.03 | 1.02 | 1.00 | 0.99 | 0.98 | -0.3 | -1.4 | 0.6 | | | ertiary | 1.94 | 1.59 | 1.38 | 1.31 | 1.22 | 1.21 | 1.06 | 1.00 | 0.96 | 0.94 | 0.91 | -3.3 | -1.2 | -1.4 | | | ransport (C) | 2.94 | 2.97 | 2.97 | 2.92 | 2.72 | 2.72 | 2.72 | 2.72 | 2.72 | 2.73 | 2.72 | 0.1 | -0.9 | 0.0 | | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (%) | 14.5 | 12.8 | 14.2 | 18.1 | 21.9 | 22.6 | 23.9 | 25.0 | 26.5 | 27.6 | 27.0 | | | | | | S in transport (%) | 0.4 | 0.4 | 0.4 | 1.7 | 10.3 | 10.4 | 10.6 | 10.8 | 10.9 | 11.0 | 11.3 | | | | | | ss Electricity generation by source (in GWh _e) ^(E) | 10590 | 12354 | 13999 | 14253 | 14490 | 14171 | 14783 | 15426 | 17474 | 20116 | 20504 | 2.8 | 0.3 | 0.2 | | | uclear energy | 0
1551 | 0 | 0 | 1200 | 1225 | 0 | 0 | 0
751 | 720 | 403 | 0
351 | 0.0 | 0.0 | 0.0 | | | olids | 1551 | 2328 | 2385 | 1288
192 | 1235 | 695 | 468 | 751 | 729
296 | 403
337 | 351
336 | 4.4 | -6.4
-10.5 | -9.2
-0.2 | | | il (including refinery gas)
as (including derived gases) | 1594
1571 | 1855
1814 | 560
2553 | 4941 | 185
4645 | 181
4020 | 182
3863 | 184
3945 | 4558 | 6342 | 6706 | -9.9
5.0 | 6.2 | -1.8 | | | iomass-waste | 0 | 14 | 33 | 188 | 126 | 409 | 695 | 795 | 842 | 1289 | 1153 | 0.0 | 14.4 | 18.6 | | | ydro (pumping excluded) | 5874 | 6333 | 8329 | 6842 | 6965 | 7179 | 7853 | 8022
 8430 | 8625 | 8744 | 3.6 | -1.8 | 1.2 | | | /ind | 0 | 10 | 139 | 785 | 1299 | 1417 | 1451 | 1456 | 1974 | 2196 | 2291 | 0.0 | 25.0 | 1.1 | | | olar | 0 | 0 | 0 | 17 | 35 | 269 | 272 | 272 | 646 | 923 | 923 | 0.0 | 76.8 | 22.8 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 3310 | 3587 | 3850 | 4774 | 5198 | 5442 | 5931 | 6373 | 6877 | 7376 | 7646 | 1.5 | 3.0 | 1.3 | | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | enewable energy | 1786 | 1842 | 1989 | 2457 | 2714 | 2913 | 3099 | 3132 | 3685 | 3978 | 4031 | 1.1 | 3.2 | 1.3 | | | Hydro (pumping excluded) | 1786 | 1836 | 1900 | 2047 | 2047 | 2036 | 2204 | 2235 | 2312 | 2331 | 2346 | 0.6 | 0.7 | 0.7 | | | Wind
Solar | 0 | 6
0 | 89
0 | 394
16 | 640
27 | 697
180 | 713
182 | 715
182 | 948
426 | 1040
606 | 1079
606 | 0.0 | 21.8
70.3 | 1.1
20.9 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 1524 | 1745 | 1861 | 2317 | 2485 | 2529 | 2831 | 3241 | 3192 | 3398 | 3615 | 2.0 | 2.9 | 1.3 | | | of which cogeneration units | 558 | 515 | 486 | 515 | 561 | 507 | 503 | 640 | 573 | 979 | 1060 | -1.4 | 1.4 | -1.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 313 | 321 | 325 | 316 | 204 | 204 | 190 | 190 | 190 | 190 | 102 | 0.4 | -4.6 | -0.7 | | | Gas fired | 781 | 986 | 1097 | 1553 | 1841 | 1906 | 2231 | 2966 | 2900 | 2878 | 3172 | 3.5 | 5.3 | 1.9 | | | Oil fired | 387 | 394 | 396 | 400 | 391 | 361 | 361 | 45 | 62 | 56 | 66 | 0.2 | -0.1 | -0.8 | | | Biomass-waste fired | 44 | 44 | 43 | 48 | 48 | 59 | 50 | 41 | 41 | 274 | 274 | -0.2 | 1.2 | 0.5 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 35.0 | 37.8 | 40.1 | 33.3 | 31.2 | 29.0 | 27.8 | 27.0 | 28.4 | 30.5 | 30.0 | | | | | | ctricity indicators | 20.5 | 24.0 | 27.4 | 45.4 | 47.0 | 44.5 | 44.4 | 40.0 | 500 | 55.0 | FF.0 | | | | | | ciency of gross thermal power generation (%) | 32.5 | 34.9 | 37.4 | 45.1
18.5 | 47.2 | 44.5
17.0 | 44.1 | 49.6 | 50.9 | 55.2 | 55.8 | | | | | | of gross electricity from CHP of electricity from CCS | 17.0
0.0 | 16.8
0.0 | 14.3
0.0 | 18.5
0.0 | 19.1
0.0 | 17.0
0.0 | 16.2
0.0 | 23.8
0.0 | 20.2
0.0 | 24.2
0.0 | 22.5
0.0 | | | | | | bon free gross electricity generation (%) | 55.5 | 51.5 | 60.7 | 54.9 | 58.1 | 65.4 | 69.5 | 68.4 | 68.1 | 64.8 | 63.9 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 55.5 | 51.5 | 60.7 | 54.9 | 58.1 | 65.4 | 69.5 | 68.4 | 68.1 | 64.8 | 63.9 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 28.0 | 32.9 | 34.9 | 38.2 | 41.7 | 44.9 | 48.3 | 50.6 | 53.1 | 54.8 | 56.6 | 2.2 | 1.8 | 1.5 | | | ublic road transport | 3.3 | 3.4 | 3.4 | 3.7 | 4.0 | 4.2 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 0.1 | 1.8 | 1.0 | | | ubiic roau transport | 20.2 | 24.2 | 26.0 | 28.1 | 30.2 | 32.1 | 34.1 | 35.1 | 36.0 | 36.3 | 36.4 | 2.6 | 1.5 | 1.2 | | | | | 1.8 | 2.3 | 2.5 | 2.7 | 2.8 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 2.7 | 1.6 | 1.2 | | | rivate cars and motorcycles | 1.8 | | 3.1 | 3.9 | 4.8 | 5.7 | 6.7 | 7.8 | 9.1 | 10.4 | 11.8 | 1.3 | 4.3 | 3.5 | | | rivate cars and motorcycles
ail
viation | 2.8 | 3.4 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 210.3 | 1.6 | 1.4 | | | rivate cars and motorcycles
ail
viation
land navigation | 2.8
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 4.0 | | | rivate cars and motorcycles
ail
viation
land navigation
ight transport activity (Gtkm) | 2.8
0.0
4.7 | 0.0
12.3 | 0.0
11.5 | 12.6 | 13.7 | 15.0 | 16.4 | 17.3 | 18.2 | 18.8 | 19.4 | 9.4 | 1.7 | 1.8 | | | rivate cars and motorcycles
all
viation
Iland navigation
ight transport activity (Gtkm)
rucks | 2.8
0.0
4.7
2.9 | 0.0
12.3
9.3 | 0.0
11.5
8.8 | 12.6 9.6 | 13.7 10.5 | 11.5 | 12.6 | 13.4 | 14.1 | 14.7 | 15.2 | 11.9 | 1.8 | 1.9 | | | rivate cars and motorcycles all viation liand navigation ight transport activity (Gtkm) rucks ail | 2.8
0.0
4.7
2.9
1.8 | 0.0
12.3
9.3
2.8 | 0.0
11.5
8.8
2.6 | 9.6
2.8 | 13.7
10.5
3.0 | 11.5
3.3 | 12.6
3.6 | 13.4
3.7 | 14.1
3.8 | 14.7
3.9 | 15.2
3.9 | 11.9
3.9 | 1.8
1.4 | 1.9
1.7 | | | rivate cars and motorcycles all viation lland navigation ight transport activity (Gtkm) rucks all lland navigation | 2.8
0.0
4.7
2.9
1.8
0.1 | 0.0
12.3
9.3
2.8
0.1 | 0.0
11.5
8.8
2.6
0.1 | 9.6
2.8
0.2 | 13.7
10.5
3.0
0.2 | 11.5
3.3
0.2 | 12.6
3.6
0.2 | 13.4
3.7
0.2 | 14.1
3.8
0.2 | 14.7
3.9
0.2 | 15.2
3.9
0.2 | 11.9
3.9
8.5 | 1.8
1.4
1.7 | 1.9
1.7
1.8 | | | rivate cars and motorcycles ail viation lland navigation ight transport activity (Gtkm) rucks ail lland navigation ergy demand in transport (ktoe) (G) | 2.8
0.0
4.7
2.9
1.8
0.1 | 0.0
12.3
9.3
2.8
0.1
1901 | 0.0
11.5
8.8
2.6
0.1
2056 | 12.6
9.6
2.8
0.2
2184 | 13.7
10.5
3.0
0.2
2165 | 11.5
3.3
0.2
2103 | 12.6
3.6
0.2
2141 | 13.4
3.7
0.2
2167 | 14.1
3.8
0.2
2184 | 14.7
3.9
0.2
2182 | 15.2
3.9
0.2
2208 | 11.9
3.9
8.5
3.0 | 1.8
1.4
1.7
0.5 | 1.9
1.7
1.8
-0.1 | | | rivate cars and motorcycles all viation lland navigation ight transport activity (Gtkm) rucks all lland navigation ergy demand in transport (ktoe) (G) | 2.8
0.0
4.7
2.9
1.8
0.1
1525
54 | 0.0
12.3
9.3
2.8
0.1
1901
54 | 0.0
11.5
8.8
2.6
0.1
2056
54 | 12.6
9.6
2.8
0.2
2184
57 | 13.7
10.5
3.0
0.2
2165
60 | 11.5
3.3
0.2
2103
61 | 12.6
3.6
0.2
2141
61 | 13.4
3.7
0.2
2167
60 | 14.1
3.8
0.2
2184
61 | 14.7
3.9
0.2
2182
60 | 15.2
3.9
0.2
2208
60 | 11.9
3.9
8.5
3.0
0.0 | 1.8
1.4
1.7
0.5
1.2 | 1.9
1.7
1.8
-0.1
0.1 | | | trivate cars and motorcycles tail viviation hland navigation sight transport activity (Gtkm) rucks tail hland navigation ergy demand in transport (ktoe) (G) tublic road transport trivate cars and motorcycles | 2.8
0.0
4.7
2.9
1.8
0.1
1525
54
1182 | 0.0
12.3
9.3
2.8
0.1
1901
54
1212 | 0.0
11.5
8.8
2.6
0.1
2056
54
1270 | 12.6
9.6
2.8
0.2
2184
57
1307 | 13.7
10.5
3.0
0.2
2165
60
1259 | 11.5
3.3
0.2
2103
61
1184 | 12.6
3.6
0.2
2141
61
1155 | 13.4
3.7
0.2
2167
60
1130 | 14.1
3.8
0.2
2184
61
1122 | 14.7
3.9
0.2
2182
60
1105 | 15.2
3.9
0.2
2208
60
1093 | 11.9
3.9
8.5
3.0
0.0
0.7 | 1.8
1.4
1.7
0.5
1.2
-0.1 | 1.9
1.7
1.8
-0.1
0.1
-0.9 | | | trivate cars and motorcycles tail viviation land navigation tight transport activity (Gtkm) rucks tail bland navigation ergy demand in transport (ktoe) (6) tublic road transport riviate cars and motorcycles rucks | 2.8
0.0
4.7
2.9
1.8
0.1
1525
54
1182
147 | 0.0
12.3
9.3
2.8
0.1
1901
54
1212
461 | 0.0
11.5
8.8
2.6
0.1
2056
54
1270
537 | 12.6
9.6
2.8
0.2
2184
57
1307
606 | 13.7
10.5
3.0
0.2
2165
60
1259
610 | 11.5
3.3
0.2
2103
61
1184
602 | 12.6
3.6
0.2
2141
61
1155
646 | 13.4
3.7
0.2
2167
60
1130
682 | 14.1
3.8
0.2
2184
61
1122
690 | 14.7
3.9
0.2
2182
60
1105
685 | 15.2
3.9
0.2
2208
60
1093
705 | 11.9
3.9
8.5
3.0
0.0
0.7
13.9 | 1.8
1.4
1.7
0.5
1.2
-0.1
1.3 | 1.9
1.7
1.8
-0.1
0.1
-0.9
0.6 | _ | | rivate cars and motorcycles all viation land navigation ight transport activity (Gtkm) rucks all land navigation ergy demand in transport (ktoe) (G) ublic road transport rivate cars and motorcycles | 2.8
0.0
4.7
2.9
1.8
0.1
1525
54
1182 | 0.0
12.3
9.3
2.8
0.1
1901
54
1212 | 0.0
11.5
8.8
2.6
0.1
2056
54
1270 | 12.6
9.6
2.8
0.2
2184
57
1307 | 13.7
10.5
3.0
0.2
2165
60
1259 | 11.5
3.3
0.2
2103
61
1184 | 12.6
3.6
0.2
2141
61
1155 | 13.4
3.7
0.2
2167
60
1130 | 14.1
3.8
0.2
2184
61
1122 | 14.7
3.9
0.2
2182
60
1105 | 15.2
3.9
0.2
2208
60
1093 | 11.9
3.9
8.5
3.0
0.0
0.7 | 1.8
1.4
1.7
0.5
1.2
-0.1 | 1.9
1.7
1.8
-0.1
0.1
-0.9 | | | Production Pro | Cyprus: Reference scenario | | | | | | | | SUM | IMARY F | NERGY | BAL AN | CE AND | INDIC | ATORS | S (A) |
--|--|------|------|------|------|------|------|------|------|---------|-------|--------|--------|---------|--------|--------------| | Production for section S | ** | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | | | | | | | | | | Second | | | | | | | | | | | | | Ar | nnual % | Change | | | Columbia | | | | | | | | | | | | | | | | 1.9 | | Name | | | | | | | | | | | | | | | | | | Marcine Marc | | | | • | | | | | • | | | | | | | | | Bitterniss Waters | | 0 | | | | | | | | | | | | | | 0.0 | | December Personal Property Prop | | | | | | | | | | | | | | | | | | Scale part of the Personal P | The state of s | | | | | | | | | | | | | | | | | Second members | | | | | | | | | | | | | | | | | | Marcine 1 | | | | | | | | | | | | | | | | | | Solice S | | 0 | 0 | 1 | 2 | 3 | 5 | 7 | | 5 | 4 | 4 | 0.0 | 16.1 | 7.3 | | | One change of and Feedersces 1912 2779 2880 2882 1879 1813 1868 1897 1711 1728 1749 14 5-3 0-1 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | | | | | | | | | | | | | | | 3.6 | | | | | | | | | | | | | | | | | | -0.2 | | -Oil products 1358 2779 2890 2835 1980 1514 1567 1580 2714 1727 1749 740 52.5 25.2 25.5 2 | | | | | | | | | | | | | | | | | | Enemotry 0 | | | | | | | | | • | | | | | | | | | Solids 10 20 20 20 20 20 20 20 | · | | | | | | | | | | | | | | | | | Solicis 12 26 26 27 27 27 27 27 2 | Electricity | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | -4.0 | -3.4 | | Discrimination Color Col | - | | | | | | | | | | | | | | | 0.2 | | Nuclear 1 | | | | | | | | | | | | | | | | | | Nuclear 0 | | | | | | | | | | | | | | | | | | Renewable enemgy forms | | | | | | | | | | | | | | | | 0.0 | | as No Process Inland Consumption 1.4 | | | | 0 | | | | | 0 | | | | | | | 0.0 | | Solids 1.4 1.4 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 | Renewable energy forms | 46 | 57 | 108 | 201 | 320 | 406 | 491 | 561 | 601 | 639 | 658 | 9.0 | 11.5 | 4.4 | 1.5 | | Natural gas | · · | | | | | | | | | | | | | | | | | Nuclear Nuclear Nuclear | | | | | | | | | | | | | | | | | | Nuclear Nucl | | | | | | | | | | | | | | | | | | Self-controlly Generation in CWM Self-controlly Generation in CWM Self-controlly Generation and grid licenses 357 414 460 431 460 441 410 410 430 410 430 410 430 410 430 430 440 415 430 405 240 230 | = | | | | | | | | | | | | | | | | | Self-consumption and girlosess 357 414 409 403 416 404 415 401 419 439 455 2.6 410 3.0
3.0 3 | Renewable energy forms | 1.9 | 2.3 | 4.0 | 7.1 | 12.4 | 15.9 | 18.7 | 21.5 | 22.4 | 23.4 | 24.0 | | | | | | Feel Impairs to Thermial Flower Generation Set 1977 1176 1114 683 781 754 771 695 786 790 2.9 3.1 -1.3 | Gross Electricity Generation in GWh _e | 3369 | 4376 | 5344 | 5655 | 6482 | 6679 | 7162 | 7177 | 7570 | 8029 | 8314 | 4.7 | 1.9 | 1.0 | 0.7 | | Solids | | | | | | | | | | | | | | | | 0.5 | | Collingular grafemeng ass Self 1077 176 1089 30 5 6 0 0 0 0 2.9 307 15.5 10.00 2.9 307 | | | | | | | | | | | | | | | | | | Sea (including derived gases) 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | Secretary Secr | | | | | | | | | | | | | | | | | | Hydrogen - Methanol 0 | | 0 | | 0 | | | | | | | | | | | | 3.6 | | Fuel Input to other conversion processes | Geothermal heat | 0 | 0 | 0 | | 0 | 0 | | 0 | | 0 | 0 | | 0.0 | | 0.0 | | Relinences | | _ | | | | - | | | | | | | | | | 0.0 | | Biolay Section Color C | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | Desired gases, cokeries etc. | | | | | | | | | | | | | | | | | | Peniny granch Consumption S4 22 21 23 13 11 10 9 10 10 11 -3.0 -4.8 -2.0 0.1 | | | | | | | | | | | | | | | | | | Non-Energy Uses | - | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | | | | 0.5 | | Final Energy Demand 1632 1816 1921 2043 2089 2098 2186 2200 2258 2295 2313 1.6 0.8 0.5 0.3 | Energy Branch Consumption | 54 | 22 | 21 | 23 | 13 | 11 | 10 | 9 | 10 | 10 | 11 | -9.0 | -4.8 | -2.0 | 0.1 | | Name | Non-Energy Uses | 84 | 70 | 83 | 84 | 82 | 81 | 85 | 90 | 96 | 102 | 108 | -0.1 | -0.2 | 0.3 | 1.2 | | Industry Horising Hor | | 1632 | 1816 | 1921 | 2043 | 2089 | 2098 | 2186 | 2200 | 2258 | 2295 | 2313 | 1.6 | 0.8 | 0.5 | 0.3 | | - energy intensive industries | • | 444 | 240 | 220 | 202 | 255 | 252 | 200 | 202 | 204 | 224 | 225 | 6.4 | 0.0 | 0.5 | 1.0 | | - other industrial sectors | | | | | | | | | | | | | | | | | | Residential | | | | | | | | | | | | | | | | | | Transport Solids | | | | 373 | 377 | | | | 363 | | 357 | | | | | | | Solids 32 36 18 15 133 11 11 10 11 10 10 1 | | | | | | | | | | | | | | | | | | Solids 32 36 18 15 13 11 11 10 11 10 11 10 10 10 -5.7 -3.2 -2.0 -0.2 Oil 1300 1386 1375 1445 1335 1287 1311 1311 1330 1318 1310 0.6 -0.3 -0.2 0.0 Gas 0 0 0 0 0 0 8 8 8 8 8 7 8 8 8 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 | Transport | 850 | 972 | 1039 | 1093 | 1089 | 1078 | 1119 | 1136 | 1169 | 1169 | 1179 | 2.0 | 0.5 | 0.3 | 0.3 | | Oil 1300 1386 1375 1445 1335 1287 1311 1311 1330 1318 1310 0.6 -0.3 -0.2 0.0 Gas 0 0 0 0 0 8 8 8 7 8 8 12 0.0 0.0 0.0 0.2 2.1 1.1 0.0 <t< td=""><td></td><td>22</td><td>26</td><td>10</td><td>15</td><td>12</td><td>11</td><td>11</td><td>10</td><td>11</td><td>10</td><td>10</td><td>E 7</td><td>2.2</td><td>2.0</td><td>0.2</td></t<> | | 22 | 26 | 10 | 15 | 12 | 11 | 11 | 10 | 11 | 10 | 10 | E 7 | 2.2 | 2.0 | 0.2 | | Gas | | | | | | | | | | | | | | | | | | Electricity | | | | | | | | | | | | | | | | 2.1 | | Renewable energy forms | | | | | | | | | | | | | | | | 0.8 | | Other fuels (hydrogen, ethanol) O 0 0 0 0 2 4 4 5 5 5 5 6 7.2 0.0 9.0 1.5 RES in Gross Final Energy Consumption (A) 42 51 103 169 281 355 425 481 498 522 529 9.4 10.6 4.2 1.1 TOTAL GHG emissions (Mt of CO2 eq.) 10.9 10.3 10.1 9.8 8.0 7.8 7.8 7.6 7.8 7.9 7.9 -0.7 -2.3 -0.3 0.1 of which ETS sectors (2013 scope) GHG emissions 6.0 5.8 5.8 4.3 4.1 4.0 3.8 4.0 4.0 4.0 4.0 -2.9 -0.7 -0.1 of which non ETS sectors GHG emissions 4.3 4.4 4.0 3.7 3.7 3.8 3.8 3.9 3.9 3.9 -1.6 0.1 0.2 CO2 Emissions (energy related) 7.1 7.9 8.1 8.0 6.2 5.8 5.8 5.6 5.7 5.6 5.6 1.3 -2.7 -0.6 -0.2 Power generation/District heating 2.8 3.5 3.8 3.5 2.0 1.8 1.7 1.5 1.5 1.5 1.5 1.5 2.9 -6.2 -1.6 -0.6 Energy Branch 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | 3.1 | | RES in Gross Final Energy Consumption (A) 42 51 103 169 281 355 425 481 498 522 529 9.4 10.6 4.2 1.1 TOTAL GHG emissions (Mt of CO2 eq.) 10.9 10.3 10.1 9.8 8.0 7.8 7.8 7.6 7.8 7.9 7.9 -0.7 -2.3 -0.3 0.1 of which ETS sectors (2013 scope) GHG emissions 6.0 5.8 5.8 4.3 4.1 4.0 3.8 4.0 4.0 4.0 4.0 -2.9 -0.7 -0.1 of which not ETS sectors GHG emissions 7.1 7.9 8.1 8.0 6.2 5.8 5.8 5.6 5.7 5.6 5.6 5.6 1.3 -2.7 -0.6 -0.2 Power generation/District heating 2.8 3.5 3.8 3.5 2.0 1.8 1.7 1.5 1.5 1.5 1.5 1.5 2.9 -6.2 -1.6 -0.6 Energy Branch 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | | | | | | | | TOTAL GHG emissions (Mt of CO2 eq.) 10.9 10.9 10.9 10.1 9.8 8.0 7.8 7.8 7.6 7.8 7.9 7.9 7.9 7.9 7.0 7.0 7.0 7.0 | | | | | | | | | | | | | | | | | | of which ETS sectors (2013 scope) GHG emissions of which etch is sectors (2013 scope) GHG emissions of which etch is sectors (2013 scope) GHG emissions of which etch is sectors (2013 scope) GHG emissions of which etch is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions of the which is sectors (2013 scope) GHG emissions | | | | | | | | | | | | | | | | | | of which non ETS sectors GHG emissions 4.3 4.4 4.0 3.7 3.7 3.8 3.8 3.9 3.9 3.9 3.9 -1.6 0.1 0.2 CO ₂ Emissions (energy related) 7.1 7.9 8.1 8.0 6.2 5.8 5.8 5.8 5.6 5.7 5.6 5.6 1.3 -2.7 -0.6 -0.2 Power generation/District heating 2.8 3.5 3.8 3.5 2.0 1.8 1.7 1.5 1.5 1.5 1.5 1.5 2.9 -6.2 -1.6 -0.2 Energy Branch 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | , ,,, | 10.9 | | | | | | | | | | | -0.7 | | | | | CO2 Emissions (energy related) 7.1 7.9 8.1 8.0 6.2 5.8 5.6 5.7 5.6 5.6 1.3 -2.7 -0.6 -0.2 Power generation/District heating 2.8 3.5 3.8 3.5 2.0 1.8 1.7 1.5 1.5 1.5 2.9 -6.2 -1.6 -0.6 Energy Branch 0.1 0.0 0 | | | | | | | | | | | | | | | | 0.2 | | Energy Branch 0.1 0.0 0.0
0.0 < | | | 7.9 | | | 6.2 | | | | | | | | -2.7 | | -0.2 | | Industry 1.4 1.0 0.6 0.7 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | | | | | | | | | | | | | | | -0.6 | | Residential 0.2 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 6.7 -2.8 -2.8 -3.6 Tertiary 0.0 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 2.5 -1.9 -1.6 Transport 2.6 2.9 3.1 3.2 3.0 3.2 3.2 3.3 3.3 3.3 1.8 -0.1 0.4 0.3 CO ₂ Emissions (non energy related) 0.8 0.9 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 -3.2 1.5 -1.6 0.6 Non-CO ₂ GHG emissions 3.0 1.4 1.5 1.1 1.2 1.3 1.4 1.5 1.6 1.6 -6.9 -2.2 1.9 0.7 | | | | | | | | | | | | | | | | 0.0 | | Tertiary 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 2.5 -1.9 -1.6 Transport 2.6 2.9 3.1 3.2 3.0 3.0 3.2 3.2 3.3 3.3 3.3 1.8 -0.1 0.4 0.3 CO ₂ Emissions (non energy related) 0.8 0.9 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 -3.2 1.5 -1.6 0.6 Non-CO ₂ GHG emissions 3.0 1.4 1.5 1.1 1.2 1.3 1.4 1.5 1.5 1.6 1.6 -6.9 -2.2 1.9 0.7 | The state of s | | | | | | | | | | | | | | | | | Transport 2.6 2.9 3.1 3.2 3.0 3.0 3.2 3.2 3.3 3.3 3.3 1.8 -0.1 0.4 0.3 CO ₂ Emissions (non energy related) 0.8 0.9 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 -3.2 1.5 -1.6 0.6 Non-CO ₂ GHG emissions 3.0 1.4 1.5 1.1 1.2 1.3 1.4 1.5 1.5 1.6 1.6 -6.9 -2.2 1.9 0.7 | | | | | | | | | | | | | | | | -3.6
-1.6 | | CO_2 Emissions (non energy related) 0.8 0.9 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.7 -3.2 1.5 -1.6 0.6 Non- CO_2 GHG emissions 3.0 1.4 1.5 1.1 1.2 1.3 1.4 1.5 1.5 1.6 1.6 -6.9 -2.2 1.9 0.7 | | | | | | | | | | | | | | | | 0.3 | | | CO ₂ Emissions (non energy related) | | 0.9 | | 0.7 | | | | | | | | | | | 0.6 | | TOTAL GHG emissions Index (1990=100) 151.1 142.2 140.3 136.5 111.2 107.6 107.8 105.7 108.4 109.5 109.2 | Non-CO ₂ GHG emissions | 3.0 | | | | 1.2 | | | | | | 1.6 | -6.9 | -2.2 | 1.9 | 0.7 | UMMARY ENERGY BALANCE AND INDICATO | | 2005 | 2010 | 2045 | 2020 | 2025 | 2020 | 2025 | 2040 | 2045 | | prus: R | | | | |---|--------------|---------------|---------------|--------------|--------------|--------------|---------------|----------------|----------------|----------------|----------------|-----------|--------------|--------------|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | | | | ain Energy System Indicators | | | | | | | | | | | | | | Onlange | | | opulation (Million) | 0.690 | 0.749 | 0.803 | 0.839 | 0.885 | 0.933 | 0.973 | 1.007 | 1.036 | 1.064 | 1.090 | 1.5 | 1.0 | 1.0 | | | DP (in 000 M€10) | 13.1 | 15.4 | 17.3 | 18.3 | 19.8 | 21.7 | 24.1 | 27.1 | 30.3 | 33.3 | 36.2 | 2.8 | 1.3 | 2.0 | | | oss Inl. Cons./GDP (toe/M€10) | 182.0 | 163.5 | 156.7 | 155.0 | 131.1 | 117.6 | 108.8 | 96.2 | 88.7 | 81.8 | 75.7 | -1.5 | -1.8 | -1.9 | | | arbon intensity (t of CO ₂ /toe of GIC) sport Dependency % | 2.98
98.6 | 3.15
100.7 | 2.97
100.9 | 2.84
95.2 | 2.38
62.2 | 2.27
-5.2 | 2.20
-72.7 | 2.13
-101.8 | 2.10
-131.2 | 2.07
-143.2 | 2.05
-136.9 | 0.0 | -2.2 | -0.8 | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 1.1 | 2.0 | 2.8 | 3.4 | 3.4 | 3.8 | 4.3 | | 4.8 | 5.0 | 5.2 | 9.8 | 2.2 | 2.1 | | | as % of GDP | 8.3 | 12.8 | 16.0 | 18.9 | 3.4
17.4 | 3.6
17.7 | 4.3
17.6 | 4.5
16.5 | 15.8 | 15.0 | 14.4 | 9.6 | 2.2 | 2.1 | | | ergy intensity indicators | 0.3 | 12.0 | 10.0 | 10.9 | 17.4 | 17.7 | 17.0 | 10.5 | 13.6 | 13.0 | 14.4 | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 70.3 | 55.4 | 59.7 | 56.2 | 52.9 | 51.5 | 49.0 | 48.0 | 47.1 | 44.9 | -5.7 | 0.1 | -0.9 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 121.8 | 118.5 | 113.0 | 104.9 | 95.3 | 84.1 | 71.8 | 63.9 | 57.2 | 51.3 | 1.7 | -1.2 | -2.2 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 146.5 | 174.3 | 187.1 | 200.8 | 192.9 | 188.0 | 165.4 | 149.8 | 143.5 | 135.9 | 5.7 | 1.4 | -0.7 | | | ssenger transport (toe/Mpkm) | 49.2 | 52.4 | 56.9 | 53.4 | 46.9 | 40.4 | 36.8 | 34.7 | 33.3 | 32.2 | 31.4 | 1.5 | -1.9 | -2.4 | | | ight transport (toe/Mtkm) | 191.9 | 174.4 | 195.0 | 190.0 | 184.0 | 176.4 | 170.3 | 165.4 | 161.5 | 158.2 | 155.4 | 0.2 | -0.6 | -0.8 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.85 | 0.80 | 0.71 | 0.62 | 0.31 | 0.27 | 0.24 | 0.21 | 0.20 | 0.19 | 0.18 | -1.8 | -8.0 | -2.5 | | | al energy demand (t of CO ₂ /toe) | 2.56 | 2.45 | 2.24 | 2.21 | 2.00 | 1.92 | 1.87 | 1.86 | 1.84 | 1.79 | 1.77 | -1.3 | -1.1 | -0.7 | | | ndustry | 3.16 | 3.10 | 2.72 | 2.71 | 2.41 | 2.12 | 1.97 | 1.87 | 1.78 | 1.71 | 1.66 | -1.5 | -1.2 | -2.0 | | | esidential | 1.00 | 1.38 | 1.17 | 1.00 | 0.86 | 0.74 | 0.66 | 0.59 | 0.50 | 0.42 | 0.35 | 1.6 | -3.0 | -2.7 | | | ertiary | 0.00 | 0.44 | 0.55 | 0.68 | 0.53 | 0.45 | 0.38 | 0.33 | 0.29 | 0.26 | 0.25 | 0.0 | -0.4 | -3.4 | | | ransport (C) | 3.01 | 3.00 | 2.95 | 2.94 | 2.80 | 2.81 | 2.82 | 2.82 | 2.82 | 2.83 | 2.82 | -0.2 | -0.5 | 0.1 | _ | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (%) | 2.9 | 3.1 | 5.8 | 9.2 | 15.2 | 19.3 | 22.5 | 25.5 | 25.7 | 26.4 | 26.7 | | | | | | S in transport (%) | 0.0 | 0.0 | 2.0 | 2.6 | 10.1 | 10.1 | 10.0 | 10.0 | 10.0 | 9.9 | 10.3 | | | | | | oss Electricity generation by source (in GWh _e) (E) | 3370 | 4377 | 5326 | 5655 | 6482 | 6679 | 7162 | 7177 | 7570 | 8029 | 8314 | 4.7 | 2.0 | 1.0 | | | luclear energy
olids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | il (including refinery gas) | 3370 | 4376 | 5288 | 5116 | 154 | 26 | 30 | 0 | 1 | 0 | 0 | 4.6 | -29.8 | 0.0
-15.2 | _ | | as (including derived gases) | 0 | 0 | 0 | 0 | 5265 | 5082 | 4876 | 4313 | 4400 | 4554 | 4655 | 0.0 | 0.0 | -0.8 | Ī | | iomass-waste | 0 | 0 | 0 | 108 | 125 | 125 | 152 | 193 | 260 | 280 | 337 | 0.0 | 0.0 | 2.0 | | | ydro (pumping excluded) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | /ind | 0 | 0 | 31 | 309 | 611 | 736 | 850 | 1009 | 1009 | 1009 | 1008 | 0.0 | 34.7 | 3.4 | | | olar | 0 | 1 | 6 | 122 | 327 | 710 | 1254 | 1661 | 1901 | 2186 | 2314 | 0.0 | 48.2 | 14.4 | | | eothermal and other renewables | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -95.0 | 0.0 | - | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 988 | 1126 | 1577 | 1941 | 2585 | 2943 | 3209 | 3501 | 3358 | 3251 | 3378 | 4.8 | 5.1 | 2.2 | | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | enewable energy | 0 | 1 | 89 | 224 | 443 | 674 | 987 | 1232 | 1325 | 1429 | 1480 | 0.0 | 17.4 | 8.3 | | | Hydro (pumping excluded) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Wind
Solar | 0 | 0
1 | 82
7 | 145
79 | 249
194 | 291
383 | 329
658 | 405
828 | 405
920 | 405
1024 | 405
1075 | 0.0 | 11.7
39.4 | 2.8
13.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 036 | 020 | 920 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 988 | 1125 | 1488 | 1717 | 2142 | 2269 | 2221 | 2269 | 2033 | 1822 | 1898 | 4.2 | 3.7 | 0.4 | | | of which cogeneration units | 0 | 0 | 1 | 17 | 15 | 27 | 28 | 20 | 14 | 19 | 33 | 0.0 | 28.5 | 6.4 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Gas fired | 0 | 0 | 0 | 0 | 721 | 921 | 981 | 1137 | 1165 | 1323 | 1557 | 0.0 | 0.0 | 3.1 | | | Oil fired | 988 | 1125 | 1481 | 1703 | 1404 | 1332 | 1218 | 1104 | 823 | 447 | 276 | 4.1 | -0.5 | -1.4 | | | Biomass-waste fired | 0 | 0 | 7 | 14 | 16 | 16 | 22 | 28 | 45 | 52 | 65 | 0.0 | 8.0 | 3.3 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Load factor of net power capacity (F) (%) | 37.0 | 41.9 | 37.0 | 31.7 | 28.0 | 25.4 | 25.1 | 23.1 | 25.4 | 27.8 | 27.7 | | | | | | ctricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 32.9 | 34.9 | 38.8 | 40.3 | 55.3 | 57.6 | 57.7 | 57.7 | 57.7 | 58.7 | 60.6 | | | | | | of gross electricity from CHP | 0.0 | 0.3 | 1.0 | 0.9 | 1.4 | 1.7 | 1.7 | 1.3 | 1.3 | 1.4 | 2.5 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0
0.7 | 0.0
9.5 | 0.0
16.4 | 0.0
23.5 | 0.0
31.5 | 0.0
39.9 | 0.0
41.9 | 0.0
43.3 | 0.0
44.0 | | | | | | bon free gross electricity generation (%) uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 0.0 | 0.0 | 0.7 | 9.5 | 16.4 | 23.5 | 31.5 | 39.9 | 41.9 | 43.3 | 44.0 | | | | | | Insport sector | | | | | 10.4 | 20.0 | 01.0 | | 41.3 | 40.0 | 44.0 | | | | | | senger transport activity (Gpkm) | 12.1 | 13.9 | 14.5 | 16.5 | 18.6 | 21.3 | 24.3 | 26.1 | 28.1 | 29.0 | 29.9 | 1.8 | 2.5 | 2.7 | | | ublic road transport | 1.1 | 1.3 | 1.3 | 1.4 | 1.4 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.4 | 1.0 | 0.9 | | | rivate cars and motorcycles | 4.1 | 4.9 | 6.0 | 6.4 | 6.6 | 7.2 | 7.7 | 8.1 | 8.5 | 8.7 | 8.8 | 4.0 |
0.9 | 1.6 | | | ail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | viation | 6.9 | 7.7 | 7.2 | 8.8 | 10.6 | 12.6 | 15.0 | 16.4 | 17.9 | 18.6 | 19.4 | 0.4 | 4.0 | 3.5 | | | land navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ight transport activity (Gtkm) | 1.3 | 1.4 | 1.1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.4 | 1.5 | 1.5 | 1.5 | -1.8 | 0.7 | 1.2 | | | rucks | 1.3 | 1.4 | 1.1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.4 | 1.5 | 1.5 | 1.5 | -1.8 | 0.7 | 1.2 | | | ail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ergy demand in transport (ktoe) (G) | 848 | 969 | 1039 | 1093 | 1089 | 1078 | 1119 | 1136 | 1169 | 1169 | 1179 | 2.1 | 0.5 | 0.3 | | | ublic road transport | 29 | 32 | 35 | 36 | 37 | 37 | 37 | 37 | 38 | 38 | 38 | 2.0 | 0.4 | 0.1 | | | rivate cars and motorcycles | 292 | 395 | 514 | 518 | 474 | 439 | 433 | 433 | 443 | 440 | 439 | 5.8 | -0.8 | -0.9 | | | rucks | 251 | 243 | 212 | 214 | 214 | 218 | 224 | 229 | 235 | 236 | 239 | -1.7 | 0.1 | 0.5 | | | Rail | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | viation | 275 | 299 | 277 | 325 | 364 | 383 | 425 | 437 | 453 | 454 | 462 | 0.1 | 2.8 | 1.6 | | | nland navigation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.0 | 0.0 | | | Czech Republic: Reference scenario | | | | | | | | | | NERGY | | | | | S (A) | |--|---|---|--|---|--|---|--|---|--|--|--|--|--|---|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | '30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 30628
25049 | 32868
23570 | 31554
20730 | 28043
16268 | 27656
15287 | 27636
15121 | 28916
12882 | 30184
11084 | 31476
12153 | 32240
12960 | 32245
12757 | 0.3
-1.9 | -1.3
-3.0 | 0.4
-1.7 | 0.5 | | Oil | 389 | 597 | 308 | 286 | 276 | 271 | 274 | 227 | 148 | 21 | 0 | -2.3 | -1.1 | | -100.0 | | Natural gas | 169 | 154 | 167 | 184 | 197 | 207 | 200 | 209 | 196 | 97 | 0 | -0.1 | 1.7 | | -100.0 | | Nuclear | 3506 | 6405 | 7248 | 8008 | 8024 | 8024 | 11367 | 14354 | 14422 | 14490 | 14720 | 7.5 | 1.0 | 3.5 | 1.3 | | Renewable energy sources | 1515 | 2142 | 3102 | 3298 | 3872 | 4013 | 4193 | 4310 | 4558 | 4673 | 4768 | 7.4 | 2.2 | 8.0 | 0.6 | | Hydro
Biomass & Waste | 151
1364 | 205
1933 | 240
2772 | 284
2704 | 291
3173 | 294
3168 | 296
3273 | 298
3274 | 321
3493 | 350
3539 | 356
3640 | 4.7
7.3 | 2.0
1.4 | 0.2 | 0.9 | | Wind | 0 | 2 | 2772 | 39 | 43 | 50 | 54 | 56 | 58 | 59 | 60 | 0.0 | 4.1 | 2.4 | 0.5 | | Solar and others | 0 | 2 | 62 | 270 | 365 | 501 | 570 | 682 | 686 | 724 | 712 | 0.0 | 19.5 | 4.6 | 1.1 | | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | -1.2 | 0.2 | | Net Imports | 9495 | 12795 | 11461 | 14571 | 14725 | 14339 | 14363 | 15096 | 14527 | 14825 | 15325 | 1.9 | 2.5 | -0.2 | 0.3 | | Solids | -4721 | -3270 | -2968 | -2626 | -2807 | -3432 | -3422 | -3103 | -4070 | -4338 | -4620 | -4.5 | -0.6 | 2.0 | 1.5 | | Oil | 7593 | 9803 | 8988 | 9219 | 9096 | 8988 | 9155 | 9370 | 9562 | 9756 | 9782 | 1.7 | 0.1 | 0.1 | 0.3 | | - Crude oil and Feedstocks - Oil products | 5656
1937 | 7855
1948 | 7854
1134 | 8016
1204 | 7920
1176 | 7815
1173 | 7915
1240 | 8072
1297 | 8212
1350 | 8373
1383 | 8384
1398 | 3.3
-5.2 | 0.1
0.4 | 0.0
0.5 | 0.3 | | Natural gas | 7482 | 7535 | 6846 | 8125 | 8258 | 8578 | 8337 | 8828 | 9104 | 9390 | 9971 | -0.9 | 1.9 | 0.1 | 0.9 | | Electricity | -861 | -1086 | -1285 | -621 | -560 | -612 | -660 | -1023 | -1225 | -1259 | -1222 | 4.1 | -8.0 | 1.7 | 3.1 | | Gross Inland Consumption | 41270 | 45279 | 44771 | 42614 | 42381 | 41975 | 43279 | 45280 | 46004 | 47066 | 47571 | 0.8 | -0.5 | 0.2 | 0.5 | | Solids | 21643 | 20248 | 18474 | 13642 | 12479 | 11689 | 9460 | 7981 | 8083 | 8622 | 8137 | -1.6 | -3.8 | -2.7 | -0.8 | | Oil | 7965 | 10054 | 9335 | 9505 | 9372 | 9258 | 9429 | 9597 | 9710 | 9777 | 9782 | 1.6 | 0.0 | 0.1 | 0.2 | | Natural gas | 7500 | 7703 | 8019 | 8308 | 8455 | 8785 | 8537 | 9037 | 9300 | 9487 | 9971 | 0.7 | 0.5 | 0.1 | 0.8 | | Nuclear
Electricity | 3506
-861 | 6405
-1086 | 7248
-1285 | 8008
-621 | 8024
-560 | 8024
-612 | 11367
-660 | 14354
-1023 | 14422
-1225 | 14490
-1259 | 14720
-1222 | 7.5
4.1 | 1.0
-8.0 | 3.5
1.7 | 1.3
3.1 | | Renewable energy forms | 1518 | 1955 | 2981 | 3772 | -560
4612 | 4831 | 5147 | 5334 | 5714 | -1259
5948 | 6183 | 7.0 | -6.0
4.5 | 1.7 | 0.9 | | as % in Gross Inland Consumption | .0.0 | .000 | | | | .50. | | - 50 . | | 23.0 | 2.00 | | | | 0.0 | | Solids | 52.4 | 44.7 | 41.3 | 32.0 | 29.4 | 27.8 | 21.9 | 17.6 | 17.6 | 18.3 | 17.1 | | | | | | Oil | 19.3 | 22.2 | 20.9 | 22.3 | 22.1 | 22.1 | 21.8 | 21.2 | 21.1 | 20.8 | 20.6 | | | | | | Natural gas | 18.2 | 17.0 | 17.9 | 19.5 | 19.9 | 20.9 | 19.7 | 20.0 | 20.2 | 20.2 | 21.0 | | | | | | Nuclear | 8.5 | 14.1 | 16.2 | 18.8 | 18.9 | 19.1 | 26.3 | 31.7 | 31.4 | 30.8 | 30.9 | | | | | | Renewable energy forms | 3.7 | 4.3 | 6.7 | 8.9 | 10.9 | 11.5 | 11.9 | 11.8 | 12.4 | 12.6 | 13.0 | 4.0 | 4.0 | | | | Gross Electricity Generation in GWh _e Self consumption and grid losses | 72898
10600 | 81917
11631 | 85303
11114 | 76298
9210 | 75945
9019 | 78639
9591 | 81420
9263 | 89244
9811 | 96399
12054 | 101684
13620 | 106722
14483 | 1.6
0.5 | -1.2
-2.1 | 0.7
0.3 | 1.4
2.3 | | Fuel Inputs to Thermal Power Generation | 15886 | 15702 | 15321 | 10649 | 10100 | 10125 | 8123 | 6814 | 7299 | 7943 | 8253 | -0.4 | -4.1 | -2.2 | 0.1 | | Solids | 13945 | 14025 | 13595 | 9076 | 8192 | 7908 | 5666 | 4297 | 4618 | 5212 | 4891 | -0.3 | -4.9 | -3.6 | -0.7 | | Oil (including refinery gas) | 311 | 161 | 78 | 1 | 2 | 2 | 5 | 7 | 9 | 10 | 11 | -12.9 | -30.9 | 10.3 | 3.6 | | Gas (including derived gases) | 1236 | 1292 | 1108 | 704 | 890 | 1100 | 1232 | 1275 | 1464 | 1511 | 1848 | -1.1 | -2.2 | 3.3 | 2.0 | | Biomass & Waste | 395 | 224 | 540 | 867 | 1015 | 1114 | 1219 | 1234 | 1208 | 1210 | 1504 | 3.2 | 6.5 | 1.8 | 1.1 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 15076
6219 | 19896
8276 | 20111
8372 | 20599
8490 | 20783
8391 | 20207
8284 | 23722
8390 | 26808
8503 | 26802
8567 | 27000
8608 | 27064
8599 | 2.9
3.0 | 0.3
0.0 | 1.3
0.0 | 0.7
0.1 | | Biofuels and hydrogen production | 64 | 3 | 231 | 305 | 587 | 584 | 607 |
618 | 635 | 628 | 641 | 13.8 | 9.8 | 0.3 | 0.1 | | District heating | 948 | 922 | 815 | 930 | 956 | 538 | 451 | 388 | 343 | 315 | 268 | -1.5 | 1.6 | -7.2 | -2.6 | | Derived gases, cokeries etc. | 7846 | 10696 | 10693 | 10874 | 10849 | 10802 | 14274 | 17299 | 17257 | 17450 | 17555 | 3.1 | 0.1 | 2.8 | 1.0 | | Energy Branch Consumption | 1772 | 1807 | 1774 | 1485 | 1446 | 1474 | 1443 | 1470 | 1635 | 1759 | 1789 | 0.0 | -2.0 | 0.0 | 1.1 | | Non-Energy Uses | 2188 | 3004 | 2767 | 2901 | 2989 | 2951 | 2986 | 3060 | 3098 | 3132 | 3145 | 2.4 | 0.8 | 0.0 | 0.3 | | Final Energy Demand | 24709 | 25999 | 25618 | 26863 | 27137 | 27124 | 27404 | 28187 | 28796 | 29431 | | | | 0.1 | 0.4 | | by sector | | | | | | | | | | | 29864 | 0.4 | 0.6 | | | | Industry | | 0000 | 0755 | 0440 | 0570 | 0005 | 10117 | 40540 | 10001 | 44050 | | 0.4 | | 0.0 | 0.0 | | | 10119 | 9682 | 8755
5741 | 9412 | 9570 | 9605 | 10117 | 10549 | 10881 | 11250 | 11432 | 0.4
-1.4 | 0.9 | 0.6 | | | - energy intensive industries | 6380 | 6749 | 5741 | 6154 | 6090 | 5970 | 6249 | 6445 | 6579 | 6701 | 11432
6686 | 0.4
-1.4
-1.1 | 0.9 | 0.3 | 0.3 | | | | | | | | | | | | | 11432 | 0.4
-1.4 | 0.9 | | 0.3
1.0 | | - energy intensive industries - other industrial sectors | 6380
3740 | 6749
2934 | 5741
3015 | 6154
3259 | 6090
3480 | 5970
3635 | 6249
3868 | 6445
4104 | 6579
4303 | 6701
4549 | 11432
6686
4745 | 0.4
-1.4
-1.1
-2.1 | 0.9
0.6
1.4 | 0.3
1.1 | 0.3
1.0
0.3 | | - energy intensive industries - other industrial sectors Residential | 6380
3740
6023 | 6749
2934
6216 | 5741
3015
6619 | 6154
3259
6852 | 6090
3480
6879 | 5970
3635
6885 | 6249
3868
6698 | 6445
4104
6866 | 6579
4303
6945 | 6701
4549
7031 | 11432
6686
4745
7125 | -1.4
-1.1
-2.1
0.9 | 0.9
0.6
1.4
0.4 | 0.3
1.1
-0.3 | 0.3
1.0
0.3
0.3 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 6380
3740
6023
4162
4405 | 6749
2934
6216
3910
6191 | 5741
3015
6619
3949
6295 | 6154
3259
6852
3992
6607 | 6090
3480
6879
3972
6715 | 5970
3635
6885
3931
6703 | 6249
3868
6698
3694
6895 | 6445
4104
6866
3723
7050 | 6579
4303
6945
3756
7213 | 6701
4549
7031
3870
7280 | 11432
6686
4745
7125
3950
7357 | -1.4
-1.1
-2.1
0.9
-0.5 | 0.9
0.6
1.4
0.4
0.1
0.6 | 0.3
1.1
-0.3
-0.7
0.3 | 0.3
1.0
0.3
0.3
0.3 | | - energy intensive industries - other industrial sectors Residential Tertiany Transport by fuel Solids | 6380
3740
6023
4162
4405 | 6749
2934
6216
3910
6191 | 5741
3015
6619
3949
6295 | 6154
3259
6852
3992
6607 | 6090
3480
6879
3972
6715 | 5970
3635
6885
3931
6703 | 6249
3868
6698
3694
6895 | 6445
4104
6866
3723
7050 | 6579
4303
6945
3756
7213 | 6701
4549
7031
3870
7280 | 11432
6686
4745
7125
3950
7357 | 0.4
-1.4
-1.1
-2.1
0.9
-0.5
3.6 | 0.9
0.6
1.4
0.4
0.1
0.6 | 0.3
1.1
-0.3
-0.7
0.3 | 0.3
1.0
0.3
0.3
0.3 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 6380
3740
6023
4162
4405
5007
5386 | 6749
2934
6216
3910
6191
3640
6926 | 5741
3015
6619
3949
6295
3081
6631 | 6154
3259
6852
3992
6607
3302
6670 | 6090
3480
6879
3972
6715
3075
6447 | 5970
3635
6885
3931
6703
2664
6393 | 6249
3868
6698
3694
6895
2664
6522 | 6445
4104
6866
3723
7050
2561
6640 | 6579
4303
6945
3756
7213
2417
6742 | 6701
4549
7031
3870
7280
2296
6784 | 11432
6686
4745
7125
3950
7357
2182
6803 | 0.4
-1.4
-1.1
-2.1
0.9
-0.5
3.6 | 0.9
0.6
1.4
0.4
0.1
0.6 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1 | 0.3
1.0
0.3
0.3
0.3
-1.0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 6380
3740
6023
4162
4405
5007
5386
6491 | 6749
2934
6216
3910
6191
3640
6926
6741 | 5741
3015
6619
3949
6295
3081
6631
6688 | 6154
3259
6852
3992
6607
3302
6670
7199 | 6090
3480
6879
3972
6715
3075
6447
7125 | 5970
3635
6885
3931
6703
2664
6393
7436 | 6249
3868
6698
3694
6895
2664
6522
7202 | 6445
4104
6866
3723
7050
2561
6640
7701 | 6579
4303
6945
3756
7213
2417
6742
7745 | 6701
4549
7031
3870
7280
2296
6784
7978 | 11432
6686
4745
7125
3950
7357
2182
6803
8099 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1 | 0.3
1.0
0.3
0.3
0.3
-1.0
0.2 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 6380
3740
6023
4162
4405
5007
5386
6491
4246 | 6749
2934
6216
3910
6191
3640
6926
6741
4754 | 5741
3015
6619
3949
6295
3081
6631
6688
4919 | 6154
3259
6852
3992
6607
3302
6670
7199
5003 | 6090
3480
6879
3972
6715
3075
6447
7125
5056 | 5970
3635
6885
3931
6703
2664
6393
7436
5188 | 6249
3868
6698
3694
6895
2664
6522
7202
5412 | 6445
4104
6866
3723
7050
2561
6640
7701
5678 | 6579
4303
6945
3756
7213
2417
6742
7745
5893 | 6701
4549
7031
3870
7280
2296
6784
7978
6173 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1
0.1 | 0.3
1.0
0.3
0.3
0.3
-1.0
0.2
0.6
1.0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 6380
3740
6023
4162
4405
5007
5386
6491 | 6749
2934
6216
3910
6191
3640
6926
6741 | 5741
3015
6619
3949
6295
3081
6631
6688 | 6154
3259
6852
3992
6607
3302
6670
7199 | 6090
3480
6879
3972
6715
3075
6447
7125 | 5970
3635
6885
3931
6703
2664
6393
7436 | 6249
3868
6698
3694
6895
2664
6522
7202 | 6445
4104
6866
3723
7050
2561
6640
7701 | 6579
4303
6945
3756
7213
2417
6742
7745 | 6701
4549
7031
3870
7280
2296
6784
7978 | 11432
6686
4745
7125
3950
7357
2182
6803
8099 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1 | 0.3
1.0
0.3
0.3
0.3
-1.0
0.2
0.6
1.0
-0.1 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434 | 6090
3480
6879
3972
6715
3075
6447
7125
5056
2528 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284 | 6249
3868
6698
3694
6895
2664
6522
7202
5412
2268 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110 | 6579
4303
6945
3756
7213
2417
6742
7745
5893
2141 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1
0.1
0.7
-1.1 | 0.3
1.0
0.3
0.3
0.3
-1.0
0.2
0.6
1.0
-0.1 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255 | 6090
3480
6879
3972
6715
3075
6447
7125
5056
2528
2900 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149 | 6249
3868
6698
3694
6895
2664
6522
7202
5412
2268
3324 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484 | 6579
4303
6945
3756
7213
2417
6742
7745
5893
2141
3845 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1
0.3 1.5 -1.5 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1
0.1
0.7
-1.1 | 0.3 1.0 0.3 0.3 0.3 -1.0 0.2 0.6 1.0 -0.1 0.9 1.9 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1 | 6090
3480
6879
3972
6715
3075
6447
7125
5056
2528
2900
5 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149
10 | 6249
3868
6698
3694
6895
2664
6522
7202
5412
2268
3324
12 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12 | 6579
4303
6945
3756
7213
2417
6742
7745
5893
2141
3845
13 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 7.9 14.0 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1
0.7
-1.1
1.4
9.9 | 0.3 1.0 0.3 0.3 0.3 -1.0 0.2 0.6 1.0 -0.1 0.9 1.9 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0
2484
139.8
79.3 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149
10
4079
111.5
55.7 | 6249 3868 6698 3694 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
83.2
28.8 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 7.9 14.0 7.3 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4
4.7 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 | 0.3 1.0 0.3 0.3 0.3 -1.0 0.2 0.6 1.0 -0.1 0.9 1.9 -1.0 -2.3 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0
1666
148.7
87.3
61.4 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0
2484
139.8
79.3
60.4 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079
120.1
61.9
58.2 | 6090 3480 6879 3972 67715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149
10
4079
111.5
55.7
55.8 | 6249
3868
6698
3694
6895
2664
6522
7202
5412
2268
3324
12
4371
101.1
46.1
55.1 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
54.9 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
83.2
28.8
54.4 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 7.9 14.0 7.3 -0.8 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 | 0.3 1.0 0.3 0.3 0.3 0.3 -1.0 0.2 0.6 1.0 -0.1 0.9 1.1 -1.0 -2.3 -0.1 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0
1666
148.7
87.3
61.4 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0
2484
139.8
79.3
60.4
117.0 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079
120.1
61.9
58.2
98.7 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149
10
4079
111.5
55.7
55.8
90.7 | 6249 3868 6698 3694 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
54.9
76.4 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
288.2
28.4
67.4 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 7.9 14.0 7.3 -0.8 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 | 0.3 d. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors CHG emissions of which non ETS sectors CHG emissions Of Semissions (energy related) Power generation/District heating | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0
1666
148.7
87.3
61.4
124.1
66.2 | 5741 3015 6619 3949 6295 3081 6631 6688 4919 2249 2048 0 2484 139.8 79.3 60.4 117.0 63.8 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079
120.1
61.9
58.2
98.7
43.1 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 3149 10 4079 111.5 55.7 55.8 90.7 | 6249 3868 6698 3694 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 29.1 | 6445 4104 6866 3723 7050 2561 6640 77701 5678 2110 3484 12 4542 95.3 40.4 54.9 76.4 23.9 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 7.9 14.0 7.3 -0.8 | 0.9 0.6 1.4 0.4 0.1 0.6 0.0 -0.3 0.6 0.3 1.2 3.5 90.4 4.7 -2.0 -3.1 -0.7 -2.2 -4.4 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 -3.3 | 0.3.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (filt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Oze Emissions (energy related) Power generation/District heating Energy Branch |
6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9 | 6749
2934
6216
3910
6191
3640
6926
6741
4754
2478
1462
0
1666
148.7
87.3
61.4 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0
2484
139.8
79.3
60.4
117.0 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079
120.1
61.9
58.2
98.7 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 | 5970
3635
6885
3931
6703
2664
6393
7436
5188
2284
3149
10
4079
111.5
55.7
55.8
90.7 | 6249 3868 6698 3694 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
54.9
76.4 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3
1.5 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5
1.5 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 7.9 14.0 7.3 -0.8 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 | 0.3.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors CHG emissions of which non ETS sectors CHG emissions Of Semissions (energy related) Power generation/District heating | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
2624
955
0
1233
150.9 | 6749 2934 6216 3910 6191 3640 6926 6741 4754 1462 0 1666 148.7 87.3 61.4 124.1 66.2 2.3 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2249
2048
0
2484
139.8
79.3
60.4
117.0
63.8
1.8 | 6154
3259
6852
3992
6607
3302
6670
7199
5003
2434
2255
1
3079
120.1
61.9
58.2
98.7
43.1
1.8 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 3149 10 4079 111.5 55.7 55.8 90.7 38.9 1.5 | 6249 3868 6698 3694 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 55.1 81.1 29.1 1.5 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
54.9
76.4
23.9
1.5 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 1.5 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 2.1 0.3 1.5 -1.5 -1.5 -7.9 14.0 7.3 -0.8 | 0.9
0.6
1.4
0.1
0.6
0.0
-0.3
0.6
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2
-4.4
-0.6 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 -3.3 -1.5 | 0.3 1.0 0.3 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9 | 6749 2934 6216 3910 6191 3640 6926 6741 4754 2478 1462 0 1666 148.7 87.3 61.4 124.1 66.2 2.3 24.8 | 5741
3015
6619
3949
6295
3081
6631
6688
4919
2048
0
2484
139.8
79.3
60.4
117.0
63.8
1.8 | 6154 3259 6852 3992 6607 3302 6670 7199 5003 2434 2255 1 3079 120.1 61.9 58.2 98.7 43.1 1.8 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 1.7 20.0 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 3149 10 4079 111.5 55.7 55.8 90.7 38.9 1.5 | 6249 3868 6698 3694 6895 2664 6822 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 29.1 1.5 21.0 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
23.9
1.5
21.0 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 21.1 1.5 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3
1.5 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5
1.5
19.6 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 -2.1 0.3 1.5 -1.5 -1.5 -1.5 -0.8 | 0.9
0.6
1.4
0.1
0.6
0.0
0.0
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2
-4.6
-0.3 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 -3.3 -1.5 0.5 | 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.2 0.6 1.0 0.1 1.0 0.9 1.9 1.1 1.1 1.0 0.9 1.9 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9
125.4
66.8
2.6
28.4
8.3
6.8
12.6 | 6749 2934 6216 3910 6191 3640 6926 6741 4754 2478 1462 0 1666 148.7 87.3 61.4 124.1 66.2 2.3 24.8 7.9 5.0 18.1 | 5741 3015 6619 3949 6295 3081 6631 6688 4919 2248 0 2484 139.8 79.3 60.4 117.0 63.8 1.8 20.7 8.1 4.9 17.7 | 6154 3259 6852 3992 6607 3302 6670 7199 5003 2434 2255 1 3079 120.1 61.9 58.2 98.7 43.1 1.8 21.8 8.6 5.1 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 1.7 20.0 8.1 5.2 17.8 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 10 4079 111.5 55.7 55.8 90.7 38.99 7.7 5.1 17.7 | 6249 3868 6698 3694 6895 2664 6652 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 29.1 1.5 21.0 7.1 4.3 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
23.9
1.5
21.0
7.2
4.2 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 1.5 19.6 6.9 4.3 18.8 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3
1.5
19.9
6.5
4.3 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5
1.5
19.6
6.5
4.3
19.0 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 -2.1 0.3 1.5 -1.5 -1.5 -1.5 -1.5 -3.4 -3.1 -0.2 -3.2 -3.5 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2
-0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 -1.5 0.5 -1.3 0.2 | 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.2 1.0 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9 | 6749 2934 6216 3910 6191 3640 6926 6741 4754 2478 1462 0 1666 148.7 87.3 61.4 124.1 66.2 2.3 24.8 7.9 5.0 18.1 | 5741 3015 6619 3949 6295 3081 6688 4919 2249 2048 0 2484 139.8 79.3 60.4 117.0 63.8 1.8 20.7 8.1 4.9 17.7 4.8 | 6154 3259 6852 3992 6607 3302 66670 7199 5003 2434 2255 21 3079 120.1 61.9 58.2 98.7 43.1 1.8 8.6 5.1 18.3 5.8 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 1.7 20.0 8.1 5.2 17.8 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 3149 10 4079 111.5 55.7 55.8 90.7 38.9 1.5 19.9 7.7 5.1 | 6249 3868 6698 3694 6895 2664 6895 2664 6522 7202 5412 2268 3324 12 4371 101.1 46.1.1 55.1 81.1 29.1 1,5 21.0 7.1 4.3 18.1 5.2 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
23.9
76.4
23.9
1.5
21.0
7.2
4.2
4.4
4.7 | 6579 4303 6945 3756 7213 2417
6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 21.1 1.5 19.6 6.9 4.3 18.8 4.7 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3
1.5
19.9
6.5
4.3
18.9 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5
19.6
6.5
4.3
19.0
0.6 | -0.4 -1.4 -1.1 -2.1 0.9 -0.5 -3.6 -4.7 -2.1 0.3 1.5 -1.5 -1.5 -1.9 14.0 -0.8 -0.7 -0.5 -3.4 -3.1 -0.2 -3.2 -3.5 -1.7 | 0.9
0.6
1.4
0.4
0.1
0.6
0.3
1.2
3.0,4
4.7
-2.0
-3.1
-0.1
-0.3
0.0
0.0
0.3
0.0
0.3
0.5
-0.3
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.3
1.1
-0.3
-0.7
0.3
-1.4
0.1
0.1
0.7
-1.1
1.4
9.9
1.1
-1.2
-2.3
-0.2
-1.4
-3.3
-1.5
-0.5
-1.3
-1.8
-0.5
-1.3
-1.8
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9
-1.9 | 0.3 1.0 0.3 0.3 0.3 0.3 -1.0 0.2 0.6 1.0 0.9 1.9 1.1 -1.0 -2.3 0.0 -0.3 -0.5 0.0 0.3 -10.4 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 6380
3740
6023
4162
4405
5007
5386
6491
4246
2624
955
0
1233
150.9
125.4
66.8
2.6
28.4
8.3
6.8
12.6 | 6749 2934 6216 3910 6191 3640 6926 6741 4754 2478 1462 0 1666 148.7 87.3 61.4 124.1 66.2 2.3 24.8 7.9 5.0 18.1 | 5741 3015 6619 3949 6295 3081 6631 6688 4919 2248 0 2484 139.8 79.3 60.4 117.0 63.8 1.8 20.7 8.1 4.9 17.7 | 6154 3259 6852 3992 6607 3302 6670 7199 5003 2434 2255 1 3079 120.1 61.9 58.2 98.7 43.1 1.8 21.8 8.6 5.1 18.3 | 6090 3480 6879 3972 6715 3075 6447 7125 5056 2528 2900 5 3931 114.3 58.0 56.3 93.4 40.6 1.7 20.0 8.1 5.2 17.8 | 5970 3635 6885 3931 6703 2664 6393 7436 5188 2284 10 4079 111.5 55.7 55.8 90.7 38.99 7.7 5.1 17.7 | 6249 3868 6698 3694 6895 2664 6652 7202 5412 2268 3324 12 4371 101.1 46.1 55.1 81.1 29.1 1.5 21.0 7.1 4.3 | 6445
4104
6866
3723
7050
2561
6640
7701
5678
2110
3484
12
4542
95.3
40.4
23.9
1.5
21.0
7.2
4.2 | 6579 4303 6945 3756 7213 2417 6742 7745 5893 2141 3845 13 5052 91.6 36.7 54.9 72.1 1.5 19.6 6.9 4.3 18.8 | 6701
4549
7031
3870
7280
2296
6784
7978
6173
2162
4025
15
5278
88.5
33.6
54.9
69.5
18.3
1.5
19.9
6.5
4.3 | 11432
6686
4745
7125
3950
7357
2182
6803
8099
6567
2226
3970
17
5462
28.8
54.4
67.4
16.5
1.5
19.6
6.5
4.3
19.0 | 0.4 -1.4 -1.1 -2.1 0.9 -0.5 3.6 -4.7 -2.1 0.3 1.5 -1.5 -1.5 -1.5 -1.5 -3.4 -3.1 -0.2 -3.2 -3.5 | 0.9
0.6
1.4
0.4
0.1
0.6
0.0
0.3
1.2
3.5
90.4
4.7
-2.0
-3.1
-0.7
-2.2
-0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.3 1.1 -0.3 -0.7 0.3 -1.4 0.1 0.7 -1.1 1.4 9.9 1.1 -1.2 -2.3 -0.2 -1.4 -1.5 0.5 -1.3 0.2 | 0.6 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.2 1.0 0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | UMMARY ENERGY BALANCE AND INDICATO | | | *** | **** | | | | | | | ch Rep | | | | | |--|----------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|---------------|---------------|---------------|--------------|--------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | ain Energy System Indicators | | | | | | | | | | | | Ai | nnual % | Change | <i>!</i> | | epulation (Million) | 10.278 | 10.221 | 10.507 | 10.691 | 10.816 | 10.864 | 10.840 | 10.782 | 10.740 | 10.715 | 10.668 | 0.2 | 0.3 | 0.0 | | | DP (in 000 M€10) | 107.0 | 130.7 | 149.3 | 165.0 | 184.3 | 200.5 | 218.8 | 237.3 | 255.9 | 274.0 | 290.0 | 3.4 | 2.1 | 1.7 | | | oss Inl. Cons./GDP (toe/M€10) | 385.8 | 346.4 | 299.8 | 258.3 | 230.0 | 209.3 | 197.8 | 190.8 | 179.8 | 171.8 | 164.0 | -2.5 | -2.6 | -1.5 | | | arbon intensity (t of CO ₂ /toe of GIC) | 3.04 | 2.74 | 2.61 | 2.32 | 2.20 | 2.16 | 1.87 | 1.69 | 1.57 | 1.48 | 1.42 | -1.5 | -1.7 | -1.6 | | | port Dependency % | 23.0 | 28.3 | 25.6 | 34.2 | 34.7 | 34.2 | 33.2 | 33.3 | 31.6 | 31.5 | 32.2 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 15.6 | 21.4 | 29.4 | 35.5 | 39.6 | 42.3 | 44.6 | 47.0 | 49.9 | 52.9 | 54.9 | 6.6 | 3.0 | 1.2 | | | as % of GDP | 14.6 | 16.4 | 19.7 | 21.5 | 21.5 | 21.1 | 20.4 | 19.8 | 19.5 | 19.3 | 18.9 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 68.9 | 46.0 | 45.8 | 41.6 | 38.5 | 36.3 | 34.6 | 33.1 | 31.9 | 30.8 | -7.5 | -1.0 | -1.3 | | | esidential (Energy on Private Income, index 2000=100) Irtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 86.6
81.3 | 82.3
76.4 | 77.4
68.8 | 69.7
60.9 | 64.0
55.0 | 56.8
47.4 | 53.2
43.8 | 49.5
40.9 | 46.3
39.2 | 43.8
37.6 | -1.9
-2.7 | -1.6
-2.2 | -2.0
-2.5 | | | ssenger transport (toe/Mpkm) | 26.8 | 29.2 | 27.9 | 26.8 | 24.4 | 22.1 | 21.1 | 20.4 | 19.8 | 19.2 | 18.6 | 0.4 | -1.3 | -1.5 | | | ight transport (toe/Mtkm) | 27.5 | 48.0 | 47.3 | 45.6 | 43.9 | 41.2 | 39.2 | 37.8 | 36.4 | 35.4 | 34.6 | 5.6 | -0.8 | -1.1 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.60 | 0.55 | 0.53 | 0.38 | 0.35 | 0.34 | 0.25 | 0.19 | 0.16 | 0.13 | 0.12 | -1.3 | -4.0 | -3.4 | | | all energy demand (t of CO ₂ /toe) | 2.26 | 2.14 | 2.00 | 2.00 | 1.88 | 1.86 | 1.84 | 1.81 | 1.72 | 1.69 | 1.65 | -1.2 | -0.6 | -0.2 | | | ndustry | 2.80 | 2.56 | 2.37 | 2.31 | 2.09 | 2.08 | 2.07 | 1.99 | 1.80 | 1.77 | 1.71 | -1.7 | -1.2 | -0.1 | | | tesidential | 1.37 | 1.26 | 1.22 | 1.25 | 1.18 | 1.12 | 1.06 | 1.05 | 0.99 | 0.93 | 0.91 | -1.2 | -0.4 | -1.0 | | | ertiary | 1.63 | 1.27 | 1.24 | 1.28 | 1.31 | 1.29 | 1.18 | 1.14 | 1.13 | 1.12 | 1.10 | -2.7 | 0.6 | -1.1 | | | ransport (C) | 2.85 | 2.92 | 2.81 | 2.78 | 2.64 | 2.64 | 2.62 | 2.61 | 2.60 | 2.60 | 2.58 | -0.1 | -0.6 | -0.1 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 4.7 | 5.9 | 9.0 | 10.9 | 13.8 | 14.3 | 15.2 | 15.4 | 16.7 | 17.0 | 17.3 | | | | | | S in transport (%) | 1.3 | 0.2 | 4.2 | 5.5 | 10.3 | 10.6 | 10.9 | 10.9 | 11.0 | 10.9 | 11.1 | | | | | | ss Electricity generation by source (in GWh _e) ^(E) | 72911 | 81931 | 85319 | 76298 | 75945 | 78639 | 81420 | 89244 | 96399 | 101684 | 106722 | 1.6 | -1.2 | 0.7 | ann | | uclear energy | 13590 | 24728 | 27998 | 30765 | 30692 | 30692 | 45074 | 57814 | 58100 | 58399 | 61813 | 7.5 | 0.9 | 3.9 | | | olids | 52561 | 49522 | 47113 | 32031 | 30181 | 31802 | 18520 | 13812 | 20646 | 24745 | 23478 | -1.1 | -4.4 | -4.8 | | | il (including refinery gas) | 372 | 326 | 159 | 6 | 11 | 14 | 13 | 20 | 37 | 43 | 62 | -8.1 | -23.6 | 2.2 | | | as (including derived gases) | 3907 | 4215 | 4121 | 3825 | 4555 | 5092 | 6444 | 6288 | 6294 | 6834 | 8786 | 0.5 | 1.0 | 3.5 | | | iomass-waste | 723 | 739 | 2188 | 3817 | 4483 | 4839 | 5069 | 4947 | 4647 | 4609 | 5411 | 11.7 | 7.4 | 1.2 | | | ydro (pumping excluded)
/ind | 1758
0 | 2380
21 | 2789
335 | 3307
458 | 3388
498 | 3422
582 | 3446
632 | 3465
655 | 3728
677 | 4067
690 | 4138
703 | 4.7
0.0 | 2.0
4.1 | 0.2
2.4 | | | olar | 0 | 0 | 616 | 2090 | 2138 | 2198 | 2223 | 2243 | 2270 | 2297 | 2331 | 0.0 | 13.3 | 0.4 | | | eothermal and other renewables | 0 | 0 | 0 | 2030 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 13312 | 15607 | 18071 | 18930 | 18395 | 16811 | 17998 | 20437 | 21630 | 22191 | 22755 | 3.1 | 0.2 | -0.2 | | | uclear energy | 1706 | 3621 | 3636 | 3820 | 3827 | 3827 | 5597 | 7162 | 7197 | 7233 | 7624 | 7.9 | 0.5 | 3.9 | | | enewable energy | 947 | 1044 | 3251 | 3475 | 3509 | 3586 | 3649 | 3698 | 3804 | 3917 | 3978 | 13.1 | 8.0 | 0.4 | | | Hydro (pumping excluded) | 947 | 1016 | 1077 | 1188 | 1192 | 1192 | 1194 | 1195 | 1248 | 1318 | 1330 | 1.3 | 1.0 | 0.0 | | | Wind | 0 | 28 | 215 | 277 | 307 | 352 | 387 | 414 | 438 | 453 | 468 | 0.0 | 3.6 | 2.4 | | | Solar | 0 | 1 | 1960 | 2011 | 2011 | 2042 | 2068 | 2089 | 2117 | 2145 | 2180 | 0.0 | 0.3 | 0.3 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 10659
3733 | 10943
3808 | 11184
2889 | 11635
3359 | 11059
3601 | 9397
3697 | 8752
3644 | 9577
3458 | 10629
3681 | 11040
3911 | 11152
4134 | 0.5
-2.5 | -0.1
2.2 | -2.3
0.1 | | | of which cogeneration units of which CCS units | 0 | 0 | 2009 | 3339 | 0 | 0 | 0 | 0 | 846 | 1504 | 1609 | 0.0 | 0.0 | 0.0 | | | Solids fired | 8972 | 8871 | 8866 | 8253 | 7633 | 5908 | 5326 | 6144 | 7167 | 7443 | 7524 | -0.1 | -1.5 | -3.5 | | | Gas fired | 1286 | 1525 | 1703 | 2394 | 2417 | 2497 | 2418 | 2436 | 2452 | 2715 | 2848 | 2.9 | 3.6 | 0.0 | | | Oil fired | 129 | 276 | 279 | 414 | 342 | 326 | 322 | 311 | 297 | 293 | 158 | 8.0 | 2.1 | -0.6 | | | Biomass-waste fired | 272 | 271 | 336 | 575 | 666 | 666 | 686 | 686 | 714 | 589 | 624 | 2.2 | 7.1 | 0.3 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0
 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 57.9 | 55.3 | 49.8 | 43.2 | 44.4 | 50.1 | 48.9 | 47.3 | 47.4 | 48.3 | 49.4 | | | | | | ectricity indicators | | | | | | | | | | | | | | | Г | | ciency of gross thermal power generation (%) | 31.2 | 30.0 | 30.1 | 32.0 | 33.4 | 35.5 | 31.8 | 31.6 | 37.3 | 39.2 | 39.3 | | | | | | of gross electricity from CHP | 17.9 | 16.8 | 14.2 | 16.8 | 20.5 | 23.0 | 20.9 | 19.1 | 18.9 | 18.6 | 18.4 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.7 | 14.2 | 14.3 | | | | | | bon free gross electricity generation (%) | 22.0 | 34.0 | 39.8 | 53.0 | 54.2 | 53.1 | 69.3 | 77.5 | 72.0 | 68.9 | 69.7 | | | | | | uclear | 18.6 | 30.2 | 32.8 | 40.3 | 40.4 | 39.0 | 55.4 | 64.8 | 60.3 | 57.4 | 57.9 | | | | | | enewable energy forms | 3.4 | 3.8 | 6.9 | 12.7 | 13.8 | 14.0 | 14.0 | 12.7 | 11.7 | 11.5 | 11.8 | | | | | | nsport sector | | | | | , | | , | | | | | | | | | | senger transport activity (Gpkm) | 103.4 | 111.9 | 108.6 | 118.3 | 128.2 | 138.2 | 149.4 | 159.2 | 169.1 | 176.7 | 184.6 | 0.5 | 1.7 | 1.5 | | | ublic road transport | 16.2 | 15.6 | 17.4 | 18.6 | 19.9 | 21.0 | 22.0 | 22.9 | 23.8 | 24.6 | 25.4 | 0.8 | 1.3 | 1.0 | | | rivate cars and motorcycles | 66.8 | 71.8 | 67.1 | 72.4 | 77.2 | 82.5 | 88.4 | 94.1 | 99.5 | 103.4 | 107.6 | 0.0 | 1.4 | 1.4 | | | ail
viation | 15.4
5.0 | 14.6
9.9 | 15.6
8.5 | 17.3
10.0 | 19.2
11.8 | 20.8
14.0 | 22.5
16.5 | 23.9
18.3 | 25.5
20.3 | 26.7
21.9 | 28.0
23.7 | 0.1
5.4 | 2.1
3.4 | 1.6
3.4 | | | viation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ight transport activity (Gtkm) | 54.9 | 58.4 | 65.7 | 71.2 | 77.2 | 83.3 | 90.0 | 94.6 | 99.6 | 102.7 | 106.0 | 1.8 | 1.6 | 1.5 | | | rucks | 37.3 | 43.4 | 51.8 | 55.9 | 60.2 | 64.6 | 69.3 | 72.8 | 76.4 | 78.8 | 81.3 | 3.3 | 1.5 | 1.4 | | | ail | 17.5 | 14.9 | 13.8 | 15.3 | 16.9 | 18.6 | 20.6 | 21.8 | 23.1 | 23.8 | 24.6 | -2.4 | 2.1 | 2.0 | | | nland navigation | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -5.0 | 1.9 | 1.9 | | | ergy demand in transport (ktoe) (G) | 4280 | 6066 | 6132 | 6422 | 6519 | 6496 | 6677 | 6821 | 6975 | 7034 | 7102 | 3.7 | 0.6 | 0.2 | Ť | | ublic road transport | 200 | 189 | 210 | 224 | 236 | 239 | 242 | 244 | 248 | 251 | 255 | 0.5 | 1.2 | 0.3 | | | rivate cars and motorcycles | 2286 | 2653 | 2393 | 2476 | 2381 | 2254 | 2280 | 2340 | 2398 | 2420 | 2438 | 0.5 | -0.1 | -0.4 | | | rucks | 1383 | 2684 | 2998 | 3130 | 3262 | 3309 | 3391 | 3443 | 3500 | 3518 | 3556 | 8.0 | 0.8 | 0.4 | | | Rail | 209 | 193 | 186 | 203 | 220 | 230 | 240 | 244 | 243 | 236 | 228 | -1.2 | 1.7 | 0.9 | viation | 197 | 342 | 341 | 384 | 416 | 459 | 517 | 544 | 580 | 603 | 617 | 5.6 | 2.0 | 2.2 | | | Production (net/servery of products) 2009 2009 2009 2030 2030 2040 2040 2040 10-10-10-10-10-10-10-10-10-10-10-10-10-1 | • • • | | | | | | | | | | | | | | Denmark: Reference scenario | |--|-------------------|---------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--| | Production (Incl. accovery of products) 2003 314 2313 2411 2006 7427 1616 1378 1278 1278 1078 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 '20-'30 '30-'50 | 10-20 | '00-'10 | 2050 | 2045 | | | 2030 | 2025 | 2020 | 2015 | 2010 | 2005 | 2000 | | | Solicis | % Change | nnual % | Aı | | | | | | | | | | | | | | Discriminary 1980 1991 1297 1942 8931 7793 4982 4377 4384 1942 529 529 339 349 1840 1840 547 | 5 -3.1 -3. | -1.5 | -1.8 | 6856 | 8050 | 12298 | 13781 | 14616 | 17487 | 20066 | 24411 | 23335 | 31314 | 28093 | Production (incl.recovery of products) | | Nuclear | | -100.0 | | | | | - | | | | | - | | - | | | Notes Note | | -3.6 | | | | | | | | | | | | | | | Personal the rendy sources 205 206 348
348 | | -0.2 | | | | | | | | | | | | | o and a second s | | Bonnas & Ware 1867 2317 239 27 27 27 27 27 27 27 2 | | 2.0 | | | | | | | | | | | | | | | Binomas & Visite 1687 2317 2798 2673 2813 2800 2824 2838 2015 2346 5.2 0.3 0.5 | | 0.7 | | | | | | | | | | | | | | | Solidar and ortheres | 1 0.1 0. | 0.1 | 5.2 | 3246 | 3015 | 2938 | 2844 | 2829 | 2860 | 2813 | 2673 | 2798 | 2317 | 1687 | • | | Campane 3 | | 6.6 | | | 2076 | 1972 | 1753 | 1679 | 1504 | 1270 | 913 | 671 | | 365 | Wind | | Net Improries | | 26.7 | | | | | | | | | | | | | | | Solic s | | | | | | | | | | | | | | | | | Conditional Floredistications | | | | | | | | | | | | | | | · · | | - Cucke of and Feedstacks -886 11255 5214 3715 2388 1277 172 1207 1894 3900 4901 5.2 7. Natural gas -2882 5910 3022 6967 3486 1834 -265 118 1685 1933 1885 123 123 Electricity 57 118 68 78 103 -22 79 79 78 85 695 0.0 0.0 Gross finiand Consumption 19792 19705 19317 18851 17618 17101 17248 17252 17377 18021 18438 0.2 -0. Gross finiand Consumption 19792 19705 19317 18851 17618 17101 17248 17252 17377 18021 18438 0.2 -0. Gross finiand Consumption 19792 19705 19317 18851 17618 17010 17248 17252 17377 18021 18438 0.2 -0. Gross finiand Consumption 19792 19705 19317 18851 17618 17010 17248 17252 17377 17012 17248 17252 17377 17012 17248 17252 17377 17012 17248 17252 17377 17012 17248 17252 17377 17012 17248 17252 17377 17012 17248 17252 17257 17 | | -11.5 | | | | | | | | | | | | | | | Natural gas 288 5010 3022 4097 3485 1394 2655 118 1095 3634 4109 0.5 0.1 | | -7.6 | | | | | | | | | | | | | | | Electricity 57 118 9-8 78 710 720 79 79 78 78 79 79 78 78 | 4 1.7 1.4 | -0.4 | 12.3 | 1887 | 1803 | 1585 | 1482 | 1422 | 1279 | 1206 | 1128 | 1257 | 1863 | 393 | - Oil products | | Solits S | 4 -22.7 0.0 | 1.4 | 0.5 | 4109 | 3634 | 1065 | 118 | -265 | -1934 | -3485 | -6097 | -3022 | -5010 | -2882 | Natural gas | | Solicis 1986 1976 1989 1980 1994 1555 119 145 142 141 40.5 7.5 | | 0.6 | 0.0 | -95 | -85 | -78 | -79 | -79 | -82 | -103 | -78 | -98 | 118 | 57 | Electricity | | Natural gas | | -0.9 | | | | | | | | | | | | | The state of s | | Natural gale | | -7.9 | | | | | | | | | | | | | | | Nuclear | | -0.4 | | | | | | | | | | | | | | | Electricity Sept | | -1.9
0.0 | | | | | | | | | | | | | | | Renewable energy forms | | 0.0 | | | | | | | | | | | - | | | | Solids | | 2.9 | | | | | | | | | | | | | | | Solids | | | | | | | | | | | | | | | | | Dill Natural gas 226 22.3 2 | | | | 0.2 | 0.2 | 0.3 | 0.7 | 0.9 | 5.3 | 9.5 | 15.1 | 19.7 | 18.8 | 20.1 | • | | Nuclear Nucl | | | | 34.5 | 35.2 | 35.2 | 35.8 | 36.4 | 37.4 | 37.7 | 37.5 | 35.6 | 41.9 | 46.3 | Oil | | Renewable energy forms | | | | | | | | | | | | | | | | | Selectricity Generation in GWh, Select Selectricity Generation in GWh, Selectricity Generation in GWh, Selectricity Generation in GWh, Selectronsumption and grid losses 4045 3848 5260 3977 3232 3168 3040 3167 3325 3585 3919 27 4. | | | | | | | | | | | | | | | | | Self consumption and prid losses | | | | | | | | | | | | | | | | | Fuel Inputs to Thermal Power Generation 7834 7127 7595 5794 4872 4213 4084 4276 4349 4615 4763 4.3 4.5 5.0 | | -1.4 | | | | | | | | | | | | | | | Solids | | | | | | | | | | | | | | | | | Dil (including refinery gas) 1354 346 216 45 48 40 37 41 48 61 60 1-6.8 1-1.8 | | | | | | | | | | | | | | | • | | Gas (Including derived gases) | | -14.0 | | | | | | | | | | | | | | | Biomass & Waste 699 1341 1811 1365 1826 1820 1560 1765 1864 1916 2341 10.0 0.0
0.0 | | -2.6 | | | | | | | | | | | | | | | Hydrogen - Methanol 0 | | 0.1 | | | | | 1765 | | | | | 1811 | | | | | Fuel Input to other conversion processes 9033 8460 8105 8146 7796 7762 7868 7482 7370 7412 7301 -1.1 -0.1 | 0.0 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | Geothermal heat | | Refineries 8496 7928 7277 6670 6233 5949 5745 5561 5461 5433 5410 -1.5 -1.5 Birchuels and hydrogen production 0 0 0 206 356 349 350 359 348 383 431 0.0 0 District heating 520 519 815 1288 1204 1459 1676 1555 1553 1587 1451 4.6 4. Derived gases, cokeries etc. 17 13 13 2 4 5 6 7 8 9 10 -2.9 -11. Energy Branch Consumption 11150 1247 1195 1105 885 779 655 621 559 427 385 0.4 -2. Final Energy Demand 14719 15497 15535 15072 14336 14027 14064 14207 14519 15034 15502 0.5 -0.0 Industry 2 | 0 0.0 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Hydrogen - Methanol | | Biofuels and hydrogen production 0 0 0 206 356 349 350 359 348 383 431 0.0 0.0 District heating 520 519 815 1268 1204 1459 1767 1555 1553 1587 1451 4.6 4. 1. Derived gases, cokeries etc. 17 13 13 2 2 4 5 6 7 8 9 10 2-9 41. Energy Branch Consumption 1150 1247 1195 1105 895 779 655 621 559 427 385 0.4 -2. Non-Energy Uses 301 229 265 275 279 283 286 288 292 298 307 -1.3 0. Final Energy Demand 1479 15497 15555 15072 14336 14027 14064 14207 14519 15034 15502 0.5 -0. by sector Industry 2932 2863 2434 2336 2352 2307 2310 2356 2417 2565 2691 -1.8 -0. reargy intensive industries 1156 1107 823 773 794 792 789 812 839 895 958 -3.3 -0. reargy intensive industries 1156 1107 823 773 794 792 789 812 839 895 958 -3.3 -0. Residential 4160 4451 4900 4587 4210 4065 4135 4222 4387 4603 4802 1.6 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 3805 2856 3029 3854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 3805 2856 3029 3854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Tertiary 3805 2856 3856 3856 3856 3856 3856 3856 3856 3 | | -0.4 | | | | | | | | | | | | | | | District heating 520 519 815 1268 1204 1459 1767 1555 1553 1587 1451 4.6 4.6 Derived gases, cokeries etc. 17 13 13 2 4 5 6 7 8 9 10 -2.9 -11. Energy Branch Consumption 1150 1247 1195 1105 895 779 655 621 559 427 385 0.4 -2.9 -11. Energy Branch Consumption 14719 15497 15535 15072 14336 14027 14064 14207 14519 15034 15502 0.5 -0.0 Final Energy Demand 14719 15497 15535 15072 14336 14027 14064 14207 14519 15034 15502 0.5 -0.0 by sector Industry 2932 2863 2434 2336 2352 2307 2310 2356 2417 2565 2691 -1.8 -0.0 - energy intensive industries 1156 1107 823 773 794 792 789 812 839 895 958 -3.3 -0.0 - other industrial sectors 1777 1756 1611 1563 1557 1515 1521 1544 1578 1670 1733 -1.0 -0.0 Residential 4160 4451 4900 4587 4210 4065 4135 4222 4387 4603 4802 1.6 -1. Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Transport 4821 5327 5172 5296 5115 4956 4901 4895 4948 5060 5193 0.7 -0.0 by fuel Solids 290 253 136 80 72 66 62 53 41 39 38 -7.3 6. Gas 1667 1707 1793 1594 1521 1524 1531 1604 1637 1656 1743 0.7 -1. Electricity 2791 6751 6260 5848 5597 5461 5374 5393 5539 5575 -0.4 -1. Electricity 2791 2877 2757 2670 2488 2517 2693 2676 2722 2736 2789 2.3 -0.4 -1. Electricity 2791 2877 2757 2670 2488 2517 2693 2676 2722 2736 2789 2.3 -0.4 -1. Electricity 2791 2877 2757 2670 2488 2517 2693 2676 2722 2736 2738 2.3 -0.4 -1. RES in Gross Final Energy Consumption (A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3. TOTAL GHG emissions (Mt of CO2 eq.) 70.3 | | -1.5 | | | | | | | | | | | | | | | Derived gases, cokeries etc. | | 0.0 | | | | | | | | | | | | | | | Energy Branch Consumption 1150 1247 1195 1105 895 779 655 621 559 427 385 0.4 -2. | | | | | | | | | | | | | | | = | | Non-Energy Uses 301 289 265 275 279 283 286 288 292 298 307 -1.3 0.5 | | -2.8 | | | | | | | | | | | | | | | Final Energy Demand 14719 15497 15535 15072 14336 14027 14064 14207 14519 15034 15032 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0. | | 0.5 | - | | | | | | | | | | | | | | Day Sector Industry 2932 2863 2434 2336 2352 2307 2310 2356 2417 2565 2691 -1.8 -0. - energy intensive industries 1156 1107 823 773 794 792 789 812 839 895 958 -3.3 -0. - energy intensive industrial sectors 1777 1756 1611 1563 1557 1515 1521 1544 1578 1670 1733 -1.0 -0. - Residential 4160 4451 4900 4587 4210 4065 4135 4222 4387 4603 4802 1.6 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. - Tertiary 2805 2909 2719 2735 2768 2806 2817 2819 2818 2818 2819 2818 2 | | -0.8 | | | | | | | | | | | | | | | Industry | J -0.1 | 0.0 | 0.0 | 10002 | 10004 | 14010 | 14207 | 14004 | 14021 | 14000 | 10012 | 10000 | 10431 | 14713 | <u>.,</u> | | - other industrial sectors | 3 -0.2 0.8 | -0.3 | -1.8 | 2691 | 2565 | 2417 | 2356 | 2310 | 2307 | 2352 | 2336 | 2434 | 2863 | 2932 | | | Residential | 4 -0.1 1.0 | -0.4 | -3.3 | 958 | 895 | 839 | 812 | 789 | 792 | 794 | 773 | 823 | 1107 | 1156 | - energy intensive industries | | Tertiary 2805 2856 3029 2854 2660 2699 2719 2735 2768 2806 2817 0.8 -1. Transport 4821 5327 5172 5296 5115 4856 4901 4895 4948 5060 5193 0.7 -0. by fuel Solids 290 253 136 80 72 66 62 53 41 39 38 -7.3 -6. Oil 7059 7291 6751 6260 5848 5597 5461 5374 5393 5539 5575 -0.4 -1. Gas 1667 1707 1793 1594 1521 1524 1531 1604 1637 1656 1743 0.7 -1. Heat (from CHP and District Heating) 2275 2424 2833 2819 2670 2488 2517 2603 2776 2981 3262 3483 -0.1 -1. Heat (from CHP and District Heating) 2255 2424 2833 2819 2677 2619 2693 2676 2722 2736 2789 2.3 -0. Renewable energy forms 657 944 1265 1648 1727 1699 1706 1712 1726 1778 1845 6.8 3. Other fuels (hydrogen, ethanol) 0 0 0 1 1 3 4 8 12 18 25 30 0.0 75. RES in Gross Final Energy Consumption (A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3. TOTAL GHG emissions (Mt of CO2 eq.) 70.3 65.1 62.6 55.0 47.8 44.0 42.1 41.4 40.9 41.0 40.4 -1.2 -2. of which ETS sectors (2013 scope) GHG emissions | | -0.3 | | | | | | | | | | | | | | | Transport 4821 5327 5172 5296 5115 4956 4901 4895 4948 5060 5193 0.7 -0. by fuel | | -1.5 | | | | | | | | | | | | | | | Solids 290 253 136 80 72 66 62 53 41 39 38 -7.3 -6. | | | | | | | | | | | | | | | • | | Solids 290 253 136 80 72 66 62 53 41 39 38 -7.3 -6. | 1 -0.4 0. | -0.1 | 0.7 | 5193 | 5060 | 4946 | 4695 | 4901 | 4936 | 5115 | 5296 | 5172 | 5321 | 4021 | | | Oil 7059 7291 6751 6260 5848 5597 5461 5374 5393 5575 -0.4 -1. Gas 1667 1707 1793 1594 1521 1524 1531 1604 1637 1656 1743 0.7 -1. Electricity 2791 2877 2757 2670 2488 2517 2603 2776 2981 3262 3483 -0.1 -1. Heat (from CHP and District Heating) 2255 2424 2833 2819 2677 2619 2693 2676 2722 2736 2789 2.3 -0.1 -1. Renewable energy forms 657 944 1265 1648 1727 1699 1706 1712 1726 1778 1845 6.8 3. Other fuels (hydrogen, ethanol) 0 0 0 1 3 4 8 12 18 25 30 0.0 75. RES in Gross Final En | 2 -1.5 -2.4 | -6.2 | -73 | 38 | 30 | 41 | 53 | 62 | 66 | 72 | 80 | 136 | 253 | 290 | | | Gas 1667 1707 1793 1594 1521 1524 1531 1604 1637 1656 1743 0.7 -1. Electricity 2791 2877 2757 2670 2488 2517 2603 2776 2981 3262 3483 -0.1 -1. Heat (from CHP and District Heating) 2255 2424 2833 2819 2677 2619 2693 2676 2722 2736 2789 2.3 -0. Remewable energy forms 657 944 1265 1648 1727 1699 1706 1712 1726 1778 1845 6.8 3. Other fuels (hydrogen, ethanol) 0 0 0 1 3 4 8 12 18 25 30 0.0 7 RES in Gross Final Energy Consumption (A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3 | | -1.4 | | | | | | | | | | | | | | | Electricity 2791 2877 2757 2670 2488 2517 2603 2776 2981 3262 3483 -0.1 -1. | | -1.6 | | | | | | | | | | | | | | | Renewable energy forms 657 944 1265 1648 1727 1699 1706 1712 1726 1778 1845 6.8 3. Other fuels (hydrogen, ethanol) 0 0 0 1 3 4 8 12 18 25 30 0.0 75. RES in Gross Final Energy Consumption (A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3. TOTAL GHG emissions (Mt of CO2 eq.) 70.3 65.1 62.6 55.0 47.8 44.0 42.1 41.4 40.9 41.0 40.4 -1.2 -2. of which ETS sectors (2013 scope) GHG emissions 29.2 27.8 23.0 17.4 14.5 13.3 13.1 12.8 12.5 11.8 -4. | | -1.0 | -0.1 | 3483 | | | | | | | | 2757 | 2877 | | | | Other fuels (hydrogen, ethanol) 0 0 0 1 3 4 8 12 18 25 30 0.0 75. RES in Gross Final Energy Consumption (A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3. TOTAL GHG emissions (Mt of CO2 eq.) 70.3 65.1 62.6 55.0 47.8 44.0 42.1 41.4 40.9 41.0 40.4 -1.2 -2. of which ETS
sectors (2013 scope) GHG emissions 29.2 27.8 23.0 17.4 14.5 13.3 13.1 12.8 12.5 11.8 -4. | 6 0.1 0.: | -0.6 | 2.3 | 2789 | 2736 | 2722 | 2676 | 2693 | 2619 | 2677 | 2819 | 2833 | 2424 | 2255 | Heat (from CHP and District Heating) | | RES in Gross Final Energy Consumption ^(A) 1669 2674 3741 4006 5042 5487 5547 5730 6084 6285 6963 8.4 3. TOTAL GHG emissions (Mt of CO2 eq.) 70.3 65.1 62.6 55.0 47.8 44.0 42.1 41.4 40.9 41.0 40.4 -1.2 -2. of which ETS sectors (2013 scope) GHG emissions 29.2 27.8 23.0 17.4 14.5 13.3 13.1 12.8 12.5 11.8 -4. | | 3.2 | | | | | | | | | | | | | | | TOTAL GHG emissions (Mt of CO2 eq.) 70.3 65.1 62.6 55.0 47.8 44.0 42.1 41.4 40.9 41.0 40.4 -1.2 -2. of which ETS sectors (2013 scope) GHG emissions 29.2 27.8 23.0 17.4 14.5 13.3 13.1 12.8 12.5 11.8 -4. | | 75.6 | | | | | | | | | | | | | | | of which ETS sectors (2013 scope) GHG emissions 29.2 27.8 23.0 17.4 14.5 13.3 13.1 12.8 12.5 11.8 | | 3.0 | | | | | | | | | | | | | | | | | -2.7 | -1.2 | | | | | | | | | | | 70.3 | | | of which non ETC contars CHC emissions 25.0 24.7 20.4 20.4 20.5 00.7 00.4 00.5 | | -4.6 | | | | | | | | | | | | | | | | | -1.3
-3.4 | ه ۸, | | | | | | | | | | | 53.4 | | | | | -3.4
-6.4 | | | | | | | | | | | | | | | | | -1.9 | | | | | | | | | | | | | | | | | -2.5 | | | | | | | | | | | | | | | | | -3.7 | | | | | | | | | | | | | | | | | -2.0 | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | -0.8 | | | | | | | | | | | | | • | | - · · · · · · · · · · · · · · · · · · · | | 0.1 | | | | | | | | | | | | | | | • | 4 -0.2 -0. | -0.4 | -1.3 | | | | | | | | | | | | | | TOTAL GHG emissions Index (1990=100) 100.0 92.6 89.0 78.3 67.9 62.5 59.8 58.8 58.2 58.3 57.5 Source: PRIMES | | | | 57.5 | 58.3 | 58.2 | 58.8 | 59.8 | 62.5 | 67.9 | 78.3 | 89.0 | 92.6 | 100.0 | • | | SUMMARY ENERGY BALANCE AND INDICATO | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2020 | 2035 | 2040 | 2045 | | mark: R | | | | |---|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|--------------|---------------|----------------|--------------|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | ain Energy System Indicators | | | | | | | | | | | | A | nnual % | Cnange | e | | opulation (Million) | 5.330 | 5.411 | 5.535 | 5.629 | 5.720 | 5.811 | 5.893 | 5.954 | 5.992 | 6.017 | 6.038 | 0.4 | 0.3 | 0.3 | | | DP (in 000 M€10) | 222.7 | 237.0 | 235.6 | 252.8 | 270.4 | 292.4 | 314.9 | 338.1 | 364.1 | 395.4 | 430.5 | 0.6 | 1.4 | 1.5 | | | ross Inl. Cons./GDP (toe/M€10) | 88.9 | 83.4 | 82.0 | 74.6 | 65.1 | 58.5 | 54.8 | 51.0 | 48.2 | 45.6 | 42.8 | -0.8 | -2.3 | -1.7 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.70 | 2.53 | 2.52 | 2.21 | 1.95 | 1.79 | 1.69 | 1.66 | 1.62 | 1.61 | 1.54 | -0.7 | -2.5 | -1.4 | | | port Dependency % | -35.3 | -50.9 | -18.2 | -24.4 | -8.7 | 2.8 | 19.7 | 24.4 | 33.7 | 57.8 | 64.9 | | | | | | otal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 16.5 | 22.7 | 25.3 | 27.4 | 30.7 | 32.5 | 34.0 | 35.7 | 37.9 | 40.4 | 43.5 | 4.4 | 2.0 | 1.0 | | | as % of GDP | 7.4 | 9.6 | 10.7 | 10.8 | 11.4 | 11.1 | 10.8 | 10.6 | 10.4 | 10.2 | 10.1 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 101.9 | 91.8 | 83.7 | 80.3 | 74.4 | 70.5 | 67.2 | 64.8 | 64.5 | 63.3 | -0.9 | -1.3 | -1.3 | | | esidential (Energy on Private Income, index 2000=100) | 100.0 | 95.9 | 101.7 | 88.4 | 75.4 | 66.9 | 62.7 | 59.1 | 56.4 | 53.8 | 50.8 | 0.2 | -2.9 | -1.8 | | | ertiary (Energy on Value added, index 2000=100) | 100.0 | 95.4 | 97.9 | 85.4 | 73.9 | 68.8 | 64.0 | 59.7 | 55.8 | 51.9 | 47.6 | -0.2 | -2.8 | -1.4 | | | assenger transport (toe/Mpkm)
eight transport (toe/Mtkm) | 50.4 | 49.3
59.2 | 49.2 | 47.1
67.0 | 41.8
63.8 | 37.8
60.9 | 35.2 | 33.8 | 32.8
53.9 | 32.2
52.9 | 31.9
51.9 | -0.2
5.5 | -1.6
-0.7 | -1.7
-0.9 | | | | 40.1 | 59.2 | 68.4 | 67.0 | 03.0 | 60.9 | 58.1 | 55.6 | 53.9 | 52.9 | 51.9 | 5.5 | -0.7 | -0.9 | | | arbon Intensity indicators | 0.36 | 0.28 | 0.26 | 0.21 | 0.15 | 0.11 | 0.10 | 0.09 | 0.09 | 0.09 | 0.08 | -2.9 | -5.6 | -4.0 | | | ectricity and Steam production (t of CO ₂ /MWh)
nal energy demand (t of CO ₂ /toe) | 1.81 | 1.76 | 1.63 | 1.54 | 1.52 | 1.49 | 1.46 | 1.44 | 1.41 | 1.40 | 1.38 | -1.0 | -0.7 | -0.4 | | | Industry | 1.85 | 1.79 | 1.62 | 1.33 | 1.30 | 1.20 | 1.14 | 1.11 | 1.07 | 1.14 | 1.10 | -1.3 | -2.2 | -1.2 | | | Residential | 0.94 | 0.80 | 0.66 | 0.54 | 0.52 | 0.54 | 0.51 | 0.50 | 0.48 | 0.45 | 0.44 | -3.6 | -2.2 | -0.3 | | | Tertiary | 1.05 | 0.95 | 0.90 | 0.81 | 0.84 | 0.83 | 0.82 | 0.82 | 0.80 | 0.79 | 0.80 | -1.6 | -0.7 | -0.2 | | | Transport (C) | 2.98 | 2.99 | 3.00 | 2.88 | 2.79 | 2.78 | 2.77 | 2.76 | 2.75 | 2.73 | 2.70 | 0.1 | -0.7 | -0.1 | | | dicators for renewables | | | | | | | | | | | | | | | _ | | nare of RES in Gross Final Energy Consumption (%) | 10.6 | 16.1 | 22.1 | 24.6 | 32.8 | 36.6 | 37.0 | 37.8 | 39.4 | 39.4 | 42.4 | | | | | | ES in transport (%) | 0.1 | 0.2 | 0.3 | 3.0 | 10.2 | 11.1 | 11.9 | 12.6 | 13.2 | 14.5 | 16.4 | | | | | | ross Electricity generation by source (in GWh _e) ^(E) | 36053 | 36246 | 38785 | 36243 | 33667 | 33686 | 34521 | 36759 | 39342 | 43020 | 46114 | 0.7 | -1.4 | 0.3 | | | Nuclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids | 16673 | 15463 | 16976 | 11928 | 5474 | 2603 | 276 | 169 | 0 | 0 | 0 | 0.2 | -10.7 | -25.8 | | | Oil (including refinery gas) | 4439 | 1375 | 750 | 202 | 201 | 197 | 186 | 201 | 247 | 353 | 353 | -16.3 | -12.3 | -0.8 | | | Gas (including derived gases) | 8774 | 8780 | 7908 | 8114 | 6769 | 6964 | 8824 | 9358 | 8950 | 10909 | 8889 | -1.0 | -1.5 | 2.7 | | | Biomass-waste | 1895 | 3989 | 5315 | 5080 | 6084 | 5829 | 4908 | 5833 | 6404 | 6803 | 8714 | 10.9 | 1.4 | -2.1 | | | Hydro (pumping excluded) | 30 | 23 | 21 | 29 | 23 | 22 | 23 | 29 | 29 | 29 | 22 | -3.5 | 0.7 | 0.0 | | | Wind | 4241 | 6614 | 7809 | 10617 | 14770 | 17488 | 19521 | 20386 | 22927 | 24139 | 27347 | 6.3 | 6.6 | 2.8 | | | Solar
Geothermal and other renewables | 1 | 2 | 6
0 | 272
0 | 347
0 | 584
0 | 784
0 | 784
0 | 785
0 | 787
0 | 788
0 | 17.5
-19.3 | 50.0
-100.0 | 8.5
0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | et Generation Capacity in MW _e | 12444 | 12992 | 13596 | 14049 | 13983 | 13772 | 14229 | 13580 | 14988 | 16394 | 18453 | 0.9 | 0.3 | 0.2 | | | Nuclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Renewable energy | 2428 | 3142 | 3765 | 4784 | 6333 | 7450 | 8195 | 8369 | 9230 | 9725 | 10989 | 4.5 | 5.3 | 2.6 | | | Hydro (pumping excluded) | 10 | 11 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | -1.0 | 3.3 | 0.0 | | | Wind | 2417 | 3128 | 3749 | 4489 | 5960 | 6858 | 7420 | 7594 | 8454 | 8947 | 10210 | 4.5 | 4.7 | 2.2 | | | Solar | 1 | 3 | 7 | 282 | 360 | 579 | 762 | 763 | 763 | 766 | 767 | 21.5 | 48.3 | 7.8 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Thermal power | 10016 | 9850 | 9831 | 9265 | 7650 | 6322 | 6034 | 5211 | 5757 | 6669 | 7464 | -0.2 | -2.5 | -2.3 | | | of which cogeneration units | 5578 | 4738 | 4839 | 4255 | 3844 | 3455 | 2974 | 3269 | 3378 | 4280 | 4686 | -1.4 | -2.3 | -2.5 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 6173 | 5166 | 4967 | 4423 | 3308 | 2050 | 1231 | 91 | 0 | 0 | 0 | -2.1 | -4.0 | -9.4 | | | Gas fired Oil fired | 2103
1164 | 2683
1107 | 2709
1134 | 2715
1105 | 2693
505 | 2806
321 | 3360
299 | 3522
292 | 4080
245 | 4840
207 | 5120
543 | 2.6
-0.3 | -0.1
-7.8 | 2.2
-5.1 | | | Biomass-waste fired | 577 | 893 | 1021 | 1022 | 1144 | 1144 | 1146 | 1307 | 1432 | 1621 | 1802 | 5.9 | 1.1 | 0.0 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | rg. Load factor of net power capacity (F) (%) | 31.6 | 30.2 | 30.9 | 28.2 | 26.6 | 27.1 | 27.1 | 30.2 | 29.4 | 29.4 | 27.9 | | | | | | ectricity indicators | | | 23.0 | | | | | | | | | | | | f | | ficiency of gross thermal power generation (%) | 34.9 | 35.7 | 35.0 | 37.6 | 32.7 | 31.8 | 29.9 | 31.3 | 30.8 | 33.7 | 32.4 | | | | | | of gross electricity from CHP | 52.6 | 52.1 | 49.2 | 61.6 | 50.7 | 45.0 | 38.7 | 41.4 | 39.5 | 40.8 | 38.1 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | arbon free gross electricity generation (%) | 17.1 | 29.3 | 33.9 | 44.1 | 63.0 | 71.0 | 73.1 | 73.5 | 76.6 | 73.8 | 80.0 | | | | | | nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | renewable energy forms | 17.1 | 29.3 | 33.9 | 44.1 | 63.0 | 71.0 | 73.1 | 73.5 | 76.6 | 73.8 | 80.0 | | | | | | ansport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 73.5 | 75.0 | 77.7 | 81.0 | 84.6 | 88.8 | 93.2 | 97.1 | 101.2 | 105.3 | 109.5 | 0.6 | 0.9 | 1.0 | | | Public road transport | 5.5 | 6.0 | 6.3 | 6.6 | 6.8 | 7.1 | 7.4 | 7.7 | 8.0 | 8.3 | 8.6 | 1.4 | 0.7 | 8.0 | | | Private cars and motorcycles | 51.2 | 50.6 | 51.6 | 52.8 | 53.9 | 55.3 | 56.4 | 57.6 | 58.8 | 60.1 | 61.4 | 0.1 | 0.4 | 0.5 | | | Rail | 5.5 | 6.1 | 6.6 | 6.9 | 7.3 | 7.7 | 8.2 | 8.6 | 9.1 | 9.6 | 10.1 | 1.8 | 1.0 | 1.1 | | | Aviation | 7.9 | 9.3 | 10.2 | 11.7 | 13.4 | 15.5 | 17.9 | 19.7 | 21.7 | 23.5 | 25.5 | 2.6 | 2.8 | 2.9 | | | nland navigation | 3.3 | 3.0 | 2.9 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 3.6 | 3.7 | 3.9 | -1.3 | 0.7 | 0.7 | | | eight transport activity (Gtkm) | 27.8 | 27.5 | 19.7 | 22.1 | 24.8 | 26.2 | 27.8 | 29.0 | 30.2 | 31.5 | 32.9
 -3.4 | 2.3 | 1.2 | | | Trucks | 24.0 | 23.3 | 15.0 | 17.1 | 19.4 | 20.6 | 21.7 | 22.6 | 23.5 | 24.5 | 25.6 | -4.6 | 2.6 | 1.1 | | | Rail | 2.0 | 2.0
2.2 | 2.2 | 2.4 | 2.6 | 2.9 | 3.1
3.0 | 3.3 | 3.6 | 3.7 | 3.9 | 1.0 | 1.7
1.0 | 1.8 | | | Inland navigation
nergy demand in transport (ktoe) ^(G) | 1.7 | | 2.4 | 2.5 | 2.7 | 2.8 | | 3.1 | 3.2 | 3.2 | 3.3 | 3.5 | | 1.1 | - | | | 4821 | 5327 | 5172
126 | 5295 | 5114 | 4955 | 4900 | 4894
135 | 4947
137 | 5059 | 5192 | 0.7 | -0.1 | - 0.4 | | | Public road transport Private cars and motorcycles | 106
2562 | 114
2422 | 126
2648 | 129
2536 | 131
2183 | 132
1956 | 133
1845 | 135
1810 | 137
1786 | 140
1788 | 143
1802 | 1.7
0.3 | 0.4
-1.9 | 0.1
-1.7 | | | Private cars and motorcycles Trucks | 1031 | 1538 | 2648
1254 | 1386 | 1488 | 1503 | 1519 | 1517 | 1786 | 1788 | 1618 | 2.0 | -1.9
1.7 | -1.7 | | | HUUNG | | 1538 | 1254 | 1386 | 1488 | 1503 | 1519 | 1517 | 1536 | 1578 | 116 | 0.9 | 0.2 | 0.2 | | | Rail | 103 | | | | | | | | | | 110 | 0.5 | 0.2 | 0.0 | | | Rail
Aviation | 103
856 | 955 | 875 | 968 | 1030 | 1076 | 1107 | 1132 | 1187 | 1252 | 1325 | 0.2 | 1.6 | 0.7 | | | Estonia: Reference scenario | | | | | | | | SUM | MARY E | NERGY E | BALAN | CE AND | INDIC | ATORS | S (A) | |---|---|--|---|---|--|---|---|--|--|--|--|--|--|--|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 3435
2669 | 4250
3176 | 5467
3943 | 6764
4432 | 8842 5259 | 8682 5022 | 8438
4687 | 8269
4466 | 8202
4281 | 8110
4141 | 7960 4054 | 4.8
4.0 | 4.9
2.9 | -0.5
-1.1 | -0.3
-0.7 | | Oil | 249 | 375 | 532 | 1089 | 2080 | 2120 | 2174 | 2228 | 2276 | 2282 | 2275 | 7.9 | 14.6 | 0.4 | 0.7 | | Natural gas | 5 | 7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1.7 | -100.0 | 0.0 | 0.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 512 | 692 | 988 | 1243 | 1503 | 1540 | 1577 | 1575 | 1645 | 1687 | 1631 | 6.8 | 4.3 | 0.5 | 0.2 | | Hydro | 0 | 2 | 2 | 5 | 7 | 8 | 10 | 11 | 12 | 12 | 12 | 18.4 | 11.7 | 3.7 | 0.9 | | Biomass & Waste
Wind | 512
0 | 686
5 | 961
24 | 1165
70 | 1394
98 | 1350
177 | 1335
225 | 1292
263 | 1303
321 | 1250
414 | 1141
466 | 6.5
0.0 | 3.8
15.2 | -0.4
8.6 | -0.8
3.7 | | Solar and others | 0 | 0 | 0 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 12 | 0.0 | 0.0 | 5.3 | 2.8 | | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.5 | 0.8 | | Net Imports | 1619 | 1435 | 813 | 354 | -833 | -749 | -615 | -449 | -320 | -238 | -82 | -6.7 | 0.0 | -3.0 | -9.6 | | Solids | 270 | 27 | -22 | -6 | -2 | 4 | 5 | 5 | 9 | 10 | 8 | 0.0 | -23.1 | 0.0 | 2.3 | | Oil | 777 | 859 | 710 | 237 | -763 | -765 | -734 | -690 | -625 | -522 | -407 | -0.9 | 0.0 | -0.4 | -2.9 | | - Crude oil and Feedstocks | -125
902 | -225
1085 | -394 | -774
1011 | -1415 | -1378 | -1348 | -1315 | -1275 | -1209 | -1138
731 | 12.2
2.0 | 13.6
-5.1 | -0.5
-0.6 | -0.8
0.9 | | - Oil products
Natural gas | 657 | 792 | 1104
558 | 725 | 653
515 | 613
477 | 614
412 | 625
398 | 650
376 | 687
230 | 148 | -1.6 | -0.8 | -0.6 | -5.0 | | Electricity | -80 | -138 | -280 | -330 | -149 | -85 | 35 | 113 | 135 | 174 | 189 | 13.4 | -6.1 | 0.0 | 8.8 | | Gross Inland Consumption | 4970 | 5569 | 6106 | 6881 | 7767 | 7688 | 7578 | 7570 | 7627 | 7609 | 7609 | 2.1 | 2.4 | -0.2 | 0.0 | | Solids | 2968 | 3194 | 3917 | 4426 | 5257 | 5026 | 4692 | 4470 | 4290 | 4151 | 4062 | 2.8 | 3.0 | -1.1 | -0.7 | | Oil | 908 | 1126 | 1060 | 1090 | 1081 | 1120 | 1208 | 1309 | 1424 | 1531 | 1640 | 1.6 | 0.2 | 1.1 | 1.5 | | Natural gas | 662 | 800 | 563 | 723 | 509 | 466 | 398 | 378 | 348 | 195 | 107 | -1.6 | -1.0 | -2.4 | -6.3 | | Nuclear
Electricity | -80 | 0
-138 | -380 | -330 | 0
-149 | -85 | 0
35 | 0
113 | 0
135 | 0
174 | 180 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy forms | -80
513 | -138
589 | -280
847 | -330
971 | -149
1069 | -85
1161 | 35
1245 | 113
1300 | 135
1430 | 174
1558 | 189
1610 | 13.4
5.1 | -6.1
2.4 | 0.0
1.5 | 8.8
1.3 | | as % in Gross Inland Consumption | 010 | 003 | 0-11 | 3/1 | 1000 | 1101 | 12-10 | 7000 | 1-30 | 1000 | 1010 | 0.1 | 2.4 | 1.0 | 1.3 | | Solids | 59.7 | 57.3 | 64.2 | 64.3 | 67.7 | 65.4 | 61.9 | 59.0 | 56.3 | 54.6 | 53.4 | | | | | | Oil | 18.3 | 20.2 | 17.4 | 15.8 | 13.9 | 14.6 | 15.9 | 17.3 | 18.7 | 20.1 | 21.6 | | | | | | Natural gas | 13.3 | 14.4 | 9.2 | 10.5 | 6.6 | 6.1 | 5.2 | 5.0 | 4.6 | 2.6 | 1.4 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 10.3 | 10.6 | 13.9 | 14.1 | 13.8 | 15.1 | 16.4 | 17.2 | 18.7 | 20.5 | 21.2 | | | | | | Gross Electricity Generation in GWh _e | 8507
2183 | 10203
2194 | 1 2962
2292 | 15162
2690 | 13346
2367 | 12791
2277 | 11658
2164 | 11007
2095 | 10917
2023 | 11022
2049 | 11482
2130 | 4.3
0.5 | 0.3
0.3 | -1.3
-0.9 | -0.1
-0.1 | | Self consumption and grid losses Fuel Inputs to Thermal Power Generation | 2163
2442 | 2600 | 3115 | 3152 | 2362 | 2042 | 1666 | 1461 | 1325 | 1167 | 1089 | 2.5 | -2.7 | -3.4 | -0.1
-2.1 | | Solids | 2199 | 2353 | 2715 | 2668 | 1978 | 1673 | 1255 | 942 | 689 | 533 | 441 | 2.1 | -3.1 | -4.4 | -5.1 | | Oil (including refinery gas) | 16 | 10 | 11 | 32 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -3.0 | -10.7 | -35.6 | 0.0 | | Gas (including derived gases) | 226 | 227 | 209 | 289 | 217 | 209 | 222 | 287 | 372 | 337 | 359 | -0.8 | 0.4 | 0.2 | 2.4 | | Biomass & Waste | 2 | 10 | 179 | 162 | 163 | 160 | 189 | 232 | 265 | 297 | 289 | 55.4 | -0.9 | 1.5 | 2.1 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | | 0 | | 0 | | 0
3647 | 0 | | 0
3900 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0
0.3 | | Fuel Input to other conversion processes Refineries | 968
0 | 1296
0 | 1564
0 | 2106
0 | 3567
0 | 0 | 3734
0 | 3811
0 | 0 | 3931
0 | 3930 | 4.9
0.0 | 8.6
0.0 | 0.5
0.0 | 0.0 | | Biofuels and hydrogen production | 0 | 0 | 0 | 28 | 74 | 70 | 69 | 65 | 64 | 63 | 64 | 0.0 | 0.0 | -0.7 | -0.4 | | District heating | 455 | 489 | 446 | 429 | 356 | 370 | 364 | 347 | 352 | 361 | 356 | -0.2 | -2.2 | 0.2 | -0.1 | | Derived gases, cokeries etc. | 514 | 807 | 1117 | 1649 | 3137 | 3206 | 3301 | 3398 | 3484 | 3507 | 3511 | 8.1 | 10.9 | 0.5 | 0.3 | | Energy Branch Consumption | 165 | 193 | 201 | 231 | 226 | 208 | 187 | 171 | 159 | 149 | 144 | 2.0 | 1.2 | -1.9 | -1.3 | | Non-Energy Uses | 180 | 182 | 37 | 39 | 43 | 45 | 45 | 48 | 49 | 50 | 51 | -14.6 | 1.6 | 0.4 | 0.6 | | Final Energy Demand | 2423 | 2867 | 2905 | 3091 | 3151 | 3198 | 3241 | 3273 | 3317 | 3358 | 3393 | 1.8 | 0.8 | 0.3 | 0.2 | | by sector | 571 | 719 | 570 | 665 | 726 | 725 | 740 | 749 | 767 | 770 | 782 | 0.0 | 2.4 | 0.2 | 0.3 | | Industry - energy intensive industries | 245 | 273 | 231 | 285 | 329 | 328 | 333 | 337 | 341 | 339 | 336 | -0.6 | 3.6 | 0.2 | 0.3 | | - other industrial sectors | 326 | 446 | 339 | 380 | 396 | 397 | 408 | 412 | 426 | 431 | 446 | 0.4 | 1.6 | 0.3 | 0.5 | | Residential | 929 | 890 | 1028 | 1044 | 1040 | 1078 | 1078 | 1081 | 1080 | 1097 | 1109 | 1.0 | 0.1 | 0.4 | 0.1 | | Tertiary | 345 | 494 | 522 | 561 | 571 | 593 | 607 | 618 | 628 | 645 | 654 | 4.2 | 0.9 | 0.6 | 0.4 | | Transport | | | | | | | 815 |
825 | 842 | 846 | 848 | 3.1 | 0.4 | 0.0 | 0.2 | | Transport | 578 | 765 | 786 | 822 | 815 | 801 | 010 | 020 | | | 040 | | | | | | by fuel | 578 | 765 | | | | | | | | | | | | | | | by fuel Solids | 578
118 | 765
119 | 83 | 85 | 116 | 118 | 108 | 111 | 106 | 102 | 100 | -3.4 | 3.3 | -0.7 | | | by fuel Solids Oil | 578
118
763 | 765
119
971 | 83
945 | 85
950 | 116
884 | 118
863 | 108
874 | 111
885 | 898 | 900 | 100
895 | 2.2 | -0.7 | -0.1 | 0.1 | | by fuel Solids Oil Gas | 578
118 | 765
119 | 83 | 85 | 116 | 118 | 108 | 111 | | | 100 | | -0.7
1.0 | | 0.1 | | by fuel Solids Oil | 578
118
763
177 | 765
119
971
263 | 83
945
207 | 85
950
218 | 116
884
228 | 118
863
245 | 108
874
246 | 111
885
252 | 898
251 | 900
246 | 100
895
252 | 2.2
1.6 | -0.7 | -0.1
0.8 | 0.1 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 578
118
763
177
429
511
425 | 765
119
971
263
519
547
447 | 83
945
207
593
532
546 | 85
950
218
686
552
599 | 116
884
228
717 | 118
863
245
743 | 108
874
246
778
554
677 | 111
885
252
806 | 898
251
829 | 900
246
875
579
650 | 100
895
252
924 | 2.2
1.6
3.3
0.4
2.5 | -0.7
1.0
1.9
0.2
1.9 | -0.1
0.8
0.8 | 0.1
0.1
0.9 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 578
118
763
177
429
511 | 765
119
971
263
519
547 | 83
945
207
593
532 | 85
950
218
686
552 | 116
884
228
717
544 | 118
863
245
743
553 | 108
874
246
778
554 | 111
885
252
806
557 | 898
251
829
560 | 900
246
875
579 | 100
895
252
924
556 | 2.2
1.6
3.3
0.4 | -0.7
1.0
1.9
0.2 | -0.1
0.8
0.8
0.2 | 0.1
0.9
0.0
-0.1
1.5 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 578 118 763 177 429 511 425 0 489 | 765
119
971
263
519
547
447 | 83
945
207
593
532
546
0 | 85
950
218
686
552
599 | 116
884
228
717
544
661 | 118
863
245
743
553
674
2 | 108
874
246
778
554
677
5 | 111
885
252
806
557
655
6 | 898
251
829
560
666 | 900
246
875
579
650 | 100
895
252
924
556
661 | 2.2
1.6
3.3
0.4
2.5
6.3 | -0.7
1.0
1.9
0.2
1.9
89.1 | -0.1
0.8
0.8
0.2
0.2
14.5 | 0.1
0.9
0.0
-0.1
1.5 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 578
118
763
177
429
511
425
0 | 765 119 971 263 519 547 447 0 548 18.6 | 83
945
207
593
532
546
0
775 | 85
950
218
686
552
599
0
925 | 116
884
228
717
544
661
1
929 | 118
863
245
743
553
674
2
1010 | 108
874
246
778
554
677
5
1119 | 111
885
252
806
557
655
6
1160 | 898
251
829
560
666
7
1254 | 900
246
875
579
650
7
1390 | 100
895
252
924
556
661
6
1457 | 2.2
1.6
3.3
0.4
2.5
6.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8 | -0.1
0.8
0.8
0.2
0.2
14.5
1.9 | 0.1
0.9
0.0
-0.1
1.5
1.3 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 578 118 763 177 429 511 425 0 489 | 765 119 971 263 519 547 447 0 548 18.6 13.0 | 83
945
207
593
532
546
0
775
19.3 | 85
950
218
686
552
599
0
925
19.2
14.0 | 116
884
228
717
544
661
1
929
16.0 | 118
863
245
743
553
674
2
1010 | 108
874
246
778
554
677
5
1119 | 111
885
252
806
557
655
6
1160 | 898
251
829
560
666
7
1254
10.8
5.6 | 900
246
875
579
650
7
1390 | 100
895
252
924
556
661
6
1457
9.6 | 2.2
1.6
3.3
0.4
2.5
6.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9 | -0.1
0.8
0.8
0.2
0.2
14.5
1.9
-2.1
-3.3 | 0.1
0.9
0.0
-0.1
1.5
1.3 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 578 118 763 177 429 511 425 0 489 16.9 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 | 83
945
207
593
532
546
0
775
19.3
13.9
5.4 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1 | 111
885
252
806
557
655
6
1160
11.7
6.6
5.1 | 898
251
829
560
666
7
1254
10.8
5.6
5.1 | 900
246
875
579
650
7
1390
10.0
4.9
5.1 | 100
895
252
924
556
661
6
1457
9.6
4.5 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5 | -0.1
0.8
0.8
0.2
0.2
14.5
1.9
-2.1
-3.3
0.0 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 578 118 763 177 429 511 425 0 489 16.9 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 | 83
945
207
593
532
546
0
775
19.3 | 85
950
218
686
552
599
0
925
19.2
14.0 | 116
884
228
717
544
661
1
929
16.0 | 118
863
245
743
553
674
2
1010 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1 | 111
885
252
806
557
655
6
1160 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1 | 900
246
875
579
650
7
1390 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1 | 2.2
1.6
3.3
0.4
2.5
6.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5
-2.2 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7
0.0 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 578 118 763 177 429 511 425 0 489 16.9 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 | 83
945
207
593
532
546
0
775
19.3
13.9
5.4 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1
13.3 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1 | 111
885
252
806
557
655
6
1160
11.7
6.6
5.1 | 898
251
829
560
666
7
1254
10.8
5.6
5.1 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3 | 100
895
252
924
556
661
6
1457
9.6
4.5 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5 | -0.1
0.8
0.8
0.2
0.2
14.5
1.9
-2.1
-3.3
0.0 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7
0.0
-3.5 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry | 578 118 763 177 429 511 425 0 489 16.9 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 11.5 | 83
945
207
593
532
546
0
775
19.3
13.9 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1
13.3
9.5 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1
12.0 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2 | 111
885
252
806
557
655
6
1160
11.7
6.6
5.1
9.1 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1
4.3 |
900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5
-2.2
-3.0 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7
0.0
-3.5
-0.5 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 118 763 177 429 511 425 0 489 16.9 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 11.5 0.2 1.0 0.2 | 83
945
207
593
532
546
0
775
19.3
13.9
5.4
16.7
12.9
0.1
0.8 | 85
950
218
686
552
599
0
925
14.0
5.3
16.7
12.9
0.1 | 116 884 228 717 544 661 1 929 16.0 10.9 5.1 13.3 9.5 0.1 0.9 0.1 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1
12.0
8.2
0.1
0.9 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2
6.4
0.1 | 1111
885
252
806
557
655
6
1160
11.7
6.6
5.1
9.1
5.2
0.1 | 898 251 829 560 666 7 1254 10.8 5.6 5.1 4.3 0.1 0.8 0.1 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5
0.1
0.8 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0
3.1
0.1
0.8 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3
1.6
1.7
-0.5
-1.7
-4.2 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5
-2.2
-3.0
1.3
1.6
-2.7 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 -1.0 -0.5 -0.4 | 0.1
0.9
0.0
-0.1
1.5
-1.5
-2.7
0.0
-1.9
-3.5
-0.3
-0.1 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 118 763 177 429 511 425 0 489 16.9 14.2 10.9 0.1 0.9 0.3 0.3 | 765 119 971 263 519 547 40 548 18.6 13.0 5.6 15.7 11.5 0.2 1.0 0.2 0.5 | 83
945
207
593
532
546
0
775
19.3
13.9
5.4
16.7
12.9
0.1
0.8 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7
12.9
0.1
0.8 | 116 884 228 717 544 661 1 929 16.0 10.9 5.1 13.3 9.5 0.1 0.9 0.1 0.5 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1
12.0
8.2
0.1
0.9
0.1 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2
6.4
0.1
0.8 | 1111
885
252
806
557
655
6
1160
11.7
6.6
5.1
9.1
5.2
0.1
0.9 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1
4.3
0.1
0.8 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5
0.1
0.8
0.1 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0
3.1
0.8
0.1 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3 | -0.7
1.0
1.9
0.2
1.9
89.1
1.8
-1.9
-2.4
-0.5
-2.2
-3.0
1.3
1.6
-2.7
1.4 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 -1.0 -0.5 -0.4 1.0 | 0.1
0.9
0.0
-0.1
1.5
-1.5
-2.7
0.0
-1.9
-3.5
-0.5
-0.3 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 118 763 177 429 511 425 0 489 16.9 14.2 10.9 0.1 0.9 0.3 0.3 1.7 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 11.5 0.2 1.0 0.2 0.5 2.3 | 83 945 207 593 532 546 0 775 19.3 13.9 5.4 16.7 12.9 0.1 0.8 0.2 0.4 2.4 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7
12.9
0.1
0.8
0.2
0.4
2.4 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1
13.3
9.5
0.1
0.9
0.1 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1
12.0
8.2
0.1
0.9
0.1 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2
6.4
0.1
0.8
0.1
0.5
2.2 | 1111 885 252 806 557 655 6 1160 11.7 6.6 5.1 9.1 0.9 0.1 0.5 2.2 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1
4.3
0.1
0.8
0.1
0.5
2.3 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5
0.1
0.8
0.1 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0
3.1
0.1
0.8
0.1 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3
1.6
1.7
-0.5
-1.7
-4.2
2.2
3.3 | -0.7 1.0 1.9 0.2 1.9 89.1 1.8 -1.9 -2.4 -0.5 -2.2 -3.0 1.3 1.6 -2.7 1.4 -0.6 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 -1.0 -0.5 -0.4 1.0 -0.1 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7
0.0
-1.9
-3.5
-0.5
-0.3
-0.1
0.6 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 118 763 177 429 511 425 0 489 16.9 14.2 10.9 0.3 0.3 1.7 0.7 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 11.5 0.2 1.0 0.2 0.5 2.3 0.7 | 83
945
207
593
532
546
0
775
19.3
13.9
5.4
16.7
12.9
0.1
0.8
0.2
0.4 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7
12.9
0.1
0.8
0.2
0.4 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1
13.3
9.5
0.1
0.9
0.1
0.9 | 118 863 245 743 553 674 2 1010 14.8 9.7 5.1 12.0 8.2 0.1 0.9 0.1 0.5 2.2 0.6 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2
6.4
0.1
0.8
0.1
0.5
2.2 | 1111
885
252
806
557
655
6
1160
11.7
6.6
5.1
9.1
5.2
0.1
0.9
0.1
0.5
2.2
0.5 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1
4.3
0.1
0.8
0.1
0.5
2.3
0.5 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5
0.1
0.8
0.1
0.6
2.3
0.5 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0
3.1
0.1
0.8
0.1
0.6
2.2
0.4 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3
1.6
1.7
-0.5
-1.7
-4.2
2.2
3.3
-6.0 | -0.7 1.0 1.9 0.2 1.9 89.1 1.8 -1.9 -2.4 -0.5 -2.2 -3.0 1.3 1.6 -2.7 1.4 -0.6 4.6 | -0.1 0.8 0.8 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 -1.0 -0.5 -0.4 1.0 -0.1 -1.4 | 0.1 0.1 0.9 0.0 0.0 0.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 118 763 177 429 511 425 0 489 16.9 14.2 10.9 0.1 0.9 0.3 0.3 1.7 | 765 119 971 263 519 547 447 0 548 18.6 13.0 5.6 15.7 11.5 0.2 1.0 0.2 0.5 2.3 | 83 945 207 593 532 546 0 775 19.3 13.9 5.4 16.7 12.9 0.1 0.8 0.2 0.4 2.4 | 85
950
218
686
552
599
0
925
19.2
14.0
5.3
16.7
12.9
0.1
0.8
0.2
0.4
2.4 | 116
884
228
717
544
661
1
929
16.0
10.9
5.1
13.3
9.5
0.1
0.9
0.1 | 118
863
245
743
553
674
2
1010
14.8
9.7
5.1
12.0
8.2
0.1
0.9
0.1 | 108
874
246
778
554
677
5
1119
12.9
7.8
5.1
10.2
6.4
0.1
0.8
0.1
0.5
2.2 | 1111 885 252 806 557 655 6 1160 11.7 6.6 5.1 9.1 0.9 0.1 0.5 2.2 | 898
251
829
560
666
7
1254
10.8
5.6
5.1
8.1
4.3
0.1
0.8
0.1
0.5
2.3 | 900
246
875
579
650
7
1390
10.0
4.9
5.1
7.3
3.5
0.1
0.8
0.1
0.6
2.3 | 100
895
252
924
556
661
6
1457
9.6
4.5
5.1
7.0
3.1
0.1
0.8
0.1 | 2.2
1.6
3.3
0.4
2.5
6.3
4.7
1.3
1.6
1.7
-0.5
-1.7
-4.2
2.2
3.3 | -0.7 1.0 1.9 0.2 1.9 89.1 1.8 -1.9 -2.4 -0.5 -2.2 -3.0 1.3 1.6 -2.7 1.4 -0.6 | -0.1 0.8 0.8 0.2 0.2 14.5 1.9 -2.1 -3.3 0.0 -2.6 -3.8 -1.0 -0.5 -0.4 1.0 -0.1 | 0.1
0.9
0.0
-0.1
1.5
1.3
-1.5
-2.7
0.0
-1.9
-3.5
-0.3
-0.1
0.6
0.1 | | SUMMARY ENERGY BALANCE AND INDICATO | | | | | | | | | | | | onia: R | | | |
--|--------------|------------------|-------------|--------------|------------------|-------------|------------------|------------------|--------------|----------|----------|-------------------|-------------------|-------------------|-------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | ain Energy System Indicators | | | | | | | | | | | | An | ınual % | Change | !
 | | opulation (Million) | 1.372 | 1.348 | 1.340 | 1.335 | 1.324 | 1.304 | 1.280 | 1.259 | 1.243 | 1.229 | 1.213 | -0.2 | -0.1 | -0.3 | | | DP (in 000 M€10) | 10.1 | 14.3 | 14.3 | 17.3 | 19.4 | 21.5 | 24.1 | 26.4 | 28.8 | 30.7 | 32.2 | 3.5 | 3.1 | 2.2 | | | oss Inl. Cons./GDP (toe/M€10) | 490.7 | 389.2 | 426.8 | 396.8 | 399.6 | 357.0 | 314.4 | 286.4 | 265.2 | 247.6 | 236.1 | -1.4 | -0.7 | -2.4 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.86 | 2.82 | 2.73 | 2.43 | 1.71 | 1.56 | 1.35 | 1.20 | 1.07 | 0.96 | 0.92 | -0.5 | -4.6 | -2.4 | | | port Dependency % | 31.9 | 25.2 | 12.9 | 5.0 | -10.4 | -9.4 | -7.9 | -5.7 | -4.1 | -3.0 | -1.0 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 1.4 | 2.2 | 2.9 | 3.6 | 4.3 | 4.7 | 5.1 | 5.5 | 5.9 | 6.3 | 6.6 | 7.5 | 3.9 | 1.8 | | | as % of GDP | 13.9 | 15.3 | 20.3 | 20.8 | 21.9 | 21.9 | 21.2 | 20.8 | 20.6 | 20.6 | 20.6 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 84.7 | 70.0 | 65.3 | 63.3 | 59.2 | 55.9 | 53.3 | 51.1 | 48.8 | 48.3 | -3.5 | -1.0 | -1.2 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 63.3 | 76.0 | 62.4 | 54.7 | 50.4 | 44.2 | 39.8 | 35.9 | 33.6 | 32.0 | -2.7 | -3.2 | -2.1 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 104.6 | 107.8 | 94.5 | 85.9 | 79.7 | 72.0 | 66.3 | 61.5 | 58.8 | 56.5 | 0.8 | -2.2 | -1.7 | | | ssenger transport (toe/Mpkm)
eight transport (toe/Mtkm) | 40.4 | 32.5
18.0 | 33.9 | 32.9
25.0 | 29.5 | 26.1 | 24.3 | 23.0
20.3 | 22.2
19.4 | 21.9 | 21.5 | -1.7
7.4 | -1.4
-0.9 | -1.9
-1.2 | | | | 12.8 | 16.0 | 26.1 | 25.0 | 23.8 | 22.3 | 21.1 | 20.3 | 19.4 | 18.5 | 17.7 | 7.4 | -0.9 | -1.2 | | | bon Intensity indicators | 0.60 | 0.65 | 0.64 | 0.57 | 0.46 | 0.40 | 0.24 | 0.20 | 0.22 | 0.18 | 0.17 | 0.6 | 22 | 2.1 | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.68
1.33 | 0.65
1.42 | 1.27 | 0.57
1.21 | 0.46
1.18 | 1.16 | 0.34
1.14 | 0.28
1.15 | 0.23
1.14 | 1.12 | 1.10 | -0.6
-0.4 | -3.3
-0.8 | -3.1
-0.3 | | | al energy demand (t of CO ₂ /toe)
ndustry | 1.58 | 1.44 | 1.33 | 1.24 | 1.23 | 1.10 | 1.15 | 1.15 | 1.08 | 1.03 | 1.01 | -1.7 | -0.8 | -0.3 | | | esidential | 0.32 | 0.27 | 0.19 | 0.15 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | -5.2 | -2.8 | -0.7 | | | ertiary | 0.92 | 1.04 | 0.75 | 0.70 | 0.79 | 0.83 | 0.82 | 0.85 | 0.86 | 0.86 | 0.86 | -2.0 | 0.5 | 0.4 | | | ransport (G) | 2.95 | 2.98 | 3.00 | 2.90 | 2.72 | 2.72 | 2.70 | 2.70 | 2.69 | 2.67 | 2.65 | 0.2 | -1.0 | -0.1 | | | icators for renewables | | | | | | | | | | | | | | | _ | | are of RES in Gross Final Energy Consumption (D) (%) | 17.5 | 16.9 | 23.6 | 27.2 | 27.1 | 29.1 | 31.9 | 32.8 | 35.1 | 38.3 | 39.8 | | | | | | S in transport (%) | 0.0 | 0.0 | 0.1 | 2.0 | 10.2 | 10.4 | 10.9 | 11.1 | 11.5 | 12.3 | 12.9 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 8509 | 10205 | 12964 | 15162 | 13346 | 12791 | 11658 | 11007 | 10917 | 11022 | 11482 | 4.3 | 0.3 | -1.3 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 7678 | 9302 | 11167 | 12228 | 9881 | 8478 | 6449 | 4664 | 3171 | 2278 | 1885 | 3.8 | -1.2 | -4.2 | | | il (including refinery gas) | 56 | 32 | 41 | 133 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | -3.1 | -8.2 | -35.6 | | | as (including derived gases) | 757 | 760 | 712 | 1216 | 1519 | 1475 | 1576 | 2066 | 2652 | 2400 | 2570 | -0.6 | 7.9 | 0.4 | | | iomass-waste | 13 | 35 | 740 | 705 | 707 | 693 | 902 | 1094 | 1225 | 1395 | 1474 | 49.8 | -0.5 | 2.5 | | | ydro (pumping excluded) | 5 | 22 | 27 | 62 | 82 | 89 | 118 | 128 | 136 | 138 | 140 | 18.4 | 11.7 | 3.7 | | | /ind | 0 | 54 | 277 | 817 | 1140 | 2056 | 2613 | 3056 | 3733 | 4810 | 5413 | 0.0 | 15.2 | 8.6 | | | olar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | eothermal and other renewables | 0 | 0 | 0
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | ther fuels (hydrogen, methanol) Generation Capacity in MW _e | 2736 | 0
2780 | 2739 | 3187 | 0
2853 | 2968 | 0
3275 | 0
3583 | 3841 | 4274 | 4843 | 0.0
0.0 | 0.0
0.4 | 0.0
1.4 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | denewable energy | 2 | 37 | 114 | 371 | 516 | 828 | 1084 | 1241 | 1479 | 1931 | 2160 | 49.8 | 16.3 | 7.7 | | | Hydro (pumping excluded) | 2 | 5 | 6 | 17 | 21 | 22 | 28 | 31 | 33 | 34 | 34 | 11.6 | 13.6 | 2.6 | | | Wind | 0 | 32 | 108 | 354 | 495 | 807 | 1056 | 1209 | 1446 | 1896 | 2125 | 0.0 | 16.4 | 7.9 | | | Solar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 2734 | 2743 | 2625 | 2816 | 2337 | 2140 | 2191 | 2343 | 2362 | 2343 | 2683 | -0.4 | -1.2 | -0.6 | | | of which cogeneration units | 452 | 446 | 402 | 428 | 423 | 430 | 443 | 497 | 501 | 573 | 644 | -1.2 | 0.5 | 0.5 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 2476 | 2469 | 2305 | 2153 | 1376 | 1376 | 1369 | 1369 | 1369 | 1369 | 1369 | -0.7 | -5.0 | -0.1 | | | Gas fired | 191 | 196 | 197 | 476 | 723 | 566 | 617 | 758 | 771 | 682 | 893 | 0.3 | 13.9 | -1.6 | | | Oil fired | 41 | 41 | 42 | 84 | 134 | 94 | 93 | 93 | 93 | 93 | 93 | 0.3 | 12.1 | -3.6 | | | Biomass-waste fired
Hydrogen plants | 26
0 | 37
0 | 81
0 | 104
0 | 104
0 | 104
0 | 112
0 | 123
0 | 129
0 | 199
0 | 328
0 | 11.9
0.0 | 2.5
0.0 | 0.7
0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Load factor of net power capacity (F) (%) | 31.7 | 37.4 | 48.9 | 48.9 | 48.8 | 45.4 | 37.9 | 33.0 | 30.9 | 28.3 | 26.2 | 0.0 | 0.0 | 0.0 | | | | 31.7 | 37.4 | 40.3 | 40.3 | 40.0 | 45.4 | 31.9 | 33.0 | 30.3 | 20.5 | 20.2 | | | | - | | ctricity indicators ciency of gross thermal power generation (%) | 29.9 | 33.5 | 34.9 | 39.0 | 44.2 | 44.8 | 46.1 | 46.1 | 45.7 | 44.7 | 46.8 | | | | | | of gross electricity from CHP | 11.0 | 10.2 | 10.3 | 14.9 | 23.0 | 25.0 | 28.5 | 34.1 | 34.8 | 38.2 | 36.4 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | bon free gross electricity generation (%) | 0.2 | 1.1 | 8.1 | 10.5 | 14.5 | 22.2 | 31.2 | 38.9 | 46.7 | 57.6 | 61.2 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 0.2 | 1.1 | 8.1 | 10.5 | 14.5 | 22.2 | 31.2 | 38.9 | 46.7 | 57.6 | 61.2 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 10.3 | 14.2 | 13.6 | 14.5 | 15.4 | 16.4 | 17.6 | 18.5 | 19.4 | 19.9 | 20.4 | 2.8 | 1.3 | 1.3 | | | ublic road transport | 2.6 | 2.7 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.7 | 2.8 | -2.4 | 1.2 | 0.8 | | | rivate cars and motorcycles | 6.8 | 10.0 | 10.3 | 10.9 | 11.4 | 12.1 | 12.8 | 13.4 | 13.9 | 14.1 | 14.2 | 4.3 | 1.1 | 1.1 | | | ail | 0.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.7 | -1.3 | 2.3 | 2.3 | | | viation | 0.2 | 0.7 | 0.6 | 0.7 | 0.8 | 1.0 | 1.3 | 1.5 | 1.7 | 2.0 | 2.3 | 12.2 | 4.1 | 4.3 | | | land navigation | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | -0.9 | 1.2 | 1.1 | | | ight transport activity (Gtkm) | 12.1 | 16.5 | 12.3 | 13.5 | 14.9 | 16.4 | 18.1 | 19.4 | 20.7 | 21.7 | 22.6 | 0.2 | 2.0 | 2.0 | | | rucks | 3.9 | 5.8 | 5.6 | 6.0 | 6.4 | 6.8 | 7.3 | 7.8 | 8.4 | 8.7 | 9.1 | 3.6 | 1.3 | 1.4 | | | ail | 8.1 | 10.6 | 6.6 | 7.5 | 8.5 | 9.6 | 10.8 | 11.5 | 12.4 | 12.9 | 13.5 | -2.0 | 2.5 | 2.3 | | | land navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -3.0 | 8.0 | 1.8 | | | ergy demand in transport (ktoe) ^(G) | 572 | 757 | 781 | 817 | 809 | 795 | 808 | 818 | 833 | 837 | 839 | 3.2 | 0.3 | 0.0 | | | ublic road transport | 22 | 22 | 17 | 18 | 19 | 19 | 19 | 20 | 20 | 20 | 20 | -2.5 | 1.2 | 0.3 | | | rivate cars and motorcycles | 365 | 386 | 397 | 406 | 374 | 340 | 329 | 320 | 318 | 315 | 309 | 0.8 | -0.6 | -1.3 | | | rucks | 112 | 255 | 270 | 282 | 293 | 300 | 311 | 321 | 333 | 339 | 347 | 9.2 | 0.8 | 0.6 | | | Rail | 45 | 44 | 51 | 58 | 64 | 69 | 73 | 74 | 72 | 65 | 57 | 1.3 | 2.3 | 1.3 | | | viation | 21 | 42 | 38 | 44 | 50 | 57 | 65 | 72 | 80 | 88 | 96 | 6.3 | 2.7 | 2.7 | | | land navigation | 7 | 8 | 8 | 9 | 9 | 9 | 10 | 10 | 11 | 11 | 11 | 1.3 | 1.1 | 0.7 | | | Finland: Reference scenario | | | | | | | | SUM | MARY E | ENERGY | BALAN | CE AND | INDIC | ATORS | (A) | |--|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|---------------------|---------------------|--------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 15043
1088 | 16886 2136 | 17485
1806 | 22359 2250 | 22848
1851 | 24479
1913 | 26678
1548 | 26748
1044 | 26935
949 | 28107
901 |
29125
716 | 1.5
5.2 | 2.7 0.2 | 1.6
-1.8 | 0.4
-3.8 | | Oil | 343 | 481 | 622 | 339 | 339 | 339 | 339 | 339 | 339 | 339 | 339 | 6.1 | -5.9 | 0.0 | 0.0 | | Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Nuclear | 5799 | 6003 | 5881 | 9225 | 9507 | 11582 | 14442 | 14704 | 13725 | 14159 | 14453 | 0.1 | 4.9 | 4.3 | 0.0 | | Renewable energy sources Hydro | 7814
1261 | 8267
1185 | 9175
1111 | 10546
1221 | 11151
1173 | 10644
1185 | 10348
1218 | 10660
1230 | 11922
1286 | 12708
1324 | 13617
1365 | 1.6
-1.3 | 2.0
0.5 | -0.7
0.4 | 1.4
0.6 | | Biomass & Waste | 6546 | 7066 | 8038 | 9224 | 9610 | 8942 | 8501 | 8783 | 9633 | 10223 | 10883 | 2.1 | 1.8 | -1.2 | 1.2 | | Wind | 7 | 15 | 25 | 87 | 342 | 478 | 577 | 594 | 945 | 1103 | 1311 | 14.2 | 29.8 | 5.4 | 4.2 | | Solar and others | 1 | 1 | 1 | 14 | 26 | 39 | 52 | 54 | 58 | 58 | 58 | 9.8 | 34.7 | 7.2 | 0.6 | | Geothermal Net Imports | 0
18570 | 0
19278 | 0
17900 | 0
18356 | 0
17059 | 0
16159 | 0
15338 | 0
15251 | 0
14666 | 0
14028 | 0
13750 | 0.0
-0.4 | 0.0
-0.5 | 0.4
-1.1 | 1.4
-0.5 | | Solids | 3532 | 3338 | 3976 | 3844 | 3283 | 3039 | 3052 | 3113 | 2054 | 1623 | 1024 | 1.2 | -0.5
-1.9 | -0.7 | -5.3 | | Oil | 10594 | 10956 | 9151 | 9131 | 8850 | 8634 | 8343 | 8174 | 8013 | 7987 | 7930 | -1.5 | -0.3 | -0.6 | -0.3 | | - Crude oil and Feedstocks | 12159 | 11068 | 11522 | 11487 | 11007 | 10636 | 10283 | 10050 | 9809 | 9677 | 9526 | -0.5 | -0.5 | -0.7 | -0.4 | | - Oil products | -1565
3422 | -112 | -2370
3837 | -2356 | -2158 | -2002
3732 | -1940
3719 | -1876
3716 | -1796
4344 | -1690 | -1596
4762 | 4.2 | -0.9
-0.9 | -1.1
0.6 | -1.0 | | Natural gas Electricity | 1021 | 3598
1463 | 903 | 4136
782 | 3519
806 | -92 | -639 | -662 | -716 | 4348
-939 | -1014 | 1.2
-1.2 | -0.9 | 0.0 | 1.2
2.3 | | Gross Inland Consumption | 32917 | 35057 | 36978 | 40500 | 39694 | 40429 | 41811 | 41790 | 41393 | 41915 | 42652 | 1.2 | 0.7 | 0.5 | 0.1 | | Solids | 5124 | 4934 | 6878 | 6093 | 5134 | 4952 | 4601 | 4157 | 3003 | 2524 | 1740 | 3.0 | -2.9 | -1.1 | -4.7 | | Oil | 9736 | 10870 | 10271 | 9256 | 8979 | 8770 | 8486 | 8315 | 8159 | 8135 | 8080 | 0.5 | -1.3 | -0.6 | -0.2 | | Natural gas
Nuclear | 3422
5799 | 3598
6003 | 3837
5881 | 4135
9225 | 3515
9507 | 3725
11582 | 3712
14442 | 3705
14704 | 4330
13725 | 4319
14159 | 4729
14453 | 1.2
0.1 | -0.9
4.9 | 0.5
4.3 | 1.2
0.0 | | Electricity | 1021 | 1463 | 903 | 782 | 806 | -92 | -639 | -662 | -716 | -939 | -1014 | -1.2 | -1.1 | 0.0 | 2.3 | | Renewable energy forms | 7814 | 8189 | 9208 | 11009 | 11753 | 11491 | 11209 | 11571 | 12892 | 13717 | 14665 | 1.7 | 2.5 | -0.5 | 1.4 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 15.6 | 14.1 | 18.6 | 15.0 | 12.9 | 12.2 | 11.0 | 9.9 | 7.3 | 6.0 | 4.1 | | | | | | Oil
Natural gas | 29.6
10.4 | 31.0
10.3 | 27.8
10.4 | 22.9
10.2 | 22.6
8.9 | 21.7
9.2 | 20.3
8.9 | 19.9
8.9 | 19.7
10.5 | 19.4
10.3 | 18.9
11.1 | | | | | | Nuclear | 17.6 | 17.1 | 15.9 | 22.8 | 23.9 | 28.6 | 34.5 | 35.2 | 33.2 | 33.8 | 33.9 | | | | | | Renewable energy forms | 23.7 | 23.4 | 24.9 | 27.2 | 29.6 | 28.4 | 26.8 | 27.7 | 31.1 | 32.7 | 34.4 | | | | | | Gross Electricity Generation in GWh _e | 69921 | 70525 | 80577 | 80001 | 80083 | 91554 | 100382 | 104941 | 110154 | 117468 | 123273 | 1.4 | -0.1 | 2.3 | 1.0 | | Self consumption and grid losses | 5390 | 5801 | 6398 | 6169 | 6020 | 6947 | 7505 | 8214 | 8764 | 9470 | 9908 | 1.7 | -0.6 | 2.2 | 1.4 | | Fuel Inputs to Thermal Power Generation Solids | 7136
3177 | 7744
2995 | 10211
5101 | 10213
4416 | 9232
3393 | 9130
3256 | 8517
2928 | 9121
2755 | 9500
1661 | 9563
1201 | 9401
414 | 3.6
4.8 | -1.0
-4.0 | -0.8
-1.5 | 0.5
-9.3 | | Oil (including refinery gas) | 122 | 97 | 99 | 10 | 7 | 4 | 4 | 14 | 11 | 10 | 21 | -2.1 | -23.4 | -4.6 | 8.3 | | Gas (including derived gases) | 2093 | 2349 | 2264 | 2478 | 2108 | 2391 | 2447 | 2316 | 2940 | 2927 | 3221 | 0.8 | -0.7 | 1.5 | 1.4 | | Biomass & Waste | 1744 | 2302 | 2747 | 3309 | 3725 | 3478 | 3138 | 4036 | 4887 | 5426 | 5744 | 4.6 | 3.1 | -1.7 | 3.1 | | Geothermal heat Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 21406 | 21839 | 23446 | 26916 | 26937 | 28625 | 30988 | 30177 | 28866 | 29426 | 30035 | 0.9 | 1.4 | 1.4 | -0.2 | | Refineries | 13249 | 13247 | 14629 | 14624 | 14149 | 13801 | 13398 | 13140 | 12878 | 12754 | 12600 | 1.0 | -0.3 | -0.5 | -0.3 | | Biofuels and hydrogen production | 0 | 0 | 142 | 222 | 380 | 354 | 333 | 322 | 314 | 308 | 320 | 0.0 | 10.3 | -1.3 | -0.2 | | District heating | 1053 | 1266 | 1605 | 1698 | 1653 | 1663 | 1639 | 1188 | 1155 | 1427 | 1893 | 4.3 | 0.3 | -0.1 | 0.7 | | Derived gases, cokeries etc. Energy Branch Consumption | 7103
1112 | 7326
1109 | 7069
1477 | 10372
1435 | 10756
1383 | 12807
1417 | 15618
1411 | 15527
1409 | 14518
1414 | 14936
1433 | 15222
1439 | 0.0
2.9 | 4.3
-0.7 | 3.8
0.2 | -0.1
0.1 | | Non-Energy Uses | 1113 | 1328 | 1579 | 1599 | 1697 | 1720 | 1724 | 1727 | 1727 | 1727 | 1740 | 3.6 | 0.7 | 0.2 | 0.0 | | Final Energy Demand | 24629 | 25487 | 26484 | 26276 | 25879 | 25363 | 25059 | 25047 | 25275 | 25504 | 25980 | 0.7 | -0.2 | -0.3 | 0.2 | | by sector | | | | | | | | | | | | | | | | | Industry | 12329 | 11997 | 11604 | 11810 | 11982 | 11846 | 11876 | 11760 | 11791 | 11773 | 12029 | -0.6 | 0.3 | -0.1 | 0.1 | | energy intensive industries other industrial sectors | 10317
2012 | 9873 | 9472 | 9621
2189 | 9789
2193 | 9611
2236 | 9610
2266 | 9435
2325 | 9357
2434 | 9244
2528 | 9350
2680 | -0.9
0.6 | 0.3 | -0.2
0.3 | -0.1
0.8 | | - other industrial sectors Residential | 4547 | 2124
5049 | 2132
5787 | 5482 | 5116 | 4872 | 4789 | 4829 | 2434
4945 | 2528
5091 | 5227 | 2.4 | -1.2 | -0.7 | 0.8 | | Tertiary | 3400 | 3705 | 4125 | 4018 | 3934 | 3981 | 3897 | 3997 | 4036 | 4118 | 4155 | 2.0 | -0.5 | -0.1 | 0.3 | | Transport | 4353 | 4735 | 4969 | 4965 | 4847 | 4663 | 4497 | 4460 | 4503 | 4523 | 4568 | 1.3 | -0.2 | -0.7 | 0.1 | | by fuel | 4.00 | 2.12 | .=- | | | | | | | .=. | | | | | | | Solids
Oil | 1108
7976 | 943
8295 | 878
7918 | 820
6974 | 869
6637 | 875
6459 | 905
6191 | 905
6098 | 894
5994 | 870
5969 | 858
5901 | -2.3
-0.1 | -0.1
-1.8 | 0.4
-0.7 | -0.3
-0.2 | | Gas | 1204 | 1077 | 1009 | 1197 | 1028 | 959 | 904 | 845 | 846 | 842 | 886 | -1.8 | 0.2 | -1.3 | -0.2 | | Electricity | 6507 | 6942 | 7178 | 7027 | 7072 | 7083 | 7250 | 7558 | 7905 | 8250 | 8635 | 1.0 | -0.1 | 0.2 | 0.9 | | Heat (from CHP and District Heating) | 3335 | 3971 | 4663 | 4891 | 4805 | 4752 | 4659 | 4701 | 4674 | 4755 | 4873 | 3.4 | 0.3 | -0.3 | 0.2 | | Renewable energy forms Other fuels (hydrogen, ethanol) | 4499
0 | 4259
0 | 4838
0 | 5366
1 | 5464
3 | 5229
6 | 5143
7 | 4930
8 | 4953
10 | 4806
12 | 4812
14 | 0.7
6.7 | 1.2
0.0 | -0.6
9.1 | -0.3
3.0 | | RES in Gross Final Energy Consumption (A) | 7253 | 7497 | 8794 | 9331 | 10388 | 10244 | 9922 | 10316 | 11528 | 12230 | 13108 | 1.9 | 1.7 | -0.5 | 1.4 | | TOTAL GHG emissions (Mt of CO2 eq.) | 72.1 | 71.9 | 78.7 | 71.6 | 65.4 | 64.6 | 61.5 | 57.9 | 53.9 | 51.8 | 49.4 | 0.9 | -1.8 | -0.6 | -1.1 | | of which ETS sectors (2013 scope) GHG emissions | | 38.8 | 46.3 | 42.4 | 37.4 | 37.5 | 35.4 | 32.3 | 28.9 | 27.0 | 24.7 | 0 | -2.1 | -0.5 | -1.8 | | of which non ETS sectors GHG emissions | | 33.1 | 32.4 | 29.2 | 28.0 | 27.1 | 26.1 | 25.6 | 25.0 | 24.8 | 24.6 | | -1.5 | -0.7 | -0.3 | | CO ₂ Emissions (energy related) | 58.2 | 58.3 | 65.6 | 59.2 | 52.8 | 51.9 | 49.4 | 46.0 | 42.3 | 40.3 | 37.8 | 1.2 | -2.1 | -0.7 | -1.3 | | Power generation/District heating Energy Branch | 22.4
2.3 | 22.9
2.2 | 31.7
2.6 | 27.6
2.5 | 22.5
2.4 | 22.4
2.4 | 21.1
2.3 | 18.5
2.1 | 15.2
2.1 | 13.4
2.1 | 11.1
2.0 | 3.5
1.3 | -3.4
-0.5 | -0.6
-0.8 | -3.2
-0.6 | | Industry | 14.3 | 13.0 | 11.4 | 10.8 | 10.6 | 10.4 | 9.8 | 9.4 | 9.2 | 9.1 | 9.2 | -2.2 | -0.5 | -0.8 | -0.3 | | Residential | 2.4 | 2.3 | 1.9 | 1.3 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1 | 1.1 | 1.0 | -2.2 | -4.5 | -0.3 | -0.8 | | Tertiary | 3.9 | 3.8 | 3.6 | 2.9 | 2.8 | 2.8 | 2.8 | 2.7 | 2.4 | 2.3 | 2.2 | -0.8 | -2.5 | 0.0 | -1.2 | | Transport CO. Emissions (non energy related) | 12.9 | 14.1 | 14.4 | 14.1 | 13.3 | 12.8 | 12.3 | 12.2
2.2 | 12.3 | 12.3 | 12.4 | 1.1 | -0.8 | -0.8 | 0.0 | | CO ₂ Emissions (non energy related) Non-CO ₂ GHG emissions | 1.5
12.4 | 1.6
12.0 | 2.2
10.9 | 2.4
9.9 | 2.6
9.9 | 2.7
9.9 | 2.4
9.8 | 2.2
9.6 | 2.2
9.5 | 2.1
9.4 | 2.1
9.4 | 3.9
-1.3 | 1.9
-1.0 | -1.0
-0.2 | -0.6
-0.2 | | TOTAL GHG emissions Index (1990=100) | 101.0 | 100.7 | 110.3 | 100.3 | 91.6 | 90.4 | 86.2 | 81.1 | 75.6 | 72.6 | 69.2 | 1.0 | | J.L | Ų.Ž | | Source: PRIMES | | | | | | | | | | | | | | | | | SUMMARY ENERGY BALANCE AND INDICATO | • • | | | | | | | | | | | land: R | | | | |---|----------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|---------------|--------------|-------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045
| 2050 | '00-'10 ' | | | | | lain Engry System Indicators | | | | | | | | | | | | Ar | nual % | Change | /
 | | lain Energy System Indicators
opulation (Million) | 5.171 | 5.237 | 5.351 | 5.475 | 5.577 | 5.655 | 5.704 | 5.725 | 5.727 | 5.724 | 5.727 | 0.3 | 0.4 | 0.2 | | | DP (in 000 M€10) | 150.5 | 171.4 | 179.7 | 197.7 | 211.9 | 227.6 | 243.5 | 262.7 | 284.2 | 306.5 | 329.4 | 1.8 | 1.7 | 1.4 | | | ross Inl. Cons./GDP (toe/M€10) | 218.7 | 204.5 | 205.8 | 204.9 | 187.3 | 177.6 | 171.7 | 159.1 | 145.6 | 136.7 | 129.5 | -0.6 | -0.9 | -0.9 | | | arbon intensity (t of CO ₂ /toe of GIC) | 1.77 | 1.66 | 1.78 | 1.46 | 1.33 | 1.28 | 1.18 | 1.10 | 1.02 | 0.96 | 0.89 | 0.0 | -2.8 | -1.2 | | | port Dependency % | 55.3 | 54.2 | 48.1 | 45.1 | 42.7 | 39.8 | 36.5 | 36.3 | 35.3 | 33.3 | 32.1 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 17.4 | 21.4 | 27.8 | 32.5 | 36.4 | 39.1 | 41.7 | 44.2 | 46.9 | 49.3 | 51.2 | 4.8 | 2.7 | 1.4 | | | as % of GDP | 11.5 | 12.5 | 15.5 | 16.5 | 17.2 | 17.2 | 17.1 | 16.8 | 16.5 | 16.1 | 15.6 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) sidential (Energy on Private Income, index 2000=100) | 100.0 | 81.0 | 79.4 | 72.5 | 70.0 | 64.6 | 61.3 | 57.4 | 54.7 | 52.3 | 50.7 | -2.3 | -1.3 | -1.3 | | | rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 94.2
99.8 | 98.0
104.6 | 84.4
92.6 | 73.4
84.1 | 64.8
79.0 | 59.3
71.9 | 55.0
67.9 | 51.6
62.7 | 48.7
58.8 | 46.0
54.8 | -0.2
0.4 | -2.8
-2.2 | -2.1
-1.5 | | | ssenger transport (toe/Mpkm) | 38.0 | 37.8 | 39.2 | 37.5 | 34.3 | 31.3 | 28.7 | 27.3 | 26.7 | 26.1 | 25.7 | 0.3 | -1.3 | -1.8 | | | ight transport (toe/Mtkm) | 28.5 | 32.1 | 32.6 | 30.5 | 29.3 | 27.7 | 26.0 | 25.0 | 24.3 | 23.6 | 23.0 | 1.4 | -1.1 | -1.2 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.20 | 0.19 | 0.23 | 0.19 | 0.16 | 0.15 | 0.13 | 0.11 | 0.09 | 0.08 | 0.06 | 1.3 | -3.5 | -1.9 | | | al energy demand (t of CO ₂ /toe) | 1.36 | 1.30 | 1.18 | 1.11 | 1.08 | 1.07 | 1.04 | 1.01 | 0.99 | 0.97 | 0.95 | -1.4 | -0.9 | -0.4 | | | ndustry | 1.16 | 1.09 | 0.98 | 0.91 | 0.89 | 0.88 | 0.82 | 0.80 | 0.78 | 0.78 | 0.77 | -1.6 | -1.0 | -0.8 | | | tesidential | 0.52 | 0.45 | 0.33 | 0.24 | 0.24 | 0.25 | 0.24 | 0.24 | 0.22 | 0.21 | 0.19 | -4.5 | -3.3 | 0.4 | | | ertiary | 1.16 | 1.02 | 0.88 | 0.72 | 0.71 | 0.70 | 0.72 | 0.68 | 0.60 | 0.57 | 0.52 | -2.7 | -2.1 | 0.1 | | | ransport (C) | 2.97 | 2.97 | 2.89 | 2.84 | 2.74 | 2.74 | 2.73 | 2.73 | 2.73 | 2.72 | 2.71 | -0.3 | -0.5 | 0.0 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (%) | 28.4 | 28.3 | 31.8 | 34.1 | 38.5 | 38.6 | 37.7 | 39.2 | 43.3 | 45.5 | 47.8 | | | | | | S in transport (%) | 0.3 | 0.4 | 3.9 | 6.1 | 10.8 | 11.2 | 11.4 | 11.6 | 12.2 | 12.5 | 13.5 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 69968 | 70572 | 80667 | 80001 | 80083 | 91554 | 100382 | 104941 | 110154 | 117468 | 123273 | 1.4 | -0.1 | 2.3 | | | luclear energy | 22513 | 23305 | 22875 | 36692 | 37782 | 46634 | 59443 | 61454 | 58155 | 61092 | 62393 | 0.2 | 5.1 | 4.6 | | | olids | 12452 | 10998 | 20827 | 7304 | 4995 | 5174 | 4452
22 | 4066 | 2624 | 2010 | 857 | 5.3 | -13.3 | -1.1 | | | oil (including refinery gas)
cas (including derived gases) | 587
10816 | 500
11921 | 484
11847 | 49
9547 | 34
8084 | 22
9165 | 6043 | 71
5450 | 65
5726 | 55
5936 | 126
5632 | -1.9
0.9 | -23.4
-3.7 | -4.1
-2.9 | | | iomass-waste | 8860 | 9891 | 11413 | 11196 | 11523 | 11168 | 9501 | 12633 | 17582 | 20081 | 23081 | 2.6 | 0.1 | -1.9 | | | ydro (pumping excluded) | 14660 | 13784 | 12922 | 14199 | 13640 | 13782 | 14157 | 14307 | 14952 | 15397 | 15874 | -1.3 | 0.5 | 0.4 | | | /ind | 78 | 170 | 294 | 1008 | 3978 | 5561 | 6706 | 6902 | 10984 | 12830 | 15243 | 14.2 | 29.8 | 5.4 | | | olar | 2 | 3 | 5 | 6 | 48 | 48 | 58 | 58 | 67 | 67 | 67 | 11.1 | 26.7 | 1.8 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 | 0.0 | 0.0 | - | | other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 16417 | 16650 | 16817 | 18612 | 19970 | 20766 | 22245 | 23355 | 24667 | 26025 | 28496 | 0.2 | 1.7 | 1.1 | | | luclear energy | 2687 | 2690 | 2691 | 4320 | 4321 | 5349 | 6843 | 7095 | 6733 | 7096 | 7247 | 0.0 | 4.9 | 4.7 | | | enewable energy | 2883 | 3080 | 3280 | 3763 | 4949 | 5575 | 6057 | 6195 | 7731 | 8434 | 9321 | 1.3 | 4.2 | 2.0 | | | Hydro (pumping excluded) | 2841 | 2994 | 3102 | 3345 | 3361 | 3372 | 3441 | 3499 | 3647 | 3718 | 3796 | 0.9 | 0.8 | 0.2 | | | Wind
Solar | 39
3 | 82
4 | 171
7 | 411
7 | 1538
50 | 2153
50 | 2556
60 | 2636
60 | 4015
70 | 4646
70 | 5456
70 | 15.9
8.8 | 24.6
21.6 | 5.2
1.9 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 10846 | 10880 | 10847 | 10529 | 10701 | 9842 | 9346 | 10066 | 10203 | 10496 | 11928 | 0.0 | -0.1 | -1.3 | | | of which cogeneration units | 8280 | 7745 | 8587 | 8355 | 8321 | 7745 | 7425 | 8139 | 7596 | 7629 | 7134 | 0.4 | -0.3 | -1.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 5041 | 4797 | 4379 | 3972 | 3800 | 3014 | 3014 | 2833 | 1917 | 1379 | 615 | -1.4 | -1.4 | -2.3 | | | Gas fired | 2807 | 2771 | 2866 | 2759 | 2538 | 2475 | 2427 | 2438 | 3008 | 3421 | 4808 | 0.2 | -1.2 | -0.4 | | | Oil fired | 978 | 907 | 970 | 907 | 777 | 765 | 616 | 609 | 425 | 83 | 17 | -0.1 | -2.2 | -2.3 | | | Biomass-waste fired | 2021 | 2405 | 2632 | 2890 | 3586 | 3588 | 3288 | 4186 | 4853 | 5613 | 6488 | 2.7 | 3.1 | -0.9 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (*) (%) | 46.8 | 46.5 | 52.4 | 46.9 | 43.9 | 48.0 | 49.2 | 48.8 | 48.5 | 49.0 | 47.0 | | | | _ | | ctricity indicators | 00.1 | 07.0 | 07.5 | 00 = | 00.0 | 04.0 | 00.0 | 04.0 | 00 = | 05.0 | 07.0 | | | | | | ciency of gross thermal power generation (%) | 39.4 | 37.0 | 37.5 | 23.7 | 22.9 | 24.0 | 20.2 | 21.0 | 23.5 | 25.3 | 27.2 | | | | | | of gross electricity from CHP of electricity from CCS | 36.4
0.0 | 38.9
0.0 | 36.2
0.0 | 26.7
0.0 | 27.1
0.0 | 26.4
0.0 | 19.3
0.0 | 20.9
0.0 | 23.4 | 23.8 | 23.9 | | | | | | bon free gross electricity generation (%) | 65.9 | 66.8 | 58.9 | 78.9 | 83.6 | 84.3 | 89.5 | 90.9 | 92.4 | 93.2 | 94.6 | | | | | | uclear | 32.2 | 33.0 | 28.4 | 45.9 | 47.2 | 50.9 | 59.2 | 58.6 | 52.4 | 52.0 | 50.6 | | | | | | enewable energy forms | 33.7 | 33.8 | 30.5 | 33.0 | 36.4 | 33.4 | 30.3 | 32.3 | 39.6 | 41.2 | 44.0 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 80.0 | 87.0 | 89.9 | 93.8 | 97.8 | 101.3 | 104.9 | 108.1 | 111.4 | 114.0 | 116.7 | 1.2 | 0.8 | 0.7 | | | ublic road transport | 7.7 | 7.5 | 7.5 | 7.8 | 8.0 | 8.2 | 8.3 | 8.4 | 8.6 | 8.6 | 8.7 | -0.2 | 0.6 | 0.3 | | | rivate cars and motorcycles | 56.6 | 62.8 | 65.7 | 67.8 | 69.7 | 70.8 | 71.7 | 72.9 | 73.9 | 74.7 | 75.4 | 1.5 | 0.6 | 0.3 | | | ail | 3.9 | 4.0 | 4.5 | 4.8 | 5.1 | 5.4 | 5.8 | 6.0 | 6.3 | 6.5 | 6.6 | 1.4 | 1.4 | 1.1 | | | viation | 7.7 | 8.8 | 8.5 | 9.7 | 11.1 | 12.9 | 15.1 | 16.7 | 18.5 | 20.0 | 21.6 | 1.1 | 2.7 | 3.1 | | | land navigation | 4.2 | 3.8 | 3.7 | 3.8 | 3.9 | 4.0 | 4.1 | 4.1 | 4.2 | 4.3 | 4.3 | -1.2 | 0.6 | 0.3 | | | ight transport activity (Gtkm) | 45.5 | 44.4 | 43.9 | 46.9 | 50.1 | 53.3 | 56.6 | 59.3 | 62.2 | 64.6 | 67.1 | -0.4 | 1.3 | 1.2 | | | rucks | 32.0 | 31.9 | 29.5 | 31.2 | 33.0 | 34.9 | 36.8 | 38.4 | 40.0 | 41.4 | 42.7 | -0.8 | 1.1 | 1.1 | | | ail | 10.1 | 9.7 | 9.8 | 10.8 | 11.9 | 12.8 | 13.9 | 14.7 | 15.7 | 16.5 | 17.4 | -0.4 | 2.0 | 1.6 | | | aland navigation | 3.5 | 2.8 | 4.6 | 4.9 | 5.2 | 5.6 | 5.9 | 6.2 | 6.5 | 6.8 | 7.0 | 2.8 | 1.3 | 1.2 | _ | | ergy demand in transport (ktoe) (G) | 4335 | 4712 | 4954 | 4948 | 4829 | 4645 | 4479 | 4442 | 4484 | 4504 | 4549 | 1.3 | -0.3 | -0.7 | | | ublic road transport | 91 | 89 | 89 | 91 | 92 | 91 | 90 | 89 | 89 | 88 | 88 | -0.2 | 0.3 | -0.3 | | | rivate cars and motorcycles | 2270 | 2460 | 2584 | 2496 | 2277 | 2021 | 1847 | 1774 | 1740 | 1721 | 1713 | 1.3 | -1.3 | -2.1 | | | rucks | 1203 | 1332 | 1328 | 1323 | 1350 | 1349 | 1342 | 1353 | 1379 | 1392 | 1413 | 1.0 | 0.2 | -0.1 | | | Rail
Aviation | 90
500 | 92
569 | 90
679 | 96
752 | 104
811 | 109
878 | 113 | 115 | 116 | 114 | 112
1016 | 0.0 | 1.5 | 0.8 | | | viation
nland navigation | 509
172 | | 679 | | | | 887 | 909 | 956 | 983 | | 2.9 | 1.8 | 0.9 | | | | 1/2 | 170 | 183 | 189 | 195 | 198 | 200 | 203 | 205 | 206 | 207 | 0.6 | 0.6 | 0.3 | | | France: Reference scenario | | | | | | | | SUN | MARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|--|---
--|--|--|---|--|--|--|--|--|--|---|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 | '20-'30 '3 | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 129847
2482 | 136034
383 | 134775
162 | 136586
87 | 132493
0 | 131307 | 133213 | 135099
0 | 135408
0 | 137900
0 | 133396 | 0.4
-23.9 | -0.2
-100.0 | 0.1
0.0 | 0.0 | | Oil | 2462 | 1544 | 1467 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -23.9 | -100.0 | 0.0 | 0.0 | | Natural gas | 1505 | 909 | 646 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -8.1 | -100.0 | 0.0 | 0.0 | | Nuclear | 107093 | 116474 | 110539 | 111401 | 99077 | 94132 | 94071 | 93566 | 91144 | 92144 | 87863 | 0.3 | -1.1 | -0.5 | -0.3 | | Renewable energy sources | 16754 | 16724 | 21962 | 25098 | 33416 | 37174 | 39142 | 41533 | 44264 | 45756 | 45533 | 2.7 | 4.3 | 1.6 | 0.8 | | Hydro | 5773 | 4449 | 5332 | 5528 | 5567 | 5623 | 5831 | 6566 | 6701 | 6727 | 6784 | -0.8 | 0.4 | 0.5 | 0.8 | | Biomass & Waste
Wind | 10831
7 | 12040
83 | 15574
857 | 15966
1942 | 19326
5697 | 19291
8876 | 18463
10769 | 17785
11505 | 18358
12096 | 17931
13503 | 16491
14409 | 3.7
62.6 | 2.2 | -0.5
6.6 | -0.6
1.5 | | Solar and others | 17 | 22 | 108 | 1292 | 2472 | 3038 | 3739 | 4240 | 5270 | 5579 | 5639 | 20.3 | 36.8 | 4.2 | 2.1 | | Geothermal | 126 | 130 | 91 | 370 | 353 | 347 | 340 | 1436 | 1839 | 2016 | 2210 | -3.2 | 14.5 | -0.4 | 9.8 | | Net Imports | 134424 | 144391 | 133605 | 131778 | 118838 | 114567 | 109307 | 106427 | 104731 | 105862 | 108113 | -0.1 | -1.2 | -0.8 | -0.1 | | Solids | 13005 | 13511 | 12162 | 9833 | 6728 | 5796 | 4842 | 3858 | 3687 | 5436 | 6372 | -0.7 | -5.7 | -3.2 | 1.4 | | Oil | 91607 | 95403 | 84371 | 80073 | 74138 | 71662 | 69954 | 68203 | 67296 | 67015 | 66867 | -0.8 | -1.3 | -0.6 | -0.2 | | - Crude oil and Feedstocks | 85671 | 85568 | 65651 | 63937 | 60152 | 58470 | 57542 | 56627 | 56164 | 56156 | 56275 | -2.6 | -0.9 | -0.4 | -0.1 | | - Oil products | 5936 | 9835 | 18720 | 16137 | 13986 | 13192 | 12411 | 11576 | 11132 | 10859 | 10592 | 12.2 | -2.9 | -1.2 | -0.8 | | Natural gas Electricity | 35778
-5974 | 40720
-5187 | 39553
-2644 | 43254
-4739 | 38605
-5049 | 36606
-4418 | 33312
-3676 | 32213
-2768 | 30857
-2181 | 30704
-2107 | 31702
-1636 | 1.0
-7.8 | -0.2
6.7 | -1.5
-3.1 | -0.2
-4.0 | | | 257777 | 276545 | 268530 | 265645 | 248480 | 242947 | 239553 | 238536 | 237092 | 240620 | 238241 | 0.4 | -0.8 | -0.4 | 0.0 | | Gross Inland Consumption Solids | 15048 | 14303 | 12046 | 9920 | 6728 | 5796 | 4842 | 3858 | 3687 | 5436 | 6372 | -2.2 | -0. 6
-5.7 | -3.2 | 1.4 | | Oil | 89084 | 93261 | 83925 | 77368 | 71346 | 68858 | 67140 | 65440 | 64562 | 64253 | 64059 | -2.2 | -5.7
-1.6 | -0.6 | -0.2 | | Natural gas | 35766 | 41025 | 42540 | 43240 | 38546 | 36485 | 33159 | 31987 | 30545 | 30323 | 31241 | 1.7 | -1.0 | -1.5 | -0.3 | | Nuclear | 107093 | 116474 | 110539 | 111401 | 99077 | 94132 | 94071 | 93566 | 91144 | 92144 | 87863 | 0.3 | -1.1 | -0.5 | -0.3 | | Electricity | -5974 | -5187 | -2644 | -4739 | -5049 | -4418 | -3676 | -2768 | -2181 | -2107 | -1636 | -7.8 | 6.7 | -3.1 | -4.0 | | Renewable energy forms | 16761 | 16669 | 22124 | 28456 | 37832 | 42095 | 44018 | 46454 | 49336 | 50571 | 50341 | 2.8 | 5.5 | 1.5 | 0.7 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 5.8 | 5.2 | 4.5 | 3.7 | 2.7 | 2.4 | 2.0 | 1.6 | 1.6 | 2.3 | 2.7 | | | | | | Oil | 34.6 | 33.7 | 31.3 | 29.1 | 28.7 | 28.3 | 28.0 | 27.4 | 27.2 | 26.7 | 26.9 | | | | | | Natural gas
Nuclear | 13.9
41.5 | 14.8
42.1 | 15.8
41.2 | 16.3
41.9 | 15.5
39.9 | 15.0
38.7 | 13.8
39.3 | 13.4
39.2 | 12.9
38.4 | 12.6
38.3 | 13.1
36.9 | | | | | | Renewable energy forms | 6.5 | 6.0 | 8.2 | 10.7 | 15.2 | 17.3 | 18.4 | 19.5 | 20.8 | 21.0 | 21.1 | | | | | | Gross Electricity Generation in GWh _e | 535958 | 571395 | 564088 | 591166 | 583539 | 605085 | 631997 | 649190 | 671005 | 711403 | 724782 | 0.5 | 0.3 | 0.8 | 0.7 | | Self consumption and grid losses | 56172 | 60388 | 61728 | 62283 | 58064 | 60378 | 63638 | 67116 | 70584 | 76942 | 79391 | 0.9 | -0.6 | 0.9 | 1.1 | | Fuel Inputs to Thermal Power Generation | 13379 | 17097 | 16920 | 16487 | 13937 | 12851 | 10747 | 10524 | 11262 | 13091 | 13354 | 2.4 | -1.9 | -2.6 | 1.1 | | Solids | 6559 | 6402 | 4717 | 3825 | 1113 | 727 | 0 | 0 | 0 | 1845 | 2119 | -3.2 | -13.4 | -100.0 | 0.0 | | Oil (including refinery gas) | 1241 | 2185 | 1638 | 749 | 80 | 127 | 158 | 139 | 109 | 141 | 198 | 2.8 | -26.1 | 7.1 | 1.1 | | Gas (including derived gases) | 4034 | 6298 | 8178 | 7883 | 8070 | 6634 | 4938 | 3101 | 2558 | 2135 | 1948 | 7.3 | -0.1 | -4.8 | -4.5 | | Biomass & Waste | 1545 | 2212 | 2387 | 3881 | 4524 | 5211 | 5500 | 6033 | 6934 | 7131 | 7041 | 4.4 | 6.6 | 2.0 | 1.2 | | Geothermal heat | 0 | 0 | 0 | 151 | 151 | 151 | 151 | 1251 | 1661 | 1839 | 2049
 0.0 | 0.0 | 0.0 | 13.9 | | Hydrogen - Methanol | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 205489
91164 | 211643
88602 | 191882
74262 | 187680
68737 | 171550 64177 | 1 64609
62465 | 163373 61518 | 160582 60497 | 157311 59931 | 158158 59873 | 155165 59966 | -0.7
-2.0 | -1.1
-1.4 | -0.5
-0.4 | -0.3
-0.1 | | Biofuels and hydrogen production | 329 | 400 | 2420 | 2826 | 3596 | 3674 | 3828 | 3879 | 3871 | 4017 | 4296 | 22.1 | 4.0 | 0.6 | 0.6 | | District heating | 312 | 271 | 261 | 456 | 828 | 949 | 941 | 970 | 829 | 667 | 581 | -1.8 | 12.2 | 1.3 | -2.4 | | Derived gases, cokeries etc. | 113684 | 122371 | 114939 | 115661 | 102949 | 97521 | 97087 | 95235 | 92681 | 93601 | 90322 | 0.1 | -1.1 | -0.6 | -0.4 | | Energy Branch Consumption | 10830 | 9975 | 10242 | 8311 | 7581 | 7321 | 7339 | 7109 | 7144 | 7452 | 7693 | -0.6 | -3.0 | -0.3 | 0.2 | | Non-Energy Uses | 16225 | 14528 | 11996 | 11920 | 12023 | 12194 | 12351 | 12346 | 12047 | 11958 | 11946 | -3.0 | 0.0 | 0.3 | -0.2 | | Final Energy Demand | 154489 | 162383 | 158771 | 158093 | 151406 | 150106 | 147937 | 147181 | 147692 | 149698 | 150949 | 0.3 | -0.5 | -0.2 | 0.1 | | by sector | | | | | | | | | | | | | -0.5 | | | | Industry | 37170 | 36628 | 31242 | | | | | | | | | | -0.5 | | | | - energy intensive industries | | | | 32919 | 33187 | 32835 | 33561 | 32948 | 33228 | 34356 | 35234 | -1.7 | 0.6 | 0.1 | 0.2 | | - other industrial sectors | 21437 | 22084 | 18407 | 19741 | 19567 | 18499 | 18667 | 17932 | 17628 | 17998 | 18026 | -1.7
-1.5 | 0.6
0.6 | -0.5 | -0.2 | | - other industrial sectors | 15733 | 22084
14544 | 18407
12834 | 19741
13178 | 19567
13620 | 18499
14337 | 18667
14893 | 17932
15016 | 17628
15600 | 17998
16358 | 18026
17208 | -1.7
-1.5
-2.0 | 0.6
0.6
0.6 | -0.5
0.9 | -0.2
0.7 | | Residential | 15733
39680 | 22084
14544
46584 | 18407
12834
46298 | 19741
13178
45651 | 19567
13620
43207 | 18499
14337
42618 | 18667
14893
40703 | 17932
15016
40077 | 17628
15600
39468 | 17998
16358
38854 | 18026
17208
37552 | -1.7
-1.5
-2.0
1.6 | 0.6
0.6
0.6
-0.7 | -0.5
0.9
-0.6 | -0.2
0.7
-0.4 | | | 15733 | 22084
14544 | 18407
12834 | 19741
13178 | 19567
13620 | 18499
14337 | 18667
14893 | 17932
15016 | 17628
15600 | 17998
16358 | 18026
17208 | -1.7
-1.5
-2.0 | 0.6
0.6
0.6 | -0.5
0.9 | -0.2
0.7 | | Residential
Tertiary | 15733
39680
26957 | 22084
14544
46584
28648 | 18407
12834
46298
30914 | 19741
13178
45651
28648 | 19567
13620
43207
26621 | 18499
14337
42618
27313 | 18667
14893
40703
26416 | 17932
15016
40077
26993 | 17628
15600
39468
27326 | 17998
16358
38854
28287 | 18026
17208
37552
29124 | -1.7
-1.5
-2.0
1.6
1.4 | 0.6
0.6
0.6
-0.7 | -0.5
0.9
-0.6
-0.1 | -0.2
0.7
-0.4
0.5 | | Residential
Tertiary
Transport | 15733
39680
26957 | 22084
14544
46584
28648 | 18407
12834
46298
30914 | 19741
13178
45651
28648 | 19567
13620
43207
26621 | 18499
14337
42618
27313 | 18667
14893
40703
26416 | 17932
15016
40077
26993 | 17628
15600
39468
27326 | 17998
16358
38854
28287 | 18026
17208
37552
29124 | -1.7
-1.5
-2.0
1.6
1.4 | 0.6
0.6
0.6
-0.7 | -0.5
0.9
-0.6
-0.1 | -0.2
0.7
-0.4
0.5 | | Residential Tertiary Transport by fuel | 15733
39680
26957
50682 | 22084
14544
46584
28648
50522 | 18407
12834
46298
30914
50317 | 19741
13178
45651
28648
50875 | 19567
13620
43207
26621
48392 | 18499
14337
42618
27313
47340 | 18667
14893
40703
26416
47258 | 17932
15016
40077
26993
47163 | 17628
15600
39468
27326
47671 | 17998
16358
38854
28287
48200 | 18026
17208
37552
29124
49038 | -1.7
-1.5
-2.0
1.6
1.4
-0.1 | 0.6
0.6
0.6
-0.7
-1.5
-0.4 | -0.5
0.9
-0.6
-0.1
-0.2 | -0.2
0.7
-0.4
0.5
0.2 | | Residential Tertiary Transport by fuel Solids Oil Gas | 15733
39680
26957
50682
5775
72354
30907 | 22084
14544
46584
28648
50522
5219
73261
33744 | 18407
12834
46298
30914
50317
4496
66723
32478 | 19741
13178
45651
28648
50875
3899
62220
32561 | 19567
13620
43207
26621
48392
3600
57112
27963 | 18499
14337
42618
27313
47340
3287
54806
27091 | 18667
14893
40703
26416
47258
3264
53054
25267 | 17932
15016
40077
26993
47163
3100
51504
25417 | 17628
15600
39468
27326
47671
2983
51067
24526 | 17998
16358
38854
28287
48200
2916
50870
24679 | 18026
17208
37552
29124
49038
2883
50807
26101 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5 | 0.6
0.6
0.7
-1.5
-0.4
-2.2
-1.5
-1.5 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 15733
39680
26957
50682
5775
72354
30907
33096 | 22084
14544
46584
28648
50522
5219
73261
33744
36352 | 18407
12834
46298
30914
50317
4496
66723
32478
38185 | 19741
13178
45651
28648
50875
3899
62220
32561
39892 | 19567
13620
43207
26621
48392
3600
57112
27963
39377 | 18499
14337
42618
27313
47340
3287
54806
27091
41691 | 18667
14893
40703
26416
47258
3264
53054
25267
44446 | 17932
15016
40077
26993
47163
3100
51504
25417
46497 | 17628
15600
39468
27326
47671
2983
51067
24526
48606 | 17998
16358
38854
28287
48200
2916
50870
24679
51540 | 18026
17208
37552
29124
49038
2883
50807
26101
52915 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.2 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 15733
39680
26957
50682
5775
72354
30907
33096
3236 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.2
0.9
-0.9 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.2
0.9
-0.9 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0 |
18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-0.9
-1.0
10.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
2
27317 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-0.9
-1.0
10.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-0.9
-1.0
10.1
0.5 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0
5.6
-1.6 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6
-1.0
-1.8 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-1.0
10.1
0.5
-1.7 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
330.1 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2
303.5 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4
297.7 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0
-0.7 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6 | -0.2
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-1.0
10.1
0.5
-0.5
-1.7
-0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2
147.1
385.1 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6
318.5 |
18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
103.3
308.0 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3 | -1.7
-1.5
-2.0
1.6
1.4
-0.1
-2.5
-0.8
0.5
1.4
1.2
3.8
0.0 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0
5.6
-1.7
-1.5 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6
-1.0
-1.8
-0.7 | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -1.0 0.5 -1.7 -0.1 -0.4 -0.5 -1.7 -0.1 -0.4 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 15733
39680
26957
50682
5775
72354
30907
33096
9123
0
15207
571.5 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2
147.1
385.1 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
330.1
300.8 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6
318.5
283.9 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
103.3
308.0
266.1 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
90.2
303.5
250.4 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1 | 17998
16358
38854
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4
297.7
242.9 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 | 0.6 0.6 0.6 -0.7 -1.5 -0.4 -2.2 -1.5 -1.5 0.3 -1.0 4.2 0.0 -1.6 -1.7 -1.5 -2.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
-0.3
-0.7
17.8
1.6
-1.0
-1.0
-1.0 | -0.22
0.7
-0.4
0.5
0.2
-0.6
-0.2
0.9
-0.9
-1.0
0.5
-0.5
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0
15207
571.5 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8
400.2 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2
147.1
385.1
48.1 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
442.1 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
330.1
300.8
29.2 | 18499 14337 42618 27313 47340 3287 54806 27091 41691 3392 19828 11 41288 435.0 116.6 318.5 283.9 23.8 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
103.3
308.0
266.1 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
90.2
303.5
250.4 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
46263
366.4
87.5
298.9
244.1
5.6 | 17998 16358 38854 28287 48200 2916 50870 24679 51540 2767 16760 167 47289 371.1 73.4 297.7 242.9 4.9 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4
4.2 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 | 0.6
0.6
0.6
-0.7
-1.5
-0.4
-2.2
-1.5
-1.5
0.3
-1.0
4.2
0.0
5.6
-1.7
-1.5
-2.0
-4.9 | -0.5 0.9 -0.6 -0.1 -0.2 -1.0 -0.7 -1.0 -0.3 -0.7 17.8 1.6 -1.0 -1.8 -0.7 -1.2 -6.0 | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -1.0 10.1 0.5 -0.5 -0.1 -0.4 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0
15207
571.5 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8
400.2
53.7
16.3
73.7
64.9 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2
147.1
385.1
48.1
16.5
61.5
57.5 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4
42.1
15.0
57.4
51.6 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
330.1
300.8
29.2
13.4
50.6
44.4 | 18499 14337 42618 27313 47340 3287 54806 27091 41691 3392 19828 11 41288 435.0 116.6 318.5 283.9 23.8 12.7 46.9 42.8 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
308.0
266.1
15.7
12.5
46.9
40.2 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2
303.5
250.4
7.7
10.9
44.4
37.9 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1
5.6
10.7
43.1
34.4 | 17998 16358 38854 28287 48200 2916 50870 24679 51540 2767 16760 167 47289 371.1 73.4 297.7 242.9 4.9 10.7 44.5 31.4 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4
4.2
11.9
48.5
28.2 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 | 0.6 0.6 0.6 0.7 -1.5 -0.4 -2.2 -1.5 -1.5 -0.0 -1.6 -1.7 -1.5 -2.0 -4.9 -2.0 -2.5 -2.5 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
-1.0
-1.8
-0.7
-1.2
-6.0
-0.7
-1.2 | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -0.9 -1.0 0.5 -1.7 -0.1 -0.4 -6.4 -0.2 0.2 0.2 -1.8 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0
15207
571.5
389.0
46.8
19.9
76.4
53.5
43.5 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8
400.2
53.7
16.3
73.7
64.9
42.6 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
532.2
147.1
385.1
368.1
48.1
16.5
61.5
57.5
57.5
42.0 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4
42.1
15.0
57.4
51.6
34.6 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
124.5
330.1
300.1
300.2
13.4
50.6
44.4 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6
318.5
283.9
23.8
12.7
46.9
42.8
30.0 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
308.0
266.1
15.7
12.5
46.9
40.2
25.0 |
17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
90.2
303.5
250.4
7.7
10.9
44.4
37.9
24.7 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1
5.6
6
10.7
43.1
34.4
424.5 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4
297.7
242.9
10.7
44.5
31.4
24.7 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
2015
47136
374.3
301.0
246.4
4.2
11.9
48.5
28.2
25.6 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 -0.6 0.3 -1.8 -2.1 0.7 -0.3 | 0.6 0.6 0.6 0.7 1.5 -0.4 -2.2 1.5 1.5 0.3 0.3 1.0 4.2 0.0 5.6 1.7 1.5 -2.0 4.9 -2.0 -1.9 -2.5 -3.0 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
-1.3
-0.7
17.8
-0.7
-1.8
-0.7
-1.9
-1.0
-1.8
-0.7
-1.0
-1.8
-0.7
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
- | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -0.9 -1.0 0.5 -1.7 -0.1 -0.4 -6.4 -0.2 0.2 -1.8 0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 15733
39680
26957
50082
5775
72354
30907
33096
3236
9123
0
15207
571.5
389.0
46.8
19.9
76.4
53.5
43.5
149.0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
400.2
53.7
16.3
73.7
64.9
42.6
149.0 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
552.2
147.1
185.1
368.1
48.1
16.5
61.5
57.5
42.0
142.6 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4
42.1
15.0
57.4
51.6
34.6
142.8 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
30.1
300.8
29.2
13.4
50.6
44.4 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6
318.5
283.9
23.8
12.7
46.9
42.8
30.0
127.7 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
30
42954
411.3
103.3
308.0
266.1
15.7
12.5
46.9
40.2
25.0
125.8 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2
303.5
250.4
7.7
10.9
44.4
37.9
24.7
124.8 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1
5.6
10.7
43.1
34.4
24.5
125.8 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
47289
371.1
73.4
297.7
242.9
4.9
10.7
44.5
31.4
24.7
126.6 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4
4.2
11.9
48.5
28.2
25.6
128.0 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 -0.6 0.3 -1.8 -2.1 0.7 -0.3 -0.4 | 0.6 0.6 0.6 0.7 -1.5 -1.5 0.3 1-1.0 0.5 -1.6 -1.6 -1.7 -1.5 -2.0 -1.9 -1.5 -2.0 -1.9 -2.5 -3.0 0.8 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6
-1.0
-1.2
-6.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1. | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -0.9 -1.0 1.1 -0.4 -6.4 -0.2 0.2 0.2 0.2 0.2 0.2 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Nt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 15733
39680
26957
50682
5775
72354
30907
33096
3236
9123
0
15207
571.5
389.0
46.8
19.9
76.4
53.5
43.5
149.0
28.7 |
22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
397.8
400.2
53.7
16.3
73.7
64.9
42.6
149.0
27.9 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
522.2
147.1
385.1
368.1
48.1
16.5
57.5
42.0
142.6
23.4 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4
42.1
15.0
57.4
51.6
34.6
142.8
26.8 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
330.1
300.8
29.2
13.4
50.6
44.4
31.1
132.2
27.5 | 18499 14337 42618 27313 47340 3287 54806 27091 41691 3392 19828 11 41288 435.0 116.6 318.5 283.9 23.8 12.7 46.9 42.8 30.0 127.7 27.1 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
18678
30
42954
411.3
308.0
266.1
15.7
12.5
46.9
40.2
25.0
125.8
22.0 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2
2303.5
250.4
7.7
10.9
44.4
37.9
24.7
124.8
20.8 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1
5.6
10.7
43.1
34.4
24.5
125.8
20.1 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
16760
167
47289
371.1
73.4
297.7
242.9
4.9
10.7
4.5
31.4
24.7
126.6
4.8 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4
4.2
11.9
48.5
28.2
25.6
128.0
2.9 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 5 1.4 1.2 3.8 0.0 3.3 -0.7 -0.6 0.3 -1.8 -2.1 0.7 -0.3 -0.4 -2.0 | 0.6 0.6 0.6 0.7 1.5 0.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6
-1.8
-0.7
-1.2
-6.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0 | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -0.9 -1.0 0.5 -0.1 -0.4 -0.2 0.2 0.2 0.2 0.2 0.2 -1.0 0.1 -0.4 -0.2 0.2 -1.8 0.1 0.1 -9.6 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 15733
39680
26957
50082
5775
72354
30907
33096
3236
9123
0
15207
571.5
389.0
46.8
19.9
76.4
53.5
43.5
149.0 | 22084
14544
46584
28648
50522
5219
73261
33744
36352
4163
9644
0
15818
572.5
174.8
400.2
53.7
16.3
73.7
64.9
42.6
149.0 | 18407
12834
46298
30914
50317
4496
66723
32478
38185
3654
13236
0
21137
552.2
147.1
185.1
368.1
48.1
16.5
61.5
57.5
42.0
142.6 | 19741
13178
45651
28648
50875
3899
62220
32561
39892
3520
16000
2
27317
499.9
143.8
356.1
343.4
42.1
15.0
57.4
51.6
34.6
142.8 | 19567
13620
43207
26621
48392
3600
57112
27963
39377
3312
20036
6
36520
454.6
124.5
30.1
300.8
29.2
13.4
50.6
44.4 | 18499
14337
42618
27313
47340
3287
54806
27091
41691
3392
19828
11
41288
435.0
116.6
318.5
283.9
23.8
12.7
46.9
42.8
30.0
127.7 | 18667
14893
40703
26416
47258
3264
53054
25267
44446
3198
30
42954
411.3
103.3
308.0
266.1
15.7
12.5
46.9
40.2
25.0
125.8 | 17932
15016
40077
26993
47163
3100
51504
25417
46497
2998
17602
62
44027
393.7
90.2
303.5
250.4
7.7
10.9
44.4
37.9
24.7
124.8 | 17628
15600
39468
27326
47671
2983
51067
24526
48606
2918
17476
116
46263
386.4
87.5
298.9
244.1
5.6
10.7
43.1
34.4
24.5
125.8 | 17998
16358
38854
28287
48200
2916
50870
24679
51540
2767
47289
371.1
73.4
297.7
242.9
4.9
10.7
44.5
31.4
24.7
126.6 | 18026
17208
37552
29124
49038
2883
50807
26101
52915
2649
15389
205
47136
374.3
73.3
301.0
246.4
4.2
11.9
48.5
28.2
25.6
128.0 | -1.7 -1.5 -2.0 1.6 1.4 -0.1 -2.5 -0.8 0.5 1.4 1.2 3.8 0.0 3.3 -0.7 -0.6 0.3 -1.8 -2.1 0.7 -0.3 -0.4 | 0.6 0.6 0.6 0.7 -1.5 -1.5 0.3 1-1.0 0.5 -1.6 -1.6 -1.7 -1.5 -2.0 -1.9 -1.5 -2.0 -1.9 -2.5 -3.0 0.8 | -0.5
0.9
-0.6
-0.1
-0.2
-1.0
-0.7
-1.0
1.2
-0.3
-0.7
17.8
1.6
-1.0
-1.2
-6.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-0.7
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1.0
-1. | -0.2 0.7 -0.4 0.5 0.2 -0.6 -0.2 0.9 -0.9 -1.0 1.1 -0.4 -6.4 -0.2 0.2 0.2 0.2 0.2 0.2 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 | | JMMARY ENERGY BALANCE AND INDICATO | • • | | | | | | | | | | | ance: R | | | | |--|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|-------------|-----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | Ar | nnual % | Change | <u>}</u> | | nin Energy System Indicators pulation (Million) | 58.858 | 60.963 | 62.791 | 64.387 | 65.808 | 67.077 | 68.223 | 69.237 | 70.056 | 70.628 | 71.029 | 0.6 | 0.5 | 0.4 | | | DP (in 000 M€10) | 1726.6 | 1869.7 | 1932.8 | 2081.3 | 2256.9 | 2483.4 | 2698.9 | 2918.6 | 3163.4 | 3425.8 | 3703.3 | 1.1 | 1.6 | 1.8 | | | oss Inl. Cons./GDP (toe/M€10) | 149.3 | 147.9 | 138.9 | 127.6 | 110.1 | 97.8 | 88.8 | 81.7 | 74.9 | 70.2 | 64.3 | -0.7 | -2.3 | -2.1 | | | rbon intensity (t of CO ₂ /toe of GIC) | 1.51 | 1.45 | 1.37 | 1.29 | 1.21 | 1.17 | 1.11 | 1.05 | 1.03 | 1.01 | 1.03 | -1.0 | -1.2 | -0.9 | | | port Dependency % | 51.6 | 51.7 | 49.3 | 49.1 | 47.3 | 46.6 | 45.1 | 44.1 | 43.6 | 43.4 | 44.8 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 159.7 | 185.6 | 214.2 | 255.8 | 286.4 | 303.1 | 312.9 | 323.8 | 337.3 | 351.4 | 367.8 | 3.0 | 2.9 | 0.9 | | | as % of GDP | 9.2 | 9.9 | 11.1 | 12.3 | 12.7 | 12.2 | 11.6 | 11.1 | 10.7 | 10.3 | 9.9 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | .11111111 | | dustry (Energy on Value added, index 2000=100) | 100.0 | 93.9 | 84.5 | 82.7 | 77.1 | 69.0 | 65.4 | 60.3 | 56.9
| 55.1 | 53.6 | -1.7 | -0.9 | -1.6 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 106.1 | 99.0 | 91.0 | 79.8 | 71.8 | 63.2 | 57.6 | 52.4 | 47.6 | 42.5 | -0.1 | -2.1 | -2.3 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 98.2 | 99.5 | 85.5 | 73.1 | 68.0 | 60.3 | 56.7 | 52.8 | 50.3 | 47.7 | 0.0 | -3.0 | -1.9 | | | ssenger transport (toe/Mpkm) | 40.6 | 40.6 | 39.9 | 37.7 | 33.6 | 30.1 | 27.4 | 26.0 | 25.2 | 24.8 | 24.4 | -0.2 | -1.7 | -2.0 | | | ight transport (toe/Mtkm) | 46.2 | 42.5 | 42.3 | 41.8 | 39.0 | 36.3 | 34.9 | 33.9 | 32.9 | 32.1 | 31.7 | -0.9 | -0.8 | -1.1 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.08 | 0.09 | 0.08 | 0.07 | 0.05 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | -0.3 | -5.1 | -6.7 | | | al energy demand (t of CO ₂ /toe) | 2.09 | 2.03 | 1.91 | 1.81 | 1.71 | 1.65 | 1.61 | 1.57 | 1.54 | 1.52 | 1.53 | -0.9 | -1.1 | -0.6 | | | dustry | 2.05 | 2.01 | 1.97 | 1.74 | 1.52 | 1.43 | 1.40 | 1.35 | 1.30 | 1.30 | 1.38 | -0.4 | -2.5 | -0.9 | | | tesidential | 1.35 | 1.39 | 1.24 | 1.13 | 1.03 | 1.00 | 0.99 | 0.95 | 0.87 | 0.81 | 0.75 | -0.8 | -1.9 | -0.4 | | | ertiary | 1.61 | 1.49 | 1.36 | 1.21 | 1.17 | 1.10 | 0.95 | 0.92 | 0.90 | 0.87 | 0.88 | -1.7 | -1.5 | -2.1 | | | ransport (C) | 2.94 | 2.95 | 2.83 | 2.81 | 2.73 | 2.70 | 2.66 | 2.65 | 2.64 | 2.63 | 2.61 | -0.4 | -0.4 | -0.3 | _ | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (b) (%) | 9.4 | 9.3 | 12.7 | 16.6 | 23.2 | 26.4 | 27.8 | 28.5 | 29.8 | 30.0 | 29.6 | | | | | | S in transport (%) | 1.2 | 1.3 | 6.0 | 7.1 | 10.2 | 11.5 | 12.6 | 13.1 | 13.4 | 13.8 | 14.6 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 536054 | 571497 | 564190 | 591166 | 583539 | 605085 | 631997 | 649190 | 671005 | 711403 | 724782 | 0.5 | 0.3 | 0.8 | | | luclear energy | 415162 | 451529 | 428521 | 431786 | 384218 | 365240 | 369072 | 371113 | 369140 | 377857 | 374092 | 0.3 | -1.1 | -0.4 | | | iolids | 27004 | 27515 | 23359 | 15150 | 4761 | 3104 | 0 | 0 | 0 | 11087 | 12713 | -1.4 | | -100.0 | | | oil (including refinery gas) Gas (including derived gases) | 7165
15370 | 7925
26259 | 5821
26614 | 1134
39019 | 408
36002 | 474
31132 | 411
24040 | 728
9148 | 556
6649 | 619
7694 | 725
7758 | -2.1
5.6 | -23.3
3.1 | 0.1
-4.0 | | | iomass-waste | 3561 | 5016 | 6800 | 10740 | 15704 | 20336 | 21100 | 27599 | 32583 | 31400 | 33342 | 6.7 | 8.7 | 3.0 | | | lydro (pumping excluded) | 67137 | 51747 | 62013 | 64278 | 64736 | 65386 | 67806 | 76347 | 77919 | 78225 | 78887 | -0.8 | 0.4 | 0.5 | | | /ind | 77 | 962 | 9969 | 22584 | 66248 | 103204 | 125218 | 133784 | 140649 | 157006 | 167548 | 62.6 | 20.9 | 6.6 | | | Solar | 5 | 11 | 564 | 5703 | 10281 | 14465 | 22385 | 27164 | 39585 | 42329 | 44219 | 59.7 | 33.7 | 8.1 | | | Seothermal and other renewables | 573 | 534 | 529 | 772 | 1181 | 1743 | 1965 | 3307 | 3924 | 5186 | 5499 | -0.8 | 8.4 | 5.2 | | | Other fuels (hydrogen, methanol) | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 107928 | 107789 | 116297 | 126380 | 142781 | 148630 | 163303 | 170373 | 184242 | 198911 | 205431 | 0.7 | 2.1 | 1.4 | | | luclear energy | 63235 | 63258 | 63258 | 63258 | 62857 | 54670 | 54021 | 54294 | 53958 | 55204 | 54573 | 0.0 | -0.1 | -1.5 | | | Renewable energy | 20641 | 21412 | 28037 | 36371 | 54827 | 71194 | 83757 | 91137 | 101021 | 108307 | 112542 | 3.1 | 6.9 | 4.3 | | | Hydro (pumping excluded) | 20568 | 20642 | 20934 | 21260 | 21260 | 21260 | 21760 | 24018 | 24131 | 24161 | 24333 | 0.2 | 0.2 | 0.2 | | | Wind | 66 | 757 | 5970 | 10238 | 25687 | 39363 | 47354 | 50230 | 52764 | 58470 | 61781 | 56.9 | 15.7 | 6.3 | | | Solar | 7 | 13 | 893 | 4630 | 7470 | 9931 | 13913 | 16134 | 23313 | 24433 | 25157 | 62.4 | 23.7 | 6.4 | | | Other renewables (tidal etc.) | 0 | 0 | 240 | 243 | 410 | 639 | 730 | 755 | 812 | 1242 | 1271 | 0.0 | 5.5 | 5.9 | | | hermal power | 24052 | 23119 | 25002 | 26751 | 25096 | 22766 | 25525 | 24942 | 29263 | 35401 | 38316 | 0.4 | 0.0 | 0.2 | | | of which cogeneration units | 7013 | 6766 | 5178 | 5934 | 6474 | 6967 | 6467 | 6322 | 7228 | 7727 | 6962 | -3.0 | 2.3 | 0.0 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 258 | 1386 | 1795 | 0.0 | 0.0 | 0.0 | | | Solids fired | 9300 | 7871 | 6918 | 5237 | 3438 | 2378 | 0 | 0 | 0 | 1128 | 1297 | -2.9 | -6.8 | -100.0 | | | Gas fired | 5102 | 5784 | 8548 | 11786 | 11690 | 11573 | 17503 | 18081 | 17731 | 20670 | 21164 | 5.3 | 3.2 | 4.1 | | | Oil fired | 8244 | 7903 | 7869 | 7686 | 6689 | 4535 | 3743 | 2141 | 5465 | 6946 | 8719 | -0.5 | -1.6 | -5.6 | | | Biomass-waste fired
Hydrogen plants | 1406
0 | 1561
0 | 1667
0 | 2023
0 | 3258
0 | 4260
0 | 4260
0 | 4554
0 | 5847
0 | 6413
0 | 6863
0 | 1.7
0.0 | 6.9
0.0 | 2.7
0.0 | | | Geothermal heat | 0 | 0 | 0 | 20 | 20 | 20 | 20 | 166 | 220 | 244 | 272 | 0.0 | 0.0 | 0.0 | | | a. Load factor of net power capacity (F) (%) | 54.2 | 57.8 | 53.0 | 51.2 | 44.9 | 44.9 | 42.7 | 42.0 | 40.2 | 39.3 | 38.8 | 0.0 | 0.0 | 0.0 | | | | 34.2 | 37.0 | 55.0 | 31.2 | 44.9 | 44.9 | 42.1 | 42.0 | 40.2 | 38.3 | 30.0 | | | | - | | ctricity indicators
ciency of gross thermal power generation (%) | 34.1 | 33.6 | 31.8 | 34.5 | 35.2 | 37.0 | 36.6 | 31.8 | 31.9 | 34.8 | 36.7 | | | | | | of gross electricity from CHP | 34.1 | 4.0 | 2.8 | 34.5 | 35.2 | 5.0 | 3.6 | 4.2 | 4.2 | 4.0 | 4.3 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.8 | 2.3 | | | | | | rbon free gross electricity generation (%) | 90.8 | 89.2 | 90.1 | 90.6 | 92.9 | 94.3 | 96.1 | 98.5 | 98.9 | 97.3 | 97.1 | | | | | | uclear | 77.4 | 79.0 | 76.0 | 73.0 | 65.8 | 60.4 | 58.4 | 57.2 | 55.0 | 53.1 | 51.6 | | | | | | enewable energy forms | 13.3 | 10.2 | 14.2 | 17.6 | 27.1 | 33.9 | 37.7 | 41.3 | 43.9 | 44.2 | 45.5 | | | | | | Insport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 895.5 | 930.0 | 959.3 | 998.6 | 1033.9 | 1102.3 | 1173.1 | 1226.7 | 1282.3 | 1325.5 | 1369.8 | 0.7 | 0.8 | 1.3 | | | ublic road transport | 43.0 | 44.0 | 49.9 | 52.6 | 55.6 | 58.8 | 62.3 | 65.1 | 67.9 | 70.0 | 72.1 | 1.5 | 1.1 | 1.1 | | | rivate cars and motorcycles | 699.2 | 732.7 | 741.2 | 764.9 | 782.6 | 825.4 | 867.2 | 896.9 | 926.7 | 950.6 | 974.9 | 0.6 | 0.5 | 1.0 | | | ail | 80.7 | 88.6 | 99.3 | 104.6 | 110.3 | 123.1 | 137.6 | 150.7 | 164.9 | 175.5 | 186.6 | 2.1 | 1.1 | 2.2 | | | viation | 69.1 | 61.5 | 65.9 | 73.3 | 82.1 | 91.6 | 102.4 | 110.2 | 118.9 | 125.4 | 131.9 | -0.5 | 2.2 | 2.2 | | | nland navigation | 3.5 | 3.1 | 3.0 | 3.1 | 3.2 | 3.4 | 3.6 | 3.8 | 3.9 | 4.0 | 4.2 | -1.4 | 0.7 | 1.1 | | | eight transport activity (Gtkm) | 304.6 | 292.9 | 277.1 | 307.9 | 342.2 | 380.3 | 422.6 | 437.6 | 453.3 | 465.9 | 478.6 | -0.9 | 2.1 | 2.1 | | | rucks | 204.0 | 205.3 | 182.2 | 201.9 | 223.0 | 246.1 | 271.0 | 280.9 | 291.2 | 299.8 | 308.7 | -1.1 | 2.0 | 2.0 | | | Rail | 57.7 | 40.7 | 30.0 | 37.5 | 47.0 | 57.5 | 70.2 | 73.4 | 76.8 | 79.3 | 81.7 | -6.3 | 4.6 | 4.1 | | | nland navigation | 42.9 | 46.9 | 65.0 | 68.5 | 72.2 | 76.6 | 81.4 | 83.3 | 85.4 | 86.8 | 88.3 | 4.2 | 1.1 | 1.2 | | | ergy demand in transport (ktoe) (G) | 50435 | 50234 | 49996 | 50538 | 48039 | 46970 | 46870 | 46764 | 47260 | 47781 | 48610 | -0.1 | -0.4 | -0.2 | Ī | | Public road transport | 693 | 710 | 806 | 841 | 867 | 888 | 909 | 926 | 949 | 964 | 982 | 1.5 | 0.7 | 0.5 | | | rivate cars and motorcycles | 28504 | 29780 | 30321 | 29238 | 25919 | 24102 | 23517 | 23572 | 23864 | 24166 | 24610 | 0.6 | -1.6 | -1.0 | | | | | 11666 | 10969 | 11966 | 12251 | 12556 | 13275 | 13347 | 13374 | 13415 | 13649 | -1.7 | 1.1 | 0.8 | | | rucks | 13082 | | | | | | | | | | | | | 2.7 | | | rucks
Rail | 1132 | 979 | 931 | 1062 | 1231 | 1410 | 1614 | 1648 | 1678 | 1679 | 1668 | -1.9 | 2.8 | 2.1 | | | | | | 931
6659 | 1062
7110 | 1231
7438 | 1410
7664 | 1614
7188 | 1648
6894 | 1678
7012 | 1679
7168 | 1668
7311 | -1.9
0.0 | 2.8
1.1 | -0.3 | | | Germany: Reference scenario | | | | | | | | | | ENERGY | | | | | | |---|---|---|--
---|---|---|--|---|--|---|---|--|--|---|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | '30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 135698 60629 | 137004 56488 | 132514
45125 | 117145
37417 | 99062
30754 | 89767 27058 | 77803 13658 | 76462 11582 | 71446
7454 | 74819 4520 | 76965
3679 | -0.2
-2.9 | -2.9
-3.8 | -2.4
-7.8 | -0. 7 | | Oil | 4719 | 5877 | 4846 | 3896 | 3107 | 2749 | 2485 | 1269 | 616 | 0 | 0 | 0.3 | -4.3 | -2.2 | -100.0 | | Natural gas | 15825 | 14241 | 9694 | 8597 | 8875 | 7240 | 5961 | 4480 | 2635 | 2395 | 2058 | -4.8 | -0.9 | -3.9 | -5.2 | | Nuclear | 43750 | 42061 | 36257 | 24144 | 8074 | 0 | 0 | 0 | 0 | 0 | 0 | -1.9 | -13.9 | -100.0 | 0.0 | | Renewable energy sources | 10775 | 18338 | 36593 | 43091 | 48253 | 52719 | 55699 | 59130 | 60741 | 67904 | 71228 | 13.0 | 2.8 | 1.4 | 1.2 | | Hydro | 1869 | 1684 | 1756 | 1927 | 1966 | 2075 | 2229 | 2254 | 2329 | 2402 | 2501 | -0.6 | 1.1 | 1.3 | 0.6 | | Biomass & Waste | 7864 | 13811 | 29606 | 30417 | 30939 | 30820 | 30774 | 31206 | 31788 | 33376 | 33343 | 14.2 | 0.4 | -0.1 | 0.4 | | Wind | 804 | 2341 | 3250 | 5380 | 8153 | 11385 | 14023 | 15431 | 15326 | 17173 | 18654 | 15.0 | 9.6 | 5.6 | 1.4 | | Solar and others | 115 | 353 | 1452 | 4247 | 5874 | 7070 | 7238 | 7810 | 8598 | 9226 | 9543 | 28.8 | 15.0 | 2.1 | 1.4 | | Geothermal | 123 | 148 | 529 | 1119 | 1320 | 1368 | 1435 | 2428 | 2701 | 5727 | 7187 | 15.7 | 9.6 | 0.8 | 8.4 | | Net Imports | 205785 | 213142 | 202567 | 198540 | 187615 | 178113 | 175486 | 166767 | 166894 | 163303 | 159464 | -0.2 | -0.8 | -0.7 | -0. | | Solids
Oil | 21663 | 25734 | 31842 | 28844 | 28258 | 26100
89582 | 27584 | 19087 | 16399 | 14736 | 13581 | 3.9 | -1.2
-1.5 | -0.2 | -3.5 | | - Crude oil and Feedstocks | 126994
102682 | 122840
113690 | 112090
93969 | 105465
89044 | 96558
82001 | 76725 | 84163
72850 | 80857
70929 | 77685
68839 | 76423
68190 | 74887
67154 | -1.2
-0.9 | -1.5
-1.4 | -1.4
-1.2 | -0.0
-0.4 | | - Oil products | 24312 | 9150 | 18120 | 16422 | 14557 | 12857 | 11313 | 9928 | 8846 | 8232 | 7733 | -2.9 | -2.2 | -2.5 | -1. | | Natural gas | 56865 | 65734 | 60114 | 63884 | 61876 | 60989 | 61573 | 64852 | 70676 | 69500 | 68371 | 0.6 | 0.3 | 0.0 | 0. | | Electricity | 263 | -393 | -1286 | -114 | 135 | 475 | 884 | 1079 | 1479 | 2174 | 2204 | 0.0 | 0.0 | 20.7 | 4. | | Gross Inland Consumption | 343625 | 345999 | 336101 | 312657 | 283454 | 264597 | 249915 | 239790 | 234846 | 234560 | 232805 | -0.2 | -1.7 | -1.3 | -0. | | Solids | 84802 | 81731 | 77120 | 66261 | 59012 | 53158 | 41242 | 30670 | 23854 | 19257 | 17260 | -0.9 | -2.6 | -3.5 | -4. | | Oil | 132158 | 124162 | 114204 | 106344 | 96492 | 89150 | 83410 | 78885 | 75079 | 73388 | 71875 | -1.4 | -1.7 | -1.4 | -0. | | Natural gas | 71878 | 80873 | 73406 | 72470 | 70700 | 68128 | 67399 | 69133 | 73037 | 71368 | 69817 | 0.2 | -0.4 | -0.5 | 0. | | Nuclear | 43750 | 42061 | 36257 | 24144 | 8074 | 0 | 0 | 0 | 0 | 0 | 0 | -1.9 | -13.9 | -100.0 | 0. | | Electricity | 263 | -393 | -1286 | -114 | 135 | 475 | 884 | 1079 | 1479 | 2174 | 2204 | 0.0 | 0.0 | 20.7 | 4 | | Renewable energy forms | 10775 | 17564 | 36400 | 43552 | 49041 | 53686 | 56980 | 60023 | 61397 | 68374 | 71649 | 12.9 | 3.0 | 1.5 | 1. | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 24.7 | 23.6 | 22.9 | 21.2 | 20.8 | 20.1 | 16.5 | 12.8 | 10.2 | 8.2 | 7.4 | | | | | | Oil | 38.5 | 35.9 | 34.0 | 34.0 | 34.0 | 33.7 | 33.4 | 32.9 | 32.0 | 31.3 | 30.9 | | | | | | Natural gas | 20.9 | 23.4 | 21.8 | 23.2 | 24.9 | 25.7 | 27.0 | 28.8 | 31.1 | 30.4 | 30.0 | | | | | | Nuclear | 12.7 | 12.2 | 10.8 | 7.7 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 3.1 | 5.1 | 10.8 | 13.9 | 17.3 | 20.3 | 22.8 | 25.0 | 26.1 | 29.1 | 30.8 | | | | | | Gross Electricity Generation in GWh _e | 572210 | 613328 | 620878 | 603045 | 586628 | 583111 | 590722 | 593513 | 600618 | 613420 | 631337 | 0.8 | -0.6 | 0.1 | 0. | | Self consumption and grid losses | 73946 | 70749 | 62205 | 59216 | 54095 | 51809 | 50424 | 49892 | 49590 | 50859 | 51780 | -1.7 | -1.4 | -0.7 | 0. | | Fuel Inputs to Thermal Power Generation | 84557 | 88631 | 94600 | 80615 | 77615 | 73708 | 63772 | 59465 | 58769 | 58102 | 57197 | 1.1 | -2.0 | -1.9 | -0. | | Solids | 67101 | 65728 | 59887 | 50029 | 44093 | 39458 | 28080 | 18859 | 13021 | 9296 | 7780 | -1.1 | -3.0 | -4.4 | -6. | | Oil (including refinery gas) | 1407 | 2035 | 802 | 184 | 271 | 446 | 270 | 260 | 269 | 264 | 384 | -5.5 | -10.3 | 0.0 | 1. | | Gas (including derived gases) | 12891 | 15930 | 19263 | 16716 | 19409 | 20099 | 20813 | 24677 | 29410 | 28261 | 26574 | 4.1 | 0.1 | 0.7 | 1. | | Biomass & Waste | 3158
0 | 4938
0 | 14625
24 | 13266 | 13404 | 13263
441 | 14128 | 14241 | 14421 | 15631 | 16314 | 16.6 | -0.9 | 0.5 | 0. | | Geothermal heat
Hydrogen - Methanol | 0 | 0 | 0 | 420
0 | 439
0 | 441 | 481
0 | 1429
0 | 1648
0 |
4649
0 | 6145
0 | 0.0 | 33.8 | 0.9
0.0 | 13.
0. | | Fuel Input to other conversion processes | 181613 | 190786 | 164954 | 143980 | 118556 | 103136 | 98641 | 95383 | 91617 | 90046 | 88915 | -1.0 | -3.2 | -1.8 | -0. | | Refineries | 120741 | 127817 | 105667 | 98872 | 90919 | 85197 | 81046 | 78670 | 76330 | 75468 | 74386 | -1.3 | -1.5 | -1.1 | -0. | | Biofuels and hydrogen production | 225 | 1941 | 2960 | 3503 | 3930 | 3788 | 3883 | 3990 | 4060 | 4296 | 4505 | 29.4 | 2.9 | -0.1 | 0. | | District heating | 1198 | 4323 | 4781 | 4367 | 3556 | 2956 | 2767 | 2481 | 1811 | 1895 | 1923 | 14.8 | -2.9 | -2.5 | -1. | | Derived gases, cokeries etc. | 59450 | 56704 | 51545 | 37239 | 20151 | 11196 | 10945 | 10242 | 9416 | 8386 | 8101 | -1.4 | -9.0 | -5.9 | -1. | | Energy Branch Consumption | 14565 | 14389 | 12920 | 11968 | 10572 | 9604 | 8827 | 8259 | 7726 | 7441 | 7253 | -1.2 | -2.0 | -1.8 | -1. | | Non-Energy Uses | 31195 | 31327 | 29737 | 30940 | 30990 | 30223 | 29426 | 28597 | 27917 | 27488 | 27550 | -0.5 | 0.4 | -0.5 | -0. | | Final Energy Demand | 219083 | 222407 | 217362 | | | | | | | 178575 | | | | -0.7 | -0. | | by sector | | | | 214610 | 201105 | 192650 | 187218 | 181703 | 178909 | | 176937 | | -0.8 | | | | Industry | | | 21/302 | 214610 | 201105 | 192650 | 187218 | 181703 | 178909 | | 176937 | -0.1 | -0.8 | 0.1 | Ů. | | | 57553 | 59012 | 60541 | 214610
61024 | 201105 59669 | 192650 57172 | 1 87218 55327 | 181703 52929 | 1 78909 50938 | 49832 | 176937
49151 | | -0.8
-0.1 | -0.8 | | | | 57553
39352 | 59012
40503 | | | | | | | | | | -0.1 | | | -0. | | - energy intensive industries | | | 60541 | 61024 | 59669 | 57172 | 55327 | 52929 | 50938 | 49832 | 49151 | -0.1
0.5 | -0.1 | -0.8 | -0
-0 | | - energy intensive industries
- other industrial sectors | 39352 | 40503 | 60541
41407 | 61024
41847 | 59669
40826 | 57172
38856 | 55327
37514 | 52929
35893 | 50938
34364 | 49832
33493 | 49151
32904 | -0.1
0.5
0.5 | -0.1
-0.1 | -0.8
-0.8 | -0
-0
-0 | | - energy intensive industries
- other industrial sectors
Residential
Tertiary | 39352
18200
63023
32572 | 40503
18509
67784
33238 | 60541
41407
19134
62041
32886 | 61024
41847
19177
61070
31505 | 59669
40826
18843
56837
27653 | 57172
38856
18315
55630
26276 | 55327
37514
17814
55363
25146 | 52929
35893
17036
54783
24409 | 50938
34364
16574
55404
23880 | 49832
33493
16339
56743
23746 | 49151
32904
16246
56815
22839 | -0.1
0.5
0.5
0.5
-0.2
0.1 | -0.1
-0.1
-0.2
-0.9
-1.7 | -0.8
-0.8
-0.6
-0.3
-0.9 | -0.
-0.
-0.
0. | | - energy intensive industries
- other industrial sectors
Residential
Fertiary
Transport | 39352
18200
63023 | 40503
18509
67784 | 60541
41407
19134
62041 | 61024
41847
19177
61070 | 59669
40826
18843
56837 | 57172
38856
18315
55630 | 55327
37514
17814
55363 | 52929
35893
17036
54783 | 50938
34364
16574
55404 | 49832
33493
16339
56743 | 49151
32904
16246
56815 | -0.1
0.5
0.5
0.5
-0.2 | -0.1
-0.1
-0.2
-0.9 | -0.8
-0.8
-0.6
-0.3 | -0.
-0.
-0.
0. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 39352
18200
63023
32572
65936 | 40503
18509
67784
33238
62373 | 60541
41407
19134
62041
32886
61894 | 61024
41847
19177
61070
31505
61011 | 59669
40826
18843
56837
27653
56946 | 57172
38856
18315
55630
26276
53573 | 55327
37514
17814
55363
25146
51383 | 52929
35893
17036
54783
24409
49581 | 50938
34364
16574
55404
23880
48687 | 49832
33493
16339
56743
23746
48254 | 49151
32904
16246
56815
22839
48133 | -0.1
0.5
0.5
0.5
-0.2
0.1
-0.6 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0 | -0.
-0.
-0.
0.
-0. | | - energy intensive industries - other industrial sectors Residential Teritary Transport by fuel Solids | 39352
18200
63023
32572
65936 | 40503
18509
67784
33238
62373 | 60541
41407
19134
62041
32886
61894 | 61024
41847
19177
61070
31505
61011 | 59669
40826
18843
56837
27653
56946 | 57172
38856
18315
55630
26276
53573 | 55327
37514
17814
55363
25146
51383 | 52929
35893
17036
54783
24409
49581 | 50938
34364
16574
55404
23880
48687 | 49832
33493
16339
56743
23746
48254 | 49151
32904
16246
56815
22839
48133 | -0.1
0.5
0.5
0.5
-0.2
0.1
-0.6 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0 | -0
-0
-0
0
-0
-0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 39352
18200
63023
32572
65936
10958
98722 | 40503
18509
67784
33238
62373
9857
88873 | 60541
41407
19134
62041
32886
61894
9620
82458 | 61024
41847
19177
61070
31505
61011
9288
76438 | 59669
40826
18843
56837
27653
56946
8948
67246 | 57172
38856
18315
55630
26276
53573
8366
61483 | 55327
37514
17814
55363
25146
51383
8136
56856 | 52929
35893
17036
54783
24409
49581
7215
53454 | 50938
34364
16574
55404
23880
48687 | 49832
33493
16339
56743
23746
48254
6367
49650 | 49151
32904
16246
56815
22839
48133
6003
48466 | -0.1
0.5
0.5
0.5
-0.2
0.1
-0.6 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0 | -0.
-0.
0.
-0.
-0. | | - energy intensive industries - other industrial sectors Residential Fertiary Transport by fuel Solids Oil Gas | 39352
18200
63023
32572
65936
10958
98722
56064 | 40503
18509
67784
33238
62373
9857
88873
59919 | 60541
41407
19134
62041
32886
61894
9620
82458
54053 | 61024
41847
19177
61070
31505
61011
9288
76438
54133 | 59669
40826
18843
56837
27653
56946
8948
67246
50217 | 57172
38856
18315
55630
26276
53573
8366
61483
46678 | 55327
37514
17814
55363
25146
51383
8136
56856
45274 | 52929
35893
17036
54783
24409
49581
7215
53454
43054 | 50938
34364
16574
55404
23880
48687
6697
50743
41749 | 49832
33493
16339
56743
23746
48254
6367
49650
40672 | 49151
32904
16246
56815
22839
48133
6003
48466
40298 | -0.1
0.5
0.5
0.5
-0.2
0.1
-0.6
-1.3
-1.8
-0.4 | -0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0 | -0.
-0.
-0.
-0.
-0.
-1.
-0. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 39352
18200
63023
32572
65936
10958
98722
56064
41569 | 40503
18509
67784
33238
62373
9857
88873
59919
44794 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0
-0.9
-1.7
-1.0
0.4 | -0.
-0.
0.
-0.
-0.
-1.
-0. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 |
-0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0
-0.9
-1.7
-1.0
0.4
-0.3 | -0.
-0.
-0.
-0.
-0.
-1.
-0.
-0. | | energy intensive industries other industrial sectors Residential Fertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186
20188 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0
-0.9
-1.7
-1.0
0.4
-0.3 | -0
-0
0
-0
-0
-1
-0
-0
0 | | - energy intensive industries - other industrial sectors Residential Fertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0 | 9857
88873
59919
44794
10735
8228
0 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195
90 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315
273 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186
20188
430 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 | -0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0
-0.9
-1.7
-1.0
0.4
-0.3
0.5
13.3 | -0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0 | | energy intensive industries other industrial sectors Residential Fertiary Fransport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0 | 61024
41847
19177
610770
31505
61011
9288
76438
54133
45527
12069
17138
17 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195
90 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315
273
51710 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186
20188
430 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712 | -0.1 0.5 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 | -0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2
171.1 | -0.8
-0.8
-0.6
-0.3
-0.9
-1.0
-0.9
-1.7
-1.0
0.4
-0.3
0.5
13.3 | -0.0
-0.0
-0.0
-0.0
-1.1
-0.0
-0.0
-0.0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48
40002 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195
90
44830
750.1 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315
273
51710 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186
20188
430
53132 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712
60242 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2
171.1
-1.7 | -0.8 -0.8 -0.8 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 | -0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
- | | - energy intensive industries - other industrial sectors Residential Fertiary Fransport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) FOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
173
35026
878.3
459.6 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48
40002
806.7 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
1915
90
44830
750.1
399.6 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315
273
51710
593.0
283.9 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 259.5 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
573.1
221.9 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712
60242
482.1
199.8 | -0.1 0.5 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2
171.1
5.1 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 | -0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
- | | energy intensive industries other industrial sectors Residential Fertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors GHG emissions of which non ETS sectors GHG emissions | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
13949
13948
486.5 |
60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48
40002
806.7
427.8
378.9 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195
90
44830
750.1
399.6
350.6 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 | 50938
34364
16574
55404
23880
48687
6697
50743
41749
47917
11186
20188
430
53132
557.3
259.5
297.8 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712
60242
482.1
199.8
282.3 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2
171.1
-1.7
-1.7 | -0.8 -0.8 -0.8 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 -1.5 | -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -1 -1 -2 -0 | | - energy intensive industries - other industrial sectors Residential Fertiary Fransport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) FOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
7706.0 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 48 40002 806.7 427.8 378.99 640.5 | 57172
38856
18315
55630
26276
53573
8366
61483
46678
45246
11592
19195
90
44830
750.1
399.6
589.3 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
1883
48166
669.4
342.4
327.0
521.7 | 52929
35893
17036
54783
24409
49581
7215
53454
43054
46973
11419
19315
273
51710
593.0
283.9
309.1
455.9 | 50938
34364
16574
55404
23880
48687
50743
41749
47917
11186
20188
430
53132
557.3
259.5
297.8
423.8 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2
394.5 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712
60242
482.1
199.3
378.1 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.1 10.7 -1.0 | -0.1 -0.1 -0.2 -0.9 -1.7 -0.8 -0.7 -2.0 -0.7 -0.1 0.4 2.2 171.1 -1.7 -1.7 -1.7 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 -1.5 -2.0 | -00
-00
-00
-00
-11
-00
-00
-00
-00
-11
-22
-00
-11 | | - energy intensive industries - other industrial sectors Residential Fertiary Transport - by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) FOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions of which solid energy related) Power generation/District heating | 39352
18200
63023
32572
65936
10958
98722
56064
41569
0
8321
4939
0
8828
1059.7 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
342.5 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
14303
14445
024372
958.9
507.9
451.0
780.8
322.4 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0
263.2 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48
40002
806.7
427.8
378.9
640.5
243.7 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 41592 19195 90 44830 750.1 399.6 350.6 589.3 224.9 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
176.9 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 259.5 297.8 423.8 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2
394.5
103.6 | 49151
32904
16246
56815
22839
48133
6003
48466
40298
50870
10802
19787
712
60242
482.1
199.8
282.3
378.1
93.8 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 -0.9 5.2 11.3 -7.5 10.7 -1.0 | -0.1
-0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-2.0
-0.7
-0.1
0.4
2.2
171.1
5.1
-1.7
-1.7
-1.7
-2.0
-2.8 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 -1.8 -2.2 -1.5 -2.0 -3.2 | -00
-00
-00
-00
-11
-00
-00
-00
-00
-00 | | - energy intensive industries - other industrial sectors Residential Fertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.5
543.8
486.5
3342.5
27.9 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8 |
61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
47138
4 | 59669
40826
18843
56837
27653
56946
8948
67246
50217
44933
11714
17998
48
40002
806.7
427.8
378.9
640.5
243.7
19.9 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 45246 11592 19195 90.1 399.6 350.6 589.3 224.9 18.4 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
176.9 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 259.5 297.8 423.8 124.0 14.9 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
221.9
291.2
394.5
103.6
13.9 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4 | -0.1 0.5 0.5 0.5 0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 | -0.1 -0.2 -0.9 -1.7 -0.8 -0.7 -2.0 -0.7 -0.1 0.4 2.2 171.1 -1.7 -1.7 -1.7 -2.8 -2.2 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 -0.4 -0.3 -0.5 13.3 -1.9 -1.8 -2.2 -1.5 -2.0 -3.2 -1.2 | -00
-00
-00
-00
-00
-00
-00
-00
-00
-00 | | - energy intensive industries - other industrial sectors Residential Fertiary Fransport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) FOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
342.5
27.9
115.2 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8
322.4
24.8
112.3 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 48 40002 806.7 427.8 378.9 640.5 243.7 19.9 105.6 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 45246 11592 19195 90 44830 750.1 399.6 589.3 224.9 18.4 96.5 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
176.9
17.6
94.4 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 2595.8 423.8 124.0 14.9 72.6 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2
394.5
103.6
13.9
68.7 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4 67.2 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 -0.8 -0.3 -1.5 | -0.1 -0.2 -0.9 -1.7 -0.8 -0.7 -2.0 -0.7 -0.1 0.4 2.2 171.1 -1.7 -1.7 -2.0 -2.8 -2.2 -0.6 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 -1.8 -2.2 -1.5 -2.0 -3.2 -1.2 -1.1 | -0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0
-0.0 | | - energy intensive industries - other industrial sectors Residential Fertiary Fransport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) FOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 39352
18200
63023
32572
65936
10958
98722
56064
41569
0
8828
1059.7
848.5
330.6
28.1
130.1
119.0 | 9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
342.5
27.9
115.2
123.2 | 60541
41407
19134
62041
32886
61894
9620
82485
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8
322.4
24.8
112.3
102.1 | 61024
41847
19177
61070
31505
61011
9288
76433
45527
12069
17138
459.6
418.7
706.0
263.2
22.4
116.3
92.8 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 40002 806.7 427.8 378.9 640.5 243.7 19.9 105.6 82.1 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 45246 11592 19195 90 44830 750.1 399.6 350.6 589.3 224.9 18.4 96.5 76.1 | 55327
37514
17814
55363
25146
51383
8136
56885
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
717.6
94.4
72.6 | 52929 35893 17036 54783 24409 49581 7215 53464 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 68.9 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 259.5 297.8 124.0 14.9 72.6 66.4 | 49832
33493
16339
56743
23746
48254
6367
49650
11093
20714
581
57602
513.1
221.9
291.2
394.5
103.6
13.9
68.7
66.2 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 462.1 199.8 282.3 378.1 93.8 13.4 67.2 65.0 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.7 -1.0 -0.8 -0.3 -1.5 -1.5 | -0.1 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 1.9 -1.8 -2.2 -1.5 -2.0 -3.2 -1.1 -1.2 | -0.0
-0.0
-0.0
-0.0
-1.1
-0.0
-0.0
-0.1
-1.1
-2.0
-1.1
-3.1
-1.1 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8888
1059.7
848.5
330.6
28.1
130.1
119.0
53.2 |
40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
27.9
115.2
123.2
52.5 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
14445
0
24372
958.9
507.9
451.0
780.8
322.4
24.8
112.3
102.1
46.2 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0
263.2
22.4
116.3
92.8
92.8 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 48 40002 806.7 427.8 378.9 640.5 243.7 19.9 105.6 82.1 34.8 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 41592 19195 90 44830 750.1 399.6 350.6 589.3 224.9 18.4 96.5 76.1 29.5 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
17.6
94.4
72.6
23.7 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 68.9 20.8 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 259.5 297.8 423.8 124.0 14.9 72.6 66.4 18.7 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
57602
513.1
221.9
291.2
394.5
103.6
13.9
68.7
66.2
17.1 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4 67.2 65.0 14.6 | -0.1 0.5 0.5 0.5 0.2 0.1 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 -0.8 -0.3 -1.3 -1.5 -1.5 | -0.1 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 -0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 -1.5 -2.0 -3.2 -1.2 -3.8 | -0000000000. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7
848.5
330.6
28.1
130.1
119.0
53.2
187.4 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
342.5
27.9
115.2
213.2
52.5
52.5
5177.2 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8
322.4
24.8
112.3
102.1
46.2
172.9 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0
263.2
22.4
116.3
92.8
42.7
168.7 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 48 40002 806.7 427.8 948.9 640.5 243.7 19.9 105.6 82.1 34.8 154.4 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 45246 11552 19195 90 44830 750.1 390.6 589.3 224.9 18.4 96.5 76.1 29.5 144.1 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
176.9
17.6
94.4
72.6
23.7
136.6 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 68.9 20.8 130.4 | 50938 34364 16574 55404 23880 48687 50743 41749 47917 11186 20188 430 53132 557.3 259.5 423.8 124.0 14.9 72.6 66.4 18.7 127.2 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2
394.5
103.6
68.7
66.2
17.1
125.1 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4 67.2 65.0 14.6 124.1 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 -0.8 -0.3 -1.3 -1.5 -1.4 -0.8 | -0.1 -0.2 -0.9 -1.7 -0.8 -0.7 -0.1 -0.1 -0.1 -0.1 -0.7 -0.1 -0.7 -0.1 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -2.0 -2.8 -1.1 -1.7 -2.2 -0.6 -1.1 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 -1.5 -2.0 -3.2 -1.1 -1.2 -3.8 -1.2 | -0000000000. | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7
848.5
330.6
28.1
130.1
119.0
53.2
187.4
63.8 | 9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
342.5
27.9
115.2
123.2
52.5
177.2
61.7 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8
322.4
243.2
112.3
102.1
46.2
172.9
56.7 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0
263.2
22.4
4116.3
92.8
42.7
168.7
60.6 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 40002 806.7 427.8 378.9 640.5 243.7 19.9 640.5 82.1 34.8 154.4 60.7 | 57172 38856 18315 55630 26276 53573 8366 61483 45246 11592 19195 90 44830 750.1 399.6 589.3 224.9 18.4 96.5 76.1 29.5 144.1 59.5 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
1883
48166
669.4
342.4
327.0
521.7
176.9
17.6
94.4
72.6
23.7
136.6
552.7 | 52929 35893 17036 54763 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 68.9 20.8 130.4 43.9 | 50938 34364 16574 55404 23880 48687 6697 50743 41749 47917 11186 20188 430 53132 557.3 259.5 297.8 423.8 124.0 14.9 72.6 66.4 18.7 127.2 41.7 | 49832
33493
16339
56743
23746
48254
6367
49650
11093
20714
581
57602
513.1
221.9
291.2
291.2
394.5
103.6
13.9
68.7
66.2
17.1
125.1
125.1 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4 67.2 65.0 14.6 124.1 13.6 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 -0.8 -0.3 -1.5 -1.5 -1.4 -0.4 -0.9 | -0.1
-0.2
-0.9
-1.7
-0.8
-0.7
-0.1
-0.7
-0.1
0.4
2.2
177.1
-1.7
-2.0
-2.8
-2.2
-2.2
-2.2
-1.1
-1.7 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 1.3 -1.8 -2.2 -1.5 -2.0 -3.2 -1.1 -1.2 -3.8 -1.2 -1.4 | -0.0
-0.0
-0.9
-0.0
-0.0
-0.0
-0.0
-0.0 | | - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 39352
18200
63023
32572
65936
10958
98722
56064
41569
6831
4939
0
8828
1059.7
848.5
330.6
28.1
130.1
119.0
53.2
187.4 | 40503
18509
67784
33238
62373
9857
88873
59919
44794
10735
8228
0
13949
1030.3
543.8
486.5
838.5
342.5
27.9
115.2
213.2
52.5
52.5
5177.2 | 60541
41407
19134
62041
32886
61894
9620
82458
54053
45482
11303
14445
0
24372
958.9
507.9
451.0
780.8
322.4
24.8
112.3
102.1
46.2
172.9 | 61024
41847
19177
61070
31505
61011
9288
76438
54133
45527
12069
17138
17
35026
878.3
459.6
418.7
706.0
263.2
22.4
116.3
92.8
42.7
168.7 | 59669 40826 18843 56837 27653 56946 8948 67246 50217 44933 11714 17998 48 40002 806.7 427.8 948.9 640.5 243.7 19.9 105.6 82.1 34.8 154.4 | 57172 38856 18315 55630 26276 53573 8366 61483 46678 45246 11552 19195 90 44830 750.1 390.6 589.3 224.9 18.4 96.5 76.1 29.5 144.1 | 55327
37514
17814
55363
25146
51383
8136
56856
45274
46560
11394
18830
168
48166
669.4
342.4
327.0
521.7
176.9
17.6
94.4
72.6
23.7
136.6 | 52929 35893 17036 54783 24409 49581 7215 53454 43054 46973 11419 19315 273 51710 593.0 283.9 309.1 455.9 138.1 16.1 81.5 68.9 20.8 130.4 | 50938 34364 16574 55404 23880 48687 50743 41749 47917 11186 20188 430 53132 557.3 259.5 423.8 124.0 14.9 72.6 66.4 18.7 127.2 | 49832
33493
16339
56743
23746
48254
6367
49650
40672
49498
11093
20714
581
57602
513.1
221.9
291.2
394.5
103.6
68.7
66.2
17.1
125.1 | 49151 32904 16246 56815 22839 48133 6003 48466 40298 50870 10802 19787 712 60242 482.1 199.8 282.3 378.1 93.8 13.4
67.2 65.0 14.6 124.1 | -0.1 0.5 0.5 0.5 -0.2 0.1 -0.6 -1.3 -1.8 -0.4 0.9 5.2 11.3 -7.5 10.7 -1.0 -0.8 -0.3 -1.3 -1.5 -1.4 -0.8 | -0.1 -0.2 -0.9 -1.7 -0.8 -0.7 -0.1 -0.1 -0.1 -0.1 -0.7 -0.1 -0.7 -0.1 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -2.0 -2.8 -1.1 -1.7 -2.2 -0.6 -1.1 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 | -0.8 -0.8 -0.6 -0.3 -0.9 -1.0 -0.9 -1.7 -1.0 0.4 -0.3 0.5 13.3 1.9 -1.8 -2.2 -1.5 -2.0 -3.2 -1.1 -1.2 -3.8 -1.2 | -0.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | | UMMARY ENERGY BALANCE AND INDICAT | | | | | | | | | | | | nany: R | | | | |---|--------------|---------------|---------------|---------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|--------------|-----------------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | in Factor States Indicators | | | | | | | | | | | | Ar | nual % | Change | <u>;</u> | | ain Energy System Indicators equilation (Million) | 82.163 | 82.501 | 81.802 | 80.954 | 80.098 | 79.078 | 77.872 | 76.478 | 74.815 | 72.914 | 70.807 | 0.0 | -0.2 | -0.3 | | | DP (in 000 M€10) | 2257.7 | 2325.9 | 2476.8 | 2673.6 | 2801.8 | 2915.1 | 2997.7 | 3074.3 | 3185.2 | 3326.6 | 3465.8 | 0.9 | 1.2 | 0.7 | | | oss Inl. Cons./GDP (toe/M€10) | 152.2 | 148.8 | 135.7 | 116.9 | 101.2 | 90.8 | 83.4 | 78.0 | 73.7 | 70.5 | 67.2 | -1.1 | -2.9 | -1.9 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.47 | 2.42 | 2.32 | 2.26 | 2.26 | 2.23 | 2.09 | 1.90 | 1.80 | 1.68 | 1.62 | -0.6 | -0.3 | -0.8 | | | port Dependency % | 59.5 | 61.2 | 59.8 | 62.9 | 65.4 | 66.5 | 69.3 | 68.6 | 70.0 | 68.6 | 67.4 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 226.4 | 298.6 | 313.9 | 373.2 | 408.3 | 411.7 | 418.4 | 419.0 | 424.5 | 437.2 | 447.2 | 3.3 | 2.7 | 0.2 | | | as % of GDP | 10.0 | 12.8 | 12.7 | 14.0 | 14.6 | 14.1 | 14.0 | 13.6 | 13.3 | 13.1 | 12.9 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | .00000 | | dustry (Energy on Value added, index 2000=100) | 100.0 | 95.7 | 101.8 | 94.7 | 89.3 | 83.6 | 79.6 | 75.5 | 71.4 | 68.6 | 66.2 | 0.2 | -1.3 | -1.1 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 105.9 | 94.6 | 88.5 | 79.4 | 75.1 | 72.7 | 70.0 | 67.9 | 65.8 | 62.2 | -0.5 | -1.7 | -0.9 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 96.9 | 86.6 | 76.7 | 64.0 | 58.1 | 53.8 | 50.7 | 47.6 | 45.0 | 41.3 | -1.4 | -3.0 | -1.7 | | | ssenger transport (toe/Mpkm) | 43.2 | 41.2 | 40.0 | 37.9 | 33.8 | 30.7 | 28.4 | 26.7 | 25.8 | 25.4 | 25.1 | -0.8 | -1.7 | -1.7 | | | eight transport (toe/Mtkm) | 46.3 | 36.5 | 34.9 | 33.5 | 31.1 | 28.8 | 27.3 | 26.4 | 25.4 | 24.7 | 24.3 | -2.8 | -1.2 | -1.3 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.50 | 0.46 | 0.42 | 0.35 | 0.33 | 0.31 | 0.24 | 0.19 | 0.17 | 0.14 | 0.12 | -1.7 | -2.4 | -3.1 | | | al energy demand (t of CO ₂ /toe) | 2.24 | 2.10 | 1.99 | 1.96 | 1.87 | 1.80 | 1.75 | 1.66 | 1.59 | 1.55 | 1.53 | -1.1 | -0.6 | -0.7 | | | ndustry
desidential | 2.26
1.89 | 1.95
1.82 | 1.86
1.65 | 1.91
1.52 | 1.77
1.44 | 1.69
1.37 | 1.71
1.31 | 1.54
1.26 | 1.42
1.20 | 1.38
1.17 | 1.37
1.14 | -2.0
-1.4 | -0.5
-1.3 | -0.4
-1.0 | | | | 1.63 | 1.58 | 1.65 | 1.36 | 1.44 | 1.12 | 0.94 | 0.85 | 0.78 | 0.72 | 0.64 | -1.4 | -1.3 | -2.9 | | | ertiary
ransport ^(L) | 2.84 | 2.84 | 2.79 | 2.76 | 2.71 | 2.69 | 2.66 | 2.63 | 2.61 | 2.59 | 2.58 | -0.2 | -0.3 | -0.2 | | | | 2.04 | 2.04 | 2.13 | 2.70 | 2.71 | 2.03 | 2.00 | 2.03 | 2.01 | 2.00 | 2.30 | -0.2 | -0.5 | -0.2 | - | | licators for renewables
are of RES in Gross Final Energy Consumption (D) (%) | 3.9 | 6.0 | 10.8 | 15.8 | 19.3 | 22.6 | 25.0 | 27.6 | 28.8 | 31.2 | 33.0 | | | | | | S in transport (%) | 0.7 | 3.3 | 6.1 | 7.8 | 10.4 | 11.8 | 13.3 | 14.3 | 20.0
14.7 | 15.7 | 16.5 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 572313 | 613438 | 620989 | 603045 | 586628 | 583111 | 590722 | 593513 | 600618 | 613420 | 631337 | 0.8 | -0.6 | 0.1 | | | uclear energy | 169606 | 163055 | 140556 | 93583 | 31294 | 583111 | 590722 | 593513 | 0 | 613420 | 631337 | -1.9 | - 0.6
-13.9 | -100.0 | | | olids | 296687 | 297517 | 262573 | 228036 | 202629 | 179599 | 135186 | 84108 | 47995 | 34618 | 31031 | -1.2 | -2.6 | -4.0 | | | il (including refinery gas) | 4785 | 10583 | 8361 | 1145 | 1643 | 2706 | 1616 | 1599 | 1684 | 1721 | 2462 | 5.7 | -15.0 | -0.2 | | | as (including derived gases) | 59970 | 77602 | 96744 | 104747 | 124457 | 131121 | 144061 | 175436 | 207233 | 200457 | 191051 | 4.9 | 2.6 | 1.5 | | | iomass-waste | 10121 | 16589 | 42825 | 54454 | 57456 | 57861 | 64423 | 66123 | 67845 | 70416 | 74454 | 15.5 | 3.0 | 1.2 | | | ydro (pumping excluded) | 21732 | 19581 | 20427 | 22411 | 22860 | 24132 | 25917 | 26213 | 27082 | 27931 | 29086 | -0.6 | 1.1 | 1.3 | | | /ind | 9352 | 27229 | 37793 | 62564 | 94798 | 132385 | 163062 | 179435 | 178204 | 199690 | 216911 | 15.0 | 9.6 | 5.6 | | | olar | 60 | 1282 | 11681 | 35617 | 50981 | 54794 | 55897 | 58937 | 68660 | 73182 | 79197 | 69.4 | 15.9 | 0.9 | | | eothermal and other renewables | 0 | 0 | 29 | 488 | 510 | 513 | 560 | 1661 | 1916 | 5406 | 7145 | 119.0 | 33.0 | 0.9 | | | other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 112920 | 123274 | 149666 | 169056 | 192877 | 199865 | 210791 | 220607 | 230711 | 241298 | 258109 | 2.9 | 2.6 | 0.9 | | | luclear energy | 21339 | 20718 | 20379 | 12015 | 6808 | 0 | 0 | 0 | 0 | 0 | 170050 | -0.5 | -10.4 | -100.0 | | | enewable energy | 10495 | 24081
4158 | 48769
4258 | 75907
4949 | 103239
5195 | 118432 | 129281
5748 | 137979
6085 | 146943
6417 | 158277
6877 | 170859
7193 | 16.6
0.0 | 7.8
2.0 | 2.3
1.0 | | | Hydro (pumping excluded)
Wind | 4268
6113 | 18415 | 27191 | 35600 | 48956 | 5503
60343 | 69949 | 75556 | 75584 | 83149 | 89394 | 16.1 | 6.1 | 3.6 | | | Solar | 114 | 1508 | 17320 | 35357 | 49089 | 52585 | 53584 | 56338 | 64943 | 68251 | 74272 | 65.3 | 11.0 | 0.9 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 81086 | 78475 | 80518 | 81135 | 82830 | 81433 | 81510 | 82628 | 83768 | 83021 | 87250 | -0.1 | 0.3 | -0.2 | | | of which cogeneration units | 14369 | 16511 | 18551 | 21674 | 25283 | 25152 | 25119 | 25879 | 25862 | 25154 | 26429 | 2.6 | 3.1 | -0.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1111 | 1285 | 1291 | 1291 | 0.0 | 0.0 | 0.0 | | | Solids fired | 51950 | 50207 | 48405 | 47038 | 45041 | 40616 | 33929 | 29993 | 25776 | 21046 | 19419 | -0.7 | -0.7 | -2.8 | | | Gas fired | 20352 | 19208 | 23623 | 26473 | 29422 | 31846 | 38591 | 43169 | 46745 | 49773 | 52145 | 1.5 | 2.2 | 2.7 | | | Oil fired | 6909 | 6623 | 5164 | 3796 | 3470 | 3044 | 2180 | 1851 | 1826 | 1663 | 2224 | -2.9 | -3.9 | -4.5 | | | Biomass-waste fired | 1875 | 2436 | 3318 | 3772 | 4839 | 5869 | 6747 | 7425 | 9202 | 9922 | 12646 | 5.9 | 3.8 | 3.4 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 1 | 8 | 56 | 58 | 59 | 64 | 190 | 219 | 617 | 816 | 0.0 | 22.0 | 0.9 | | | g. Load factor of net power capacity (F) (%) | 54.0 | 53.2 | 44.8 | 38.5 | 33.1 | 31.9 | 30.9 | 29.8 | 28.9 | 28.3 | 27.3 | | | | _ | | ctricity indicators | 07.0 | 00.0 | 07.0 | | 40.0 | 40.4 | 10.0 | 47.0 | 47.0 | 40.0 | 10.0 | | | | | | ciency of gross thermal power generation (%) | 37.8 | 39.0 | 37.3 | 41.5 | 42.8
24.8 | 43.4 | 46.6 | 47.6
26.1 | 47.8 | 46.3 | 46.0 | | | | | | of gross electricity from CHP of electricity from CCS | 10.6
0.0 | 12.6
0.0 | 13.2
0.0 | 21.9
0.0 | 0.0 | 25.6
0.0 | 25.2
0.0 | 26.1
1.6 | 24.0
1.8 | 23.8
1.7 | 23.4
1.7 | | | | | | bon free gross electricity generation (%) | 36.8 | 37.1 | 40.8 | 44.6 | 44.0 | 46.2 | 52.5 | 56.0 | 1.8
57.2 | 61.4 | 64.4 | | | | | | uclear | 29.6 | 26.6 | 22.6 | 15.5 | 5.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 7.2 | 10.5 | 18.2 | 29.1 | 38.6 | 46.2 | 52.5 | 56.0 | 57.2 | 61.4 | 64.4 | | | | | | insport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 1065.5 | 1096.9 | 1126.3 | 1162.6 | 1199.2 | 1226.9 | 1251.4 | 1269.4 | 1288.6 | 1302.0 | 1314.7 | 0.6 | 0.6 | 0.4 | | | ublic road transport | 69.0 | 67.1 | 61.8 | 64.1 | 66.5 | 67.7 | 69.2 | 70.9 | 72.6 | 73.2 | 73.9 | -1.1 | 0.7 | 0.4 | | | rivate cars and motorcycles | 849.6 | 875.7 | 904.7 | 920.2 | 933.8 | 940.8 | 942.3 | 944.5 | 946.6 | 948.1 | 949.4 | 0.6 | 0.3 | 0.1 | | | ail | 90.0 | 90.4 | 99.4 | 109.7 | 121.0 | 130.7 | 141.4 | 149.4 | 158.1 | 165.2 | 172.0 | 1.0 | 2.0 | 1.6 | | | viation | 54.7 | 61.7 | 58.5 | 66.5 | 76.0 | 85.6 | 96.5 | 102.5 | 109.1 | 113.2 | 117.2 | 0.7 | 2.6 | 2.4 | | | aland navigation | 2.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | 2.2 | 2.2 | -1.4 | 0.5 | 0.2 | | | ight transport activity (Gtkm) | 431.2 | 470.5 | 483.4 | 505.7 | 529.1 | 554.1 | 580.1 | 593.4 | 607.2 | 615.7 | 623.8 | 1.2 | 0.9 | 0.9 | | | rucks | 280.7 | 310.1 | 313.1 | 322.8 | 332.5 | 344.1 | 355.8 | 361.8 | 367.8 | 372.4 | 377.2 | 1.1 | 0.6 | 0.7 | | | ail | 82.7 | 95.4 | 107.3 | 117.0 | 127.6 | 137.7 | 148.7 | 154.2 | 160.1 | 162.8 | 165.0 | 2.6 | 1.7 | 1.5 | | | nland navigation | 67.8 | 64.9 | 63.0 | 65.9 | 69.0 | 72.3 | 75.7 | 77.5 | 79.3 | 80.4 | 81.6 | -0.7 | 0.9 | 0.9 | | | ergy demand in transport (ktoe) (G) | 65928 | 62373 | 61896 | 61010 | 56945 | 53572 | 51382 | 49580 | 48686 | 48253 | 48132 | -0.6 | -0.8 | -1.0 | | | ublic road transport | 1040 | 992 | 893 | 919 | 931 | 911 | 894 | 892 | 895 | 887 | 881 | -1.5 | 0.4 | -0.4 | | | rivate cars and motorcycles | 37017 | 35410 | 34934 | 33025 | 28663 | 25416 | 23608 |
22764 | 22311 | 22016 | 21800 | -0.6 | -2.0 | -1.9 | | | rucks | 18303 | 15555 | 15272 | 15229 | 14611 | 14034 | 13872 | 13649 | 13440 | 13338 | 13339 | -1.8 | -0.4 | -0.5 | | | Rail | 1943 | 1830 | 1818 | 1947 | 2056 | 2162 | 2247 | 2266 | 2252 | 2181 | 2100 | -0.7 | 1.2 | 0.9 | | | | | | 0740 | 0040 | 10402 | 10757 | 10461 | 9707 | 9485 | 9528 | 9710 | 1.7 | 1.8 | 0.1 | | | viation | 7345 | 8265 | 8719 | 9619 | 10402 | 10/3/ | 10461 | 3101 | 3403 | 3020 | 00 | | | | | | Greece: Reference scenario | | | | | | | | SUM | IMARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|--|---|---|---|--|---|--|--|---|---|--|--|---|---|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 10011
8222 | 10323
8538 | 9473
7315 | 9493 6759 | 8937 5646 | 7147
3526 | 5612
1454 | 6574
434 | 7702
285 | 7869
233 | 8165
98 | -0.6
-1.2 | -0.6
-2.6 | -4.5 | 1.9 -12.6 | | Oil | 281 | 101 | 133 | 95 | 62 | 3526 | 0 | 434 | 265 | 233 | 96 | -1.2
-7.2 | -2.6
-7.4 | -12.7
-100.0 | 0.0 | | Natural gas | 42 | 18 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -16.4 | -100.0 | 0.0 | 0.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 1466 | 1666 | 2017 | 2638 | 3229 | 3621 | 4158 | 6140 | 7417 | 7636 | 8067 | 3.2 | 4.8 | 2.6 | 3.4 | | Hydro | 318 | 431 | 641 | 501 | 598 | 697 | 775 | 826 | 853 | 861 | 865 | 7.3 | -0.7 | 2.6 | 0.6 | | Biomass & Waste
Wind | 1009
39 | 1015
109 | 919
233 | 982
451 | 1094
755 | 1224
831 | 1186
838 | 1337
1296 | 1408
1689 | 1475
1717 | 1504
1795 | -0.9
19.7 | 1.8
12.5 | 0.8
1.0 | 1.2
3.9 | | Solar and others | 99 | 101 | 197 | 659 | 728 | 807 | 884 | 1183 | 1376 | 1384 | 1465 | 7.1 | 14.0 | 2.0 | 2.6 | | Geothermal | 2 | 10 | 27 | 45 | 55 | 63 | 475 | 1498 | 2092 | 2199 | 2437 | 32.7 | 7.4 | 24.0 | 8.5 | | Net Imports | 22119 | 23473 | 21805 | 21037 | 20760 | 20942 | 21528 | 21020 | 20148 | 20148 | 20224 | -0.1 | -0.5 | 0.4 | -0.3 | | Solids | 769 | 364 | 401 | 268 | 268 | 240 | 216 | 203 | 192 | 182 | 177 | -6.3 | -4.0 | -2.1 | -1.0 | | Oil | 19663 | 20451 | 17511 | 17308 | 16303 | 15311 | 14712 | 14358 | 14145 | 13893 | 13764 | -1.2 | -0.7 | -1.0 | -0.3 | | - Crude oil and Feedstocks | 20561
-898 | 19474
977 | 20726
-3215 | 21334
-4026 | 20289
-3986 | 19309 | 18667
-3955 | 18238
-3879 | 17932
-3787 | 17605
-3712 | 16659
-2895 | 0.1 | -0.2
2.2 | -0.8
-0.1 | -0.6
-1.5 | | - Oil products
Natural gas | 1689 | 2332 | 3231 | 2617 | 3084 | -3998
4091 | 5233 | -3679
4964 | 4299 | -3712
4641 | 4940 | 13.6
6.7 | -0.5 | -0.1
5.4 | -0.3 | | Electricity | -1 | 325 | 491 | 452 | 361 | 469 | 546 | 541 | 509 | 448 | 395 | 0.0 | -3.0 | 4.2 | -1.6 | | Gross Inland Consumption | 28265 | 31387 | 28841 | 27660 | 26707 | 25025 | 24078 | 24467 | 24650 | 24778 | 25104 | 0.2 | -0.8 | -1.0 | 0.2 | | Solids | 9038 | 8944 | 7863 | 7027 | 5914 | 3766 | 1670 | 637 | 477 | 414 | 274 | -1.4 | -2.8 | -11.9 | -8.6 | | Oil | 16058 | 18098 | 15064 | 14544 | 13416 | 12336 | 11759 | 11389 | 11128 | 10867 | 10730 | -0.6 | -1.2 | -1.3 | -0.5 | | Natural gas | 1705 | 2354 | 3234 | 2606 | 3041 | 4002 | 5123 | 4806 | 4115 | 4429 | 4689 | 6.6 | -0.6 | 5.4 | -0.4 | | Nuclear
Electricity | 0 | 325 | 0
491 | 0
452 | 0
361 | 0
460 | 0
546 | 0
5/1 | 509 | 0 | 305 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy forms | -1
1466 | 325
1666 | 491
2190 | 452
3031 | 361
3974 | 469
4453 | 546
4979 | 541
7093 | 509
8421 | 448
8620 | 395
9016 | 0.0
4.1 | -3.0
6.1 | 4.2
2.3 | -1.6
3.0 | | as % in Gross Inland Consumption | 1400 | 1000 | 2130 | 5051 | 0314 | 7400 | 7313 | 1000 | 0421 | 0020 | 5010 | 4.1 | 0.1 | 2.0 | 5.0 | | Solids | 32.0 | 28.5 | 27.3 | 25.4 | 22.1 | 15.0 | 6.9 | 2.6 | 1.9 | 1.7 | 1.1 | | | | | | Oil | 56.8 | 57.7 | 52.2 | 52.6 | 50.2 | 49.3 | 48.8 | 46.5 | 45.1 | 43.9 | 42.7 | | | | | | Natural gas | 6.0 | 7.5 | 11.2 | 9.4 | 11.4 | 16.0 | 21.3 | 19.6 | 16.7 | 17.9 | 18.7 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 5.2 | 5.3 | 7.6 | 11.0 | 14.9 | 17.8 | 20.7 | 29.0 | 34.2 | 34.8 | 35.9 | | | | | | Gross Electricity Generation in GWh _e | 53415 | 59416 | 57356 | 56439 | 59454 | 57755 | 57480 | 60777 | 63733 | 66524 | 69511 | 0.7 | 0.4 | -0.3 | 1.0 | | Self consumption and grid losses | 8430
11606 | 10124
12532 | 7796
11075 | 6925
9138 | 6787
8071 | 6088
6615 | 5562
5892 | 5470
5559 | 5555
5260 | 5812
5564 | 6026
5813 | -0.8
-0.5 | -1.4 | -2.0
-3.1 | 0.4
-0.1 | | Fuel Inputs to Thermal Power Generation
Solids | 8170 | 8694 | 7567 | 6745 | 5627 | 3471 | 1376 | 428 | 289 | 238 | 103 | -0.5 | -3.1
-2.9 | -3.1
-13.1 | -12.1 | | Oil (including refinery gas) | 2092 | 2180 | 1369 | 1118 | 716 | 584 | 480 | 328 | 265 | 213 | 201 | -4.2 | -6.3 | -3.9 | -4.3 | | Gas (including derived gases) | 1280 | 1605 | 2061 | 1188 | 1580 | 2421 | 3493 | 3073 | 2347 | 2647 | 2829 | 4.9 | -2.6 | 8.3 | -1.0 | | Biomass & Waste | 64 | 52 | 79 | 86 | 142 | 133 | 129 | 295 | 330 | 329 | 302 | 2.2 | 6.0 | -0.9 | 4.4 | | Geothermal heat | 0 | 0 | 0 | 1 | 6 | 6 | 414 | 1435 | 2030 | 2137 | 2378 | 0.0 | 0.0 | 52.0 | 9.1 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 22535
22474 | 21614
21521 | 22768
22640 | 22323
22016 | 21639
21048 | 20551
20003 | 19877
19361 | 19438
18927 | 19100
18599 | 18757
18242 | 17830 17275 | 0.1
0.1 | -0.5
-0.7 | -0.8
-0.8 | -0.5
-0.6 | | Biofuels and hydrogen production | 0 | 0 | 128 | 307 | 589 | 545 | 513 | 507 | 497 | 511 | 550 | 0.0 | 16.5 | -1.4 | 0.4 | | District heating | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Derived gases, cokeries etc. | 61 | 93 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 0.0 | 0.0 | 9.7 | 1.9 | | Energy Branch Consumption | 1518 | 1629 | 1726 | 1601 | 1490 | 1308 | 1153 | 1117 | 1125 | 1104 | 1066 | 1.3 | -1.5 | -2.5 | -0.4 | | Non-Energy Uses | 719 | 761 | 1108 | 1157 | 1295 | 1234 | 1222 | 1227 | 1211 | 1203 | 1229 | 4.4 | 1.6 | -0.6 | 0.0 | | Final Energy Demand | 18563 | 20821 | 19158 | 19029 | 18963 | 18672 | 18489 | 18672 | 18725 | 18763 | 18911 | 0.3 | -0.1 | -0.3 | 0.1 | | by sector | | | | | | | | | | | | | | | | | Industry | 4447
2736 | 4158
2588 | 3602
2357 | 3718
2476 | 4097
2780 | 4138
2825 | 4028
2711 | 4063
2724 | 4023
2707 | 3992
2670 | 4027
2654 | -2.1
-1.5 | 1.3
1.7 | -0.2
-0.3 | 0.0
-0.1 | | - energy intensive industries - other industrial sectors | 1711 | 1570 | 1245 | 1242 | 1317 | 1313 | 1317 | 1339 | 1317 | 1322 | 1373 | -3.1 | 0.6 | 0.0 | 0.2 | | Residential | 4486 | 5497 | 4632 | 4638 | 4494 | 4537 | 4653 | 4763 | 4780 | 4791 | 4800 | 0.3 | -0.3 | 0.4 | 0.2 | | Tertiary | 2419 | | 0740 | 2517 | 2516 | 2539 | 2475 | 2549 | 2585 | 2588 | 2565 | 1.3 | -0.9 | -0.2 | 0.2 | | Transport | 2419 | 3079 | 2746 | | | | | | | | | | | -0.7 | 0.1 | | | 7212 | 3079
8087 | 8177 | 8156 | 7857 | 7458 | 7333 | 7297 | 7337 | 7392 | 7518 | 1.3 | -0.4 | | | | by fuel | 7212 | 8087 | 8177 | | | 7458 | 7333 | | | | | | | | | | by fuel Solids | 7212
891 |
8087
458 | 8177
301 | 265 | 265 | 7458 | 7333
216 | 200 | 188 | 176 | 171 | -10.3 | -1.3 | -2.0 | -1.1 | | by fuel Solids Oil | 7212
891
12631 | 458
14278 | 301
12125 | 265
11638 | 265
10912 | 7458
239
10141 | 7333
216
9765 | 200
9525 | 188
9283 | 176
9159 | 171
9074 | -10.3
-0.4 | -1.3
-1.0 | -1.1 | -0.4 | | by fuel Solids Oil Gas | 7212
891
12631
257 | 458
14278
586 | 301
12125
781 | 265
11638
786 | 265
10912
779 | 7458
239
10141
909 | 7333
216
9765
961 | 200
9525
1048 | 188
9283
1083 | 176
9159
1025 | 171
9074
1077 | -10.3
-0.4
11.7 | -1.3
-1.0
0.0 | -1.1
2.1 | -0.4
0.6 | | by fuel Solids Oil Gas Electricity | 7212
891
12631 | 458
14278 | 301
12125 | 265
11638 | 265
10912 | 7458
239
10141 | 7333
216
9765 | 200
9525 | 188
9283 | 176
9159
1025
5560 | 171
9074 | -10.3
-0.4 | -1.3
-1.0 | -1.1 | -0.4 | | by fuel Solids Oil Gas | 7212
891
12631
257
3710 | 458
14278
586
4377 | 301
12125
781
4568 | 265
11638
786
4534 | 265
10912
779
4731 | 7458
239
10141
909
4781 | 7333
216
9765
961
4903 | 200
9525
1048
5199 | 188
9283
1083
5408 | 176
9159
1025 | 171
9074
1077
5743 | -10.3
-0.4
11.7
2.1 | -1.3
-1.0
0.0
0.4 | -1.1
2.1
0.4 | -0.4
0.6
0.8 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 7212
891
12631
257
3710
28 | 458
14278
586
4377
49 | 301
12125
781
4568
177 | 265
11638
786
4534
223 | 265
10912
779
4731
247 | 7458
239
10141
909
4781
273 | 7333
216
9765
961
4903
322 | 200
9525
1048
5199
257 | 188
9283
1083
5408
206 | 176
9159
1025
5560
206 | 171
9074
1077
5743
206 | -10.3
-0.4
11.7
2.1
20.3 | -1.3
-1.0
0.0
0.4
3.4 | -1.1
2.1
0.4
2.7 | -0.4
0.6
0.8
-2.2 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 7212
891
12631
257
3710
28
1046 | 458
14278
586
4377
49
1073 | 301
12125
781
4568
177
1205 | 265
11638
786
4534
223
1582 | 265
10912
779
4731
247
2027 | 7458
239
10141
909
4781
273
2327 | 7333
216
9765
961
4903
322
2317 | 200
9525
1048
5199
257
2435 | 188
9283
1083
5408
206
2541 | 176
9159
1025
5560
206
2615 | 171
9074
1077
5743
206
2615 | -10.3
-0.4
11.7
2.1
20.3
1.4 | -1.3
-1.0
0.0
0.4
3.4
5.3 | -1.1
2.1
0.4
2.7
1.3 | -0.4
0.6
0.8
-2.2
0.6 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 7212
891
12631
257
3710
28
1046
0 | 8087
458
14278
586
4377
49
1073
0
1517
137.0 | 8177
301
12125
781
4568
177
1205
0
1851 | 265
11638
786
4534
223
1582
1
2865 | 265
10912
779
4731
247
2027
1
3653 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 | 7333 216 9765 961 4903 322 2317 6 3979 | 200
9525
1048
5199
257
2435
8
5113 | 188
9283
1083
5408
206
2541
16
5923 | 176
9159
1025
5560
206
2615
21
6074 | 171
9074
1077
5743
206
2615
25
6237 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 7212
891
12631
257
3710
28
1046
0 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2 | 265
11638
786
4534
223
1582
1
2865
105.9
57.7 | 265
10912
779
4731
247
2027
1
3653
97.8
52.6 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 7212
891
12631
257
3710
28
1046
0
1371
130.6 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7 | 265 11638 786 4534 223 1582 1 2865 105.9 57.7 48.1 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4 | 176
9159
1025
5560
206
2615
21
6074
61.9
23.0
38.9 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8
-1.1 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which not ETS sectors GHG emissions CO2 Emissions (energy related) | 7212
891
12631
257
3710
28
1046
0
1371
130.6 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7
106.0 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1 | 265 11638 786 4534 223 1582 1 2865 105.9 57.7 48.1 83.3 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3 | 176
9159
1025
5560
206
2615
21
6074
61.9
23.0
38.9
42.0 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7
-2.1 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8
-1.1 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-0.2
-1.2 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating | 7212 891 12631 257 3710 28 1046 0 1371 130.6 | 458 14278 586 4377 49 1073 0 1517 137.0 77.3 59.7 106.0 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1
48.7 | 265 11638 786 4534 223 1582 1 2865 105.9 57.7 48.1 83.3 41.5 | 265
10912
779
4731
247
2027
1
3653
97.8
52.6
45.2
74.8
35.3 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 25.6 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3
7.8 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 3.8.9 42.0 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7
-2.1 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8
-1.1
-3.4
-7.1 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8
-0.2
-1.2
-3.8 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of
CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which not ETS sectors GHG emissions CO2 Emissions (energy related) | 7212
891
12631
257
3710
28
1046
0
1371
130.6 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7
106.0 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1 | 265 11638 786 4534 223 1582 1 2865 105.9 57.7 48.1 83.3 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3 | 176
9159
1025
5560
206
2615
21
6074
61.9
23.0
38.9
42.0 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7
-2.1 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8
-1.1 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8
-0.2
-1.2
-3.8
-0.1 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 7212 891 12631 257 3710 28 1046 0 1371 130.6 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7
106.0
56.2
2.8 | 8177
301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1
48.7
3.2 | 265 11638 786 4534 223 1582 105.9 57.7 48.1 83.3 41.5 3.1 | 265
10912
779
4731
247
2027
1
3653
97.8
52.6
45.2
74.8
35.3
2.9 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 25.6 2.7 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 2.5 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5
10.4
2.3 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3
7.8
2.5 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 38.9 42.0 8.0 2.5 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4
7.7 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7
-2.1
-3.1
-1.1 | -1.1
2.1
0.4
2.7
1.3
14.4
0.9
-2.9
-4.8
-1.1
-3.4
-7.1 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8
-0.2
-1.2
-3.8
-0.1
-1.0 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 7212 891 12631 257 3710 28 1046 0 1371 130.6 | 458 14278 586 4377 49 1073 0 1517 137.0 77.3 59.7 106.0 56.2 2.8 8.9 9.8 4.2 | 301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1
48.7
3.2
6.7
6.7
2.8 | 265 11638 786 4534 223 1582 1 2865 105.9 57.7 48.1 83.3 41.5 3.1 6.2 6.6 2.4 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 35.3 2.9 6.6 6.1 2.1 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 6.0 5.6 2.1 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 2.5 5.7 5.3 1.9 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5
10.4
2.3
5.6
5.0 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3
7.8
2.5
5.1
4.7 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 38.9 42.0 8.0 2.5 4.7 4.4 1.8 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4
7.7
2.4
4.7
4.0 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9
-0.6
-0.7
1.8
-4.3
-1.2
-2.0 | -1.3 -1.0 0.0 0.4 3.4 5.3 0.0 7.0 -1.9 -2.1 -1.7 -2.1 -3.1 -1.1 -0.2 -0.9 -2.8 | -1.1 2.1 0.4 2.7 1.3 14.4 0.9 -2.9 -4.8 -1.1 -3.4 -7.1 -1.4 -1.5 -1.4 -0.8 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-1.8
-0.2
-1.2
-3.8
-0.1
-1.0
-1.3
-0.2 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 7212 891 12631 257 3710 28 1046 0 1371 130.6 98.0 52.4 2.7 10.4 7.5 3.4 21.5 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7
106.0
56.2
2.8
8.9
9.8
4.2
224.1 | 8177
301
12125
781
4568
177
1205
0
1851
118.9
65.2
65.2
6.7
6.7
6.7
6.7
2.8
24.1 | 265 11638 786 4534 223 1582 105.9 57.7 48.1 83.3 41.5 3.1 6.2 6.6 2.4 23.5 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 35.3 2.9 6.6 6.1 2.1 21.8 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 6.0 5.6 2.1 20.8 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 2.5 5.7 5.3 1.9 20.5 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5
10.4
2.3
5.6
5.0
1.9
20.3 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3
7.8
2.5
5.1
4.7 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 38.9 42.0 8.0 2.5 4.7 4.4 1.8 20.5 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4
7.7
2.4
4.7
4.0
1.8
20.7 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9
-0.6
-0.7
1.8
-4.3
-1.2
-2.0 | -1.3 -1.0 0.0 0.4 3.4 5.3 0.0 7.0 -1.9 -2.1 -1.7 -2.1 -3.1 -1.1 -0.2 -0.9 -2.8 -1.0 | -1.1 2.1 0.4 2.7 1.3 14.4 0.9 -2.9 -4.8 -1.1 -3.4 -7.1 -1.4 -1.5 -1.4 -0.8 -0.6 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-0.2
-1.2
-3.8
-0.1
-1.0
-1.3
-0.2
0.1 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which no ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 7212 891 12631 257 3710 28 1046 0 1371 130.6 98.0 52.4 2.7 10.4 7.5 3.4 21.5 8.8 | 458 14278 586 4377 49 1073 0 1517 137.0 77.3 59.7 106.0 56.2 2.8 8.9 9.8 4.2 24.1 9.5 | 8177
301
12125
781
4568
177
1205
0
1851
118.9
65.2
53.7
92.1
48.7
3.2
6.7
6.7
2.8
24.1
6.6 | 265 11638 786 4534 223 1582 1582 105.9 57.7 48.1 83.3 41.5 6.2 6.6 2.4 23.5 6.0 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 35.3 2.9 6.6 6.1 2.1.8 7.3 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 25.6 2.7 6.0 5.6 2.1 20.8 7.4 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 2.5 5.7 5.3 1.9 20.5 5.6 | 200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5
10.4
2.3
5.6
5.0
1.9
20.3
5.5 | 188 9283 1083 5408 206 2541 16 5923 62.3 22.9 39.4 42.3 7.8 2.5 5.1 4.7 1.8 20.4 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 38.9 42.0 8.0 2.5 4.7 4.4 1.8 20.5 5.2 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4
7.7
2.4
4.7
4.0
1.8
20.7
5.0 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9
-0.6
-0.7
1.8
-4.3
-1.2
-2.0
1.1 | -1.3
-1.0
0.0
0.4
3.4
5.3
0.0
7.0
-1.9
-2.1
-1.7
-2.1
-1.7
-2.1
-1.1
-0.9
-2.8
-1.0 | -1.1 2.1 0.4 2.7 1.3 14.4 0.9 -2.9 -4.8 -1.1 -3.4 -7.1 -1.4 -0.8 -0.6 -2.6 | -0.4 0.66 0.88 -2.2 0.66 7.66 2.33 -0.88 -0.12 -1.00 -1.3 -0.2 0.1 -0.66 | | by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 7212 891 12631 257 3710 28 1046 0 1371 130.6 98.0 52.4 2.7 10.4 7.5 3.4 21.5 | 458
14278
586
4377
49
1073
0
1517
137.0
77.3
59.7
106.0
56.2
2.8
8.9
9.8
4.2
224.1 | 8177
301
12125
781
4568
177
1205
0
1851
118.9
65.2
65.2
6.7
6.7
6.7
6.7
2.8
24.1 | 265 11638 786 4534 223 1582 105.9 57.7 48.1 83.3 41.5 3.1 6.2 6.6 2.4 23.5 | 265 10912 779 4731 247 2027 1 3653 97.8 52.6 45.2 74.8 35.3 2.9 6.6 6.1 2.1 21.8 | 7458 239 10141 909 4781 273 2327 4 3865 85.1 42.7 42.3 62.7 6.0 5.6 2.1 20.8 | 7333 216 9765 961 4903 322 2317 6 3979 72.7 32.2 40.5 52.7 16.9 2.5 5.7 5.3 1.9 20.5 |
200
9525
1048
5199
257
2435
8
5113
65.6
25.4
40.2
45.5
10.4
2.3
5.6
5.0
1.9
20.3 | 188
9283
1083
5408
206
2541
16
5923
62.3
22.9
39.4
42.3
7.8
2.5
5.1
4.7 | 176 9159 1025 5560 206 2615 21 6074 61.9 23.0 38.9 42.0 8.0 2.5 4.7 4.4 1.8 20.5 | 171
9074
1077
5743
206
2615
25
6237
61.3
22.5
38.8
41.4
7.7
2.4
4.7
4.0
1.8
20.7 | -10.3
-0.4
11.7
2.1
20.3
1.4
17.7
3.0
-0.9
-0.6
-0.7
1.8
-4.3
-1.2
-2.0 | -1.3 -1.0 0.0 0.4 3.4 5.3 0.0 7.0 -1.9 -2.1 -1.7 -2.1 -3.1 -1.1 -0.2 -0.9 -2.8 -1.0 | -1.1 2.1 0.4 2.7 1.3 14.4 0.9 -2.9 -4.8 -1.1 -3.4 -7.1 -1.4 -1.5 -1.4 -0.8 -0.6 | -0.4
0.6
0.8
-2.2
0.6
7.6
2.3
-0.8
-0.2
-1.2
-3.8
-0.1
-1.0
-1.3
-0.2
0.1 | | | ORS (B) | | | | | | | | | | | reece: Re | | | | |--|---------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|-----------|-------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | Isia Engras System Indicators | | | | | | | | | | | | An | nual % | Change | <u> </u> | | lain Energy System Indicators opulation (Million) | 10.904 | 11.083 | 11.305 | 11.445 | 11.526 | 11.562 | 11.578 | 11.605 | 11.630 | 11.629 | 11.576 | 0.4 | 0.2 | 0.0 | | | DP (in 000 M€10) | 184.1 | 224.4 | 227.3 | 213.4 | 227.1 | 240.6 | 256.6 | 273.8 | 289.3 | 304.3 | 322.1 | 2.1 | 0.0 | 1.2 | | | iross Inl. Cons./GDP (toe/M€10) | 153.6 | 139.9 | 126.9 | 129.6 | 117.6 | 104.0 | 93.8 | 89.4 | 85.2 | 81.4 | 77.9 | -1.9 | -0.8 | -2.2 | | | arbon intensity (t of CO ₂ /toe of GIC) | 3.47 | 3.38 | 3.19 | 3.01 | 2.80 | 2.51 | 2.19 | 1.86 | 1.72 | 1.69 | 1.65 | -0.8 | -1.3 | -2.4 | | | nport Dependency % | 69.5 | 68.6 | 69.1 | 68.9 | 69.9 | 74.6 | 79.3 | 76.2 | 72.3 | 71.9 | 71.2 | | | | | | otal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 16.5 | 21.4 | 28.8 | 35.2 | 37.4 | 39.0 | 40.8 | 42.1 | 44.2 | 45.9 | 47.8 | 5.7 | 2.7 | 0.9 | | | as % of GDP | 9.0 | 9.5 | 12.7 | 16.5 | 16.4 | 16.2 | 15.9 | 15.4 | 15.3 | 15.1 | 14.8 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 85.4 | 81.5 | 87.0 | 87.2 | 84.2 | 77.6 | 74.5 | 71.6 | 68.8 | 66.0 | -2.0 | 0.7 | -1.2 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 99.5 | 78.3 | 83.3 | 76.3 | 73.5 | 71.9 | 70.4 | 68.3 | 66.6 | 65.0 | -2.4 | -0.3 | -0.6 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 100.4 | 86.7 | 85.1 | 80.0 | 75.8 | 68.8 | 66.1 | 63.1 | 59.8 | 55.9 | -1.4 | -0.8 | -1.5 | | | ssenger transport (toe/Mpkm) | 41.8 | 40.5 | 38.4 | 36.8 | 33.8 | 30.2 | 27.9 | 26.5 | 25.6 | 25.0 | 24.6 | -0.9 | -1.3 | -1.9 | | | ight transport (toe/Mtkm) | 46.9 | 45.6 | 54.8 | 53.8 | 51.9 | 48.1 | 45.9 | 44.7 | 43.1 | 41.7 | 41.0 | 1.6 | -0.5 | -1.2 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.98 | 0.94 | 0.82 | 0.70 | 0.57 | 0.42 | 0.28 | 0.16 | 0.12 | 0.12 | 0.11 | -1.7 | -3.6 | -7.0 | | | al energy demand (t of CO ₂ /toe) | 2.31 | 2.26 | 2.10 | 2.03 | 1.93 | 1.85 | 1.80 | 1.75 | 1.71 | 1.67 | 1.65 | -1.0 | -0.8 | -0.7 | | | ndustry | 2.35 | 2.14 | 1.86 | 1.68 | 1.61 | 1.46 | 1.40 | 1.37 | 1.26 | 1.18 | 1.16 | -2.3 | -1.4 | -1.4 | | | Residential | 1.68 | 1.78 | 1.44 | 1.42 | 1.36 | 1.24 | 1.14 | 1.05 | 0.98 | 0.92 | 0.84 | -1.5 | -0.6 | -1.7 | | | ertiary | 1.41 | 1.38 | 1.01 | 0.93 | 0.83 | 0.81 | 0.78 | 0.73 | 0.71 | 0.71 | 0.72 | -3.2 | -2.0 | -0.6 | | | ransport (C) | 2.98 | 2.98 | 2.94 | 2.88 | 2.77 | 2.78 | 2.79 | 2.78 | 2.78 | 2.77 | 2.75 | -0.1 | -0.6 | 0.1 | | | licators for renewables | | | | | | | | | | | | | | | Т | | are of RES in Gross Final Energy Consumption (D) (%) | 7.0 | 6.9 | 9.2 | 14.6 | 18.7 | 20.2 | 21.1 | 27.0 | 31.3 | 32.1 | 32.8 | | | | | | S in transport (%) | 0.0 | 0.0 | 2.0 | 4.9 | 10.1 | 10.5 | 10.6 | 11.3 | 11.8 | 12.5 | 13.6 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 53425 | 59427 | 57367 | 56439 | 59454 | 57755 | 57480 | 60777 | 63733 | 66524 | 69511 | 0.7 | 0.4 | -0.3 | | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 34313 | 35543 | 30797 | 27311 | 24447 | 15701 | 7065 | 1715 | 1222 | 1050 | 536 | -1.1 | -2.3 | -11.7 | | | Dil (including refinery gas) | 8885 | 9207 | 6089 | 5482 | 3626 | 3114 | 2604 | 1858 | 1532 | 1229 | 1179 | -3.7 | -5.1 | -3.3 | | | Sas (including derived gases) | 5920 | 8171 | 9830 | 7512 | 9981 | 15436 | 22261 | 20622 | 16520 | 19340 | 20582 | 5.2 | 0.2 | 8.4 | | | iomass-waste | 163 | 222 | 319 | 377 | 626 | 588 | 585 | 1441 | 1516 | 1413 | 1278 | 6.9 | 7.0 | -0.7 | | | ydro (pumping excluded) | 3693 | 5017 | 7460 | 5829 | 6950 | 8100 | 9012 | 9602 | 9920 | 10015 | 10059 | 7.3 | -0.7 | 2.6 | | | Vind | 451 | 1266 | 2714 | 5246 | 8779 | 9659 | 9742 | 15068 | 19641 | 19970 | 20877 | 19.7 | 12.5 | 1.0 | | | Solar | 0 | 1 | 158 | 4679 | 5038 | 5150 | 5729 | 8802 | 11022 | 11022 | 12236 | 0.0 | 41.4 | 1.3 | | | Seothermal and other renewables | 0 | 0 | 0 | 2 | 7 | 7 | 482 | 1668 | 2360 | 2485 | 2765 | 0.0 | 38.6 | 52.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 10208 | 11812 | 15061 | 20978 | 22407 | 20448 | 20362 | 23743 | 26685 | 27872 | 29450 | 4.0 | 4.1 | -1.0 | | | Nuclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Renewable energy | 2548 | 2970 | 3961 | 8003 | 9868 | 10250 | 10577 | 13849 | 16457 | 16768 | 17653 | 4.5 | 9.6 | 0.7 | | | Hydro (pumping excluded) | 2359 | 2396 | 2436 | 2756 | 3149 | 3171 | 3192 | 3192 | 3192 | 3192 | 3192 | 0.3 | 2.6 | 0.1 | | | Wind | 189 | 573 | 1323 | 2195 | 3433 | 3720 | 3745 | 5533 | 7068 | 7379 | 7677 | 21.5 | 10.0 | 0.9 | | | Solar | 0 | 1 | 202 | 3052 | 3286 | 3359 | 3640 | 5125 | 6198 | 6198 | 6784 | 0.0 | 32.2 | 1.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Thermal power | 7659 | 8841 | 11099 | 12975 | 12539 | 10197 | 9785 | 9894 | 10228 | 11104 | 11798 | 3.8 | 1.2 | -2.4 | | | of which cogeneration units | 195 | 312 | 373 | 489 | 528 | 633 | 1029 | 788 | 880 | 1375 | 1188 | 6.7 | 3.5 | 6.9 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 4425 | 4708 | 4781 | 4462 | 4334 | 1897 | 1347 | 1181 | 1181 | 1181 | 1007 | 0.8 | -1.0 | -11.0 | | | Gas fired | 1172 | 1826 | 3416 | 5979 | 5589 | 5587 | 5688 | 6014 | 6526 | 7515 | 8374 | 11.3 | 5.0 | 0.2 | | | Oil fired | 2034 | 2249 | 2809 | 2443 | 2458 | 2555 | 2521 | 2127 | 1737 | 1647 | 1611 | 3.3 | -1.3 | 0.3 | | | Biomass-waste fired | 28 | 59 | 94 | 91 | 157 | 157 | 174 | 381 | 514 | 478 | 490 | 13.0 | 5.3 | 1.0 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 1 | 1 | 55 | 190 | 269 | 284 | 316 | 0.0 | 0.0 | 52.0 | | | g. Load factor of net power capacity (F) (%) | 55.3 | 53.3 | 40.4 | 29.0 | 28.8 | 31.0 | 31.4 | 28.8 | 27.0 | 27.0 | 26.7 | | | | | | ectricity indicators | | | | | | | | | | | | | | | Ī | | iciency of gross thermal power generation (%) | 36.5 | 36.5 | 36.5 | 38.3 | 41.2 | 45.3 | 48.2 | 42.2 | 37.9 | 39.4 | 39.0 | | | | | | of gross electricity from CHP | 2.1 | 1.7 | 4.3 | 5.2 | 4.8 | 6.1 | 8.6 | 6.2 | 5.0 | 5.7 | 6.9 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | arbon free gross electricity generation (%) | 8.1 | 10.9 | 18.6 | 28.6 | 36.0 | 40.7 | 44.4 | 60.2 | 69.8 | 67.5 | 67.9 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 8.1 | 10.9 | 18.6 | 28.6 | 36.0 | 40.7 | 44.4 | 60.2 | 69.8 | 67.5 | 67.9 | | | | | | ansport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 128.7 | 152.9 | 160.2 | 166.0 | 172.1 | 181.3 | 191.1 | 199.3 | 207.7 | 214.8 | 222.0 | 2.2 | 0.7 | 1.1 | | | Public road transport | 21.7 | 21.7 | 21.1 | 21.7 | 22.3 | 22.9 | 23.5 | 24.0 | 24.5 | 24.8 | 25.1 | -0.3 | 0.5 | 0.5 | | | Private cars and motorcycles | 66.7 | 89.7 | 105.4 | 106.6 | 107.3 | 109.9 | 111.9 | 114.3 | 116.6 | 118.6 | 120.5 | 4.7 | 0.2 | 0.4 | | | ail | 3.1 | 3.4 | 3.0 | 3.2 | 3.3 | 3.6 | 3.8 | 4.2 | 4.5 | 4.8 | 5.0 | -0.2 | 0.9 | 1.4 | | | viation | 29.9 | 31.1 | 23.8 | 27.6 | 32.1 | 37.7 | 44.3 | 48.8 | 53.9 | 58.1 | 62.6 | -2.2 | 3.0 | 3.3 | | | nland navigation | 7.3 | 7.1 | 6.8 | 6.9 | 7.0 | 7.3 | 7.7 | 7.9 | 8.2 | 8.5 | 8.8 | -0.7 | 0.3 | 0.8 | | | eight transport activity (Gtkm) | 38.7 | 41.6 | 36.7 | 37.9 | 39.2 | 41.0 | 43.0 | 44.7 | 46.4 | 48.0 | 49.6 | -0.5 | 0.6 | 0.9 | | | Frucks | 29.0 | 32.5 | 29.8 | 30.6 | 31.3 | 32.6 | 33.8 | 35.1 | 36.3 | 37.5 | 38.7 | 0.3 | 0.5 | 0.8 | | | Rail | 0.4 | 0.6 | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8 | 0.8 | 0.9 | 3.7 | 0.6 | 1.0 | | | nland navigation | 9.3 | 8.5 | 6.3 | 6.7 | 7.2 | 7.8 | 8.4 | 8.8 | 9.3 | 9.6 | 10.0 | -3.8 | 1.3 | 1.7 | | | ergy demand in transport (ktoe) (G) | 7201 | 8080 | 8166 | 8143 | 7842 | 7443 | 7316 | 7280 | 7319 | 7374 | 7499 | 1.3 | -0.4 | -0.7 | ٠ | | Public road transport | 284 | 283 | 280 | 284 | 285 | 281 | 276 | 273 | 273 | 272 | 272 | -0.1 | 0.2 | -0.7 | | | Private cars and motorcycles | 3338 | 4143 | 4300 | 4131 | 3755 | 3292 | 3046 | 2932 | 2868 | 2826 | 2818 | 2.6 | -1.3 | -0.3
-2.1 | | | Frucks | 1712 | 1775 | 1925 | 1947 | 1935 | 1873 | 1868 | 1885 | 1888 | 1885 | 1917 | 1.2 | 0.1 | -2.1
-0.4 | | | Rail | 49 | 53 | 1925 | 1947 | 24 | 24 | 25 | 25 | 25 | 24 | 23 | -6.8 | -0.1 | 0.5 | | | Rail
Aviation | 1325 | 1181 | 919 | 1023 |
1098 | 1203 | 1306 | 1353 | 25
1441 | 1525 | 1619 | -6.8 | -0.1
1.8 | 1.7 | | | | | 645 | 717 | 733 | 745 | 770 | 795 | 812 | 825 | 842 | 851 | 3.8 | 0.4 | 0.7 | | | Inland navigation | 493 | | | | | | | | | | | | | | | | Hungary: Reference scenario | | | | | | | | | | NERGY | | | | | _ ' ' | |--|---|---|---|---|--|--|--|---|--|--|---|--|--|---|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 11598
2893 | 10385
1748 | 11088
1593 | 10954
1725 | 10375
503 | 12349
480 | 13607
379 | 13415
320 | 12124
983 | 12678
865 | 1 2637
998 | -0.4
-5.8 | -0.7
-10.9 | 2.7
-2.8 | -0.4
5.0 | | Oil | 1698 | 1470 | 1172 | 844 | 814 | 757 | 715 | 518 | 272 | 14 | 0 | -3.6 | -3.6 | | -100.0 | | Natural gas | 2475 | 2331 | 2235 | 1773 | 1871 | 1749 | 1676 | 1818 | 1781 | 698 | 270 | -1.0 | -1.8 | -1.1 | -8.7 | | Nuclear | 3672 | 3585 | 4078 | 4465 | 4585 | 6549 | 8008 | 6128 | 3826 | 6022 | 6168 | 1.1 | 1.2 | 5.7 | -1.3 | | Renewable energy sources | 859 | 1252 | 2010 | 2148 | 2601 | 2814 | 2830 | 4631 | 5262 | 5079 | 5202 | 8.9 | 2.6 | 0.8 | 3.1 | | Hydro
Biomass & Waste | 15
758 | 17
1145 | 16
1844 | 21
1911 | 22
2227 | 22
2328 | 22
2259 | 22
2419 | 22
2717 | 22
2481 | 22
2611 | 0.5
9.3 | 3.1
1.9 | 0.1
0.1 | 0.0 | | Wind | 0 | 1 145 | 46 | 66 | 155 | 196 | 196 | 223 | 226 | 235 | 241 | 0.0 | 12.9 | 2.4 | 1.0 | | Solar and others | 0 | 2 | 5 | 56 | 111 | 175 | 253 | 364 | 363 | 399 | 384 | 0.0 | 35.2 | 8.6 | 2.1 | | Geothermal | 86 | 87 | 99 | 92 | 86 | 93 | 100 | 1602 | 1934 | 1941 | 1943 | 1.4 | -1.4 | 1.5 | 16.0 | | Net Imports | 13960 | 17501 | 15135 | 14675 | 14443 | 14198 | 14004 | 14878 | 15739 | 16363 | 16821 | 0.8 | -0.5 | -0.3 | 0.9 | | Solids | 1087 | 1299 | 1143 | 1007 | 1023 | 1137 | 910 | 837 | 962 | 840 | 811 | 0.5 | -1.1 | -1.2 | -0.6 | | Oil | 5295 | 5859 | 5749 | 5638 | 5494 | 5756 | 6093 | 6335 | 6553 | 6768 | 6713 | 0.8 | -0.5 | 1.0 | 0.5 | | Crude oil and Feedstocks Oil products | 5883
-589 | 6071
-212 | 5952
-203 | 5927
-289 | 5860
-366 | 6098
-342 | 6401
-308 | 6666
-331 | 6918
-365 | 7167
-399 | 7148
-435 | 0.1
-10.1 | -0.2
6.1 | 0.9
-1.7 | 0.6
1.7 | | Natural gas | 7283 | 9807 | 7726 | 7382 | 7331 | 6799 | 6520 | 7114 | 7651 | 8223 | 8732 | 0.6 | -0.5 | -1.2 | 1.5 | | Electricity | 296 | 535 | 447 | 560 | 492 | 400 | 377 | 482 | 448 | 418 | 444 | 4.2 | 1.0 | -2.6 | 0.8 | | Gross Inland Consumption | 25300 | 27704 | 25978 | 25629 | 24817 | 26547 | 27612 | 28293 | 27863 | 29041 | 29458 | 0.3 | -0.5 | 1.1 | 0.3 | | Solids | 3850 | 3031 | 2730 | 2731 | 1526 | 1617 | 1289 | 1157 | 1945 | 1705 | 1809 | -3.4 | -5.6 | -1.7 | 1.7 | | Oil | 6966 | 7208 | 6832 | 6483 | 6308 | 6513 | 6808 | 6853 | 6825 | 6782 | 6713 | -0.2 | -0.8 | 0.8 | -0.1 | | Natural gas | 9657 | 12094 | 9815 | 9155 | 9203 | 8548 | 8195 | 8932 | 9433 | 8921 | 9002 | 0.2 | -0.6 | -1.2 | 0.5 | | Nuclear
Electricity | 3672
296 | 3585
535 | 4078
447 | 4465
560 | 4585
492 | 6549
400 | 8008
377 | 6128
482 | 3826
448 | 6022
418 | 6168
444 | 1.1
4.2 | 1.2
1.0 | 5.7
-2.6 | -1.3
0.8 | | Renewable energy forms | 859 | 1252 | 2077 | 2235 | 2704 | 2921 | 2934 | 462
4742 | 5387 | 5193 | 5322 | 9.2 | 2.7 | 0.8 | 3.0 | | as % in Gross Inland Consumption | | 1202 | 2011 | 2200 | 2.0. | | 2001 | | 000. | 0.00 | OOLL | 0.2 | | 0.0 | 0.0 | | Solids | 15.2 | 10.9 | 10.5 | 10.7 | 6.2 | 6.1 | 4.7 | 4.1 | 7.0 | 5.9 | 6.1 | | | | | | Oil | 27.5 | 26.0 | 26.3 | 25.3 | 25.4 | 24.5 | 24.7 | 24.2 | 24.5 | 23.4 | 22.8 | | | | | | Natural gas | 38.2 | 43.7 | 37.8 | 35.7 | 37.1 | 32.2 | 29.7 | 31.6 | 33.9 | 30.7 | 30.6 | | | | | | Nuclear | 14.5 | 12.9 | 15.7 | 17.4 | 18.5 | 24.7 | 29.0 | 21.7 | 13.7 | 20.7 | 20.9 | | | | | | Renewable energy forms | 3.4 | 4.5 | 8.0 | 8.7 | 10.9 | 11.0 | 10.6 | 16.8 | 19.3 | 17.9 | 18.1 | | | | | | Gross Electricity Generation in GWh _e Self consumption and grid losses | 35185
7771 | 35750
6477 | 37364
6558 | 35383 5595 | 36250 5290 | 40959
6085 | 44627
6614 | 44883
6765 | 48109
8188 | 52694
8867 | 54884
9345 | 0.6
-1.7 | -0.3
-2.1 | 2.1
2.3 | 1.0
1.7 | | Fuel Inputs to Thermal Power Generation | 6009 | 5692 | 5265 | 4518 | 3811 | 3024 | 2446 | 4670 | 6740 | 5696 | 5786 | -1.7 | -3.2 | -4.3 | 4.4 | | Solids | 2755 | 1924 | 1646 | 1915 | 693 | 675 | 481 | 410 | 1075 | 858 | 994 | -5.0 | -8.3 | -3.6 | 3.7 | | Oil (including refinery gas) | 1052 | 155 | 138 | 138 | 107 | 56 | 66 | 74 | 81 | 84 | 87 | -18.4 | -2.5 | -4.7 | 1.4 | | Gas (including derived gases) | 2140 | 3078 | 2704 | 1642 | 2015 | 1245 | 970 | 1504 | 2168 | 1589 | 1422 | 2.4 | -2.9 | -7.0 | 1.9 | | Biomass & Waste | 61 | 534 | 777 | 823 | 996 | 1049 | 928 | 1191 | 1602 | 1351 | 1469 | 28.9 | 2.5 | -0.7 | 2.3 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1491 | 1814 | 1814 | 1814 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes Refineries | 12948
7634 | 13248
8200 | 1 4604
8590 | 14366
8317 | 1 4579
8225 | 1 6980
8482 | 1 8544
8822 | 16581
8914 | 1 4508
8927 | 16661
8919 | 1 6724
8882 | 1.2
1.2 | 0.0
-0.4 | 2.4
0.7 | -0.5
0.0 | | Biofuels and hydrogen production | 0 | 3 | 175 | 214 | 396 | 399 | 419 | 430 | 446 | 448 | 458 | 0.0 | 8.5 | 0.6 | 0.5 | | District heating | 470 | 627 | 474 | 415 | 368 | 407 | 417 | 381 | 348 | 347 | 358 | 0.1 | -2.5 | 1.3 | -0.8 | | Derived gases, cokeries etc. | 4843 | 4418 | 5365 | 5419 | 5591 | 7690 | 8887 | 6857 | 4788 | 6946 | 7027 | 1.0 | 0.4 | 4.7 | -1.2 | | Energy Branch Consumption | 1164 | 1062 | 1105 | 948 | 890 | 985 | 1014 | 982 | 1087 | 1129 | 1149 | -0.5 | -2.1 | 1.3 | 0.6 | | Non-Energy Uses | 1579 | 2162 | 1977 | 1982 | 2176 | 2480 | 2746 | 2815 | 2803 | 2773 | 2726 | | | 2.4 | 0.0 | | Final Energy Demand | | | | | | | | | | | 2120 | 2.3 | 1.0 | | | | by sector | 16098 | 18173 | 16660 | 16917 | 16573 | 17001 | 17189 | 17462 | 17609 | 17877 | 18187 | 2.3
0.3 | 1.0
-0.1 | 0.4 | 0.3 | | | | | 16660 | | | | | | | | 18187 | 0.3 | -0.1 | 0.4 | | | Industry | 3513 | 3372 | 16660
2912 | 2769 | 2835 | 3056 | 3087 | 3177 | 3146 | 3236 | 18187
3328 | 0.3
-1.9 | -0.1
-0.3 | 0.4 | 0.4 | | Industry - energy intensive industries | 3513
2517 | 3372
2271 | 16660
2912
1853 | 2769
1711 | 2835
1785 |
3056
1942 | 3087
1920 | 3177
1954 | 3146
1946 | 3236
1967 | 18187
3328
1986 | 0.3
-1.9
-3.0 | -0.1
-0.3
-0.4 | 0.4
0.9
0.7 | 0.4 | | Industry | 3513 | 3372 | 16660
2912 | 2769 | 2835 | 3056 | 3087 | 3177 | 3146 | 3236 | 18187
3328 | 0.3
-1.9 | -0.1
-0.3 | 0.4 | 0.4
0.2
0.7 | | Industry - energy intensive industries - other industrial sectors | 3513
2517
996 | 3372
2271
1102 | 2912
1853
1058 | 2769
1711
1057 | 2835
1785
1050 | 3056
1942
1114 | 3087
1920
1167 | 3177
1954
1222 | 3146
1946
1200 | 3236
1967
1269 | 3328
1986
1342 | 0.3
-1.9
-3.0
0.6 | -0.1
-0.3
-0.4
-0.1 | 0.4
0.9
0.7
1.1 | 0.4
0.2
0.7
0.3 | | Industry - energy intensive industries - other industrial sectors Residential | 3513
2517
996
5603 | 3372
2271
1102
6464 | 2912
1853
1058
5719 | 2769
1711
1057
5886 | 2835
1785
1050
5530 | 3056
1942
1114
5703 | 3087
1920
1167
5746 | 3177
1954
1222
5873 | 3146
1946
1200
5923 | 3236
1967
1269
6015 | 3328
1986
1342
6105 | -1.9
-3.0
0.6
0.2 | -0.1
-0.3
-0.4
-0.1
-0.3 | 0.4
0.9
0.7
1.1
0.4 | 0.4
0.2
0.7
0.3
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 3513
2517
996
5603
3710
3272 | 3372
2271
1102
6464
4071
4266 | 2912
1853
1058
5719
3628
4401 | 2769
1711
1057
5886
3800
4462 | 2835
1785
1050
5530
3829
4380 | 3056
1942
1114
5703
3836
4407 | 3087
1920
1167
5746
3806
4550 | 3177
1954
1222
5873
3799
4614 | 3146
1946
1200
5923
3839
4701 | 3236
1967
1269
6015
3901
4725 | 3328
1986
1342
6105
3977
4776 | 0.3
-1.9
-3.0
0.6
0.2
-0.2
3.0 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4 | 0.4
0.2
0.7
0.3
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 3513
2517
996
5603
3710
3272 | 3372
2271
1102
6464
4071
4266 | 2912
1853
1058
5719
3628
4401 | 2769
1711
1057
5886
3800
4462 | 2835
1785
1050
5530
3829
4380 | 3056
1942
1114
5703
3836
4407 | 3087
1920
1167
5746
3806
4550 | 3177
1954
1222
5873
3799
4614 | 3146
1946
1200
5923
3839
4701 | 3236
1967
1269
6015
3901
4725 | 3328
1986
1342
6105
3977
4776 | 0.3
-1.9
-3.0
0.6
0.2
-0.2
3.0 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4 | 0.4
0.2
0.7
0.3
0.2
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 3513
2517
996
5603
3710
3272
665
4176 | 3372
2271
1102
6464
4071
4266 | 16660
2912
1853
1058
5719
3628
4401
481
4703 | 2769
1711
1057
5886
3800
4462
392
4652 | 2835
1785
1050
5530
3829
4380
378
4365 | 3056
1942
1114
5703
3836
4407 | 3087
1920
1167
5746
3806
4550
433
4503 | 3177
1954
1222
5873
3799
4614
454
4533 | 3146
1946
1200
5923
3839
4701
453
4608 | 3236
1967
1269
6015
3901
4725
438
4593 | 3328
1986
1342
6105
3977
4776 | 0.3
-1.9
-3.0
0.6
0.2
-0.2
3.0
-3.2
1.2 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4
1.4 | 0.4
0.2
0.7
0.3
0.2
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 3513
2517
996
5603
3710
3272
665
4176
6503 | 3372
2271
1102
6464
4071
4266
690
4859
7852 | 16660
2912
1853
1058
5719
3628
4401
481
4703
6261 | 2769
1711
1057
5886
3800
4462
392
4652
6440 | 2835
1785
1050
5530
3829
4380
378
4365
6179 | 3056
1942
1114
5703
3836
4407
433
4416
6190 | 3087
1920
1167
5746
3806
4550
433
4503
5994 | 3177
1954
1222
5873
3799
4614
454
4533
6069 | 3146
1946
1200
5923
3839
4701
453
4608
5935 | 3236
1967
1269
6015
3901
4725
438
4593
5982 | 3328
1986
1342
6105
3977
4776
431
4586
6161 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0
-2.4
-0.7 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4
1.4
0.3
-0.3 | 0.4
0.2
0.7
0.3
0.2
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 3513
2517
996
5603
3710
3272
665
4176
6503
2531 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781 | 16660
2912
1853
1058
5719
3628
4401
481
4703 | 2769
1711
1057
5886
3800
4462
392
4652 | 2835
1785
1050
5530
3829
4380
378
4365 | 3056
1942
1114
5703
3836
4407 | 3087
1920
1167
5746
3806
4550
433
4503 | 3177
1954
1222
5873
3799
4614
454
4533 | 3146
1946
1200
5923
3839
4701
453
4608 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 1.5 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4
1.4
0.3
-0.3
1.4 | 0.4
0.2
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.9 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 3513
2517
996
5603
3710
3272
665
4176
6503 | 3372
2271
1102
6464
4071
4266
690
4859
7852 | 2912
1853
1058
5719
3628
4401
481
4703
6261
2941 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741 | 3236
1967
1269
6015
3901
4725
438
4593
5982 | 3328
1986
1342
6105
3977
4776
431
4586
6161 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0
-2.4
-0.7
-0.1
0.3 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4
1.4
0.3
-0.3 | 0.4
0.2
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.9
0.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308 | 2912
1853
1058
5719
3628
4401
481
4703
6261
2941
1090 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479
1174 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197
1169 | -1.9 -3.0 -0.6 -0.2 -0.2 -3.0 -3.2 -1.2 -0.4 -1.5 -2.8 | -0.1
-0.3
-0.4
-0.1
-0.3
0.5
0.0
-2.4
-0.7
-0.1
0.3
0.5 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 | 0.4
0.2
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.9
0.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683 | 2912
1853
1058
5719
3628
4401
481
4703
6261
2941
1090
1184 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172
1541 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479
1174
1603 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592 |
3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197
1169
1628 | -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 1.5 -2.8 4.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 | 0.4
0.9
0.7
1.1
0.4
-0.1
0.4
1.4
0.3
-0.3
1.4
0.2
0.8 | 0.4
0.2
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.9
0.0
0.1
8.6 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774
0 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0 | 2912
1853
1058
5719
3628
4401
481
4703
6261
2941
1090
1184
0 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172
1541
2 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479
1174
1603
3 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5 | 3146
1946
1200
5923
3839
4701
453
4608
5935
37741
1272
1592
9 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197
1169
1628
16 | -1.9 -3.0 -0.6 -0.2 -0.2 -3.0 -3.2 -1.2 -0.4 -1.5 -2.8 -4.3 -0.9 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 | 0.4
0.2
0.7
0.3
0.2
0.0
0.1
0.9
0.0
0.1
8.6 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 3513
2517
996
5603
3710
3272
6665
4176
6503
2531
1447
774
0 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0 | 2912
1853
1058
5719
3628
4401
481
4703
6261
1090
1184
0
1490
77.9
23.7 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479
1174
1603
3
2592
53.3
13.5 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6 | 18187
3328
1986
1342
6105
3977
4776
431
4586
6161
4197
1169
1628
16
3265
51.2 | -1.9 -3.0 -0.6 -0.2 -0.2 -3.0 -3.2 -1.2 -0.4 -1.5 -2.8 -4.3 -0.9 -6.2 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 4.3 -1.6 -3.3 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 | 0.44
0.22
0.7
0.3
0.2
0.2
0.0
0.1
0.9
0.0
0.1
8.6
 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 3513
2517
996
5603
3710
3272
6665
4176
6503
2531
1447
774
0
814 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0 | 16660
2912
1853
1058
5719
3628
4401
481
4703
6261
2941
1090
1184
0
1490
67.9
23.7
44.1 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
42.5 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3 | 3087
1920
1167
5746
3806
4550
433
4503
5994
3479
1174
1603
3
2592
53.3
13.5
39.8 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3
40.1 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 | 0.3 -1.9 -3.0 -6.2 -0.2 3.0 -3.2 -1.5 -2.8 4.3 0.9 -6.2 -1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 4.3 -1.6 -3.3 -0.8 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.2 | 0.44
0.22
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.9
0.0
0.1
1.2
 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774
0
814 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
79.1
30.1
49.0
56.3 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1184 0 67.9 23.7 44.1 49.2 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
46.7 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.7 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3
39.5 | 3087
1920
1167
5746
3806
4550
433
4503
34503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1 | 3177
1954
1222
5873
3799
4614
453
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
38.0 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197
11628
16
3265
51.2
11.0
40.2
36.4 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 -3.0 -3.2 1.2 -0.4 1.5 -2.8 4.3 0.9 6.2 -1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 4.3 -1.6 -3.3 -3.8 -1.9 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.2 -0.9 | 0.4
0.2
0.7
0.3
0.2
0.0
0.1
0.1
0.1
0.2
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774
0
814
77.4 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
839
79.1
30.1
49.0
56.3
18.3 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1184 0 1490 67.9 23.7 44.1 49.2 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
0
1798
63.7
21.2
42.5
46.7
13.9 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.7
9.5 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3
39.5
7.5 | 3087
1920
1167
5746
3806
4550
433
4503
5994
1174
1603
3
2592
53.3
13.5
39.8
37.1
5.5 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
38.0
6.1 |
3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6
6.9 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 36.4 4.2 | -1.1
-3.2
-1.3
-3.0
-3.2
-3.2
-1.4
-1.5
-2.8
-4.3
-9
-6.2
-1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 -0.5 -0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 -1.6 -3.3 -1.9 -5.2 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.9 -5.2 | 0.4 0.2 0.7 0.3 0.2 0.2 0.2 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774
0
814 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
79.1
30.1
49.0
56.3 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1184 0 67.9 23.7 44.1 49.2 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
46.7 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.7 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3
39.5 | 3087
1920
1167
5746
3806
4550
433
4503
34503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1 | 3177
1954
1222
5873
3799
4614
453
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
38.0 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4 | 3328
1986
1342
6105
3977
4776
431
4586
6161
4197
11628
16
3265
51.2
11.0
40.2
36.4 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 -3.0 -3.2 1.2 -0.4 1.5 -2.8 4.3 0.9 6.2 -1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 4.3 -1.6 -3.3 -3.8 -1.9 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.2 -0.9 -5.2 0.6 | 0.4
0.2
0.7
0.3
0.2
0.2
0.1
0.1
0.9
0.0
0.1
1.2
-0.2
-1.1
0.0
0.0
0.0
0.0
0.1
1.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
774
0
814
77.4 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
0
839
79.1
30.1
49.0
56.3
18.3 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 67.9 23.7 44.1 49.2 16.0 1.5 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
42.5
46.7
13.9 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.5 | 3056
1942
11114
5703
3836
4407
433
4416
6190
3247
1172
1541
2500
56.3
16.0
40.3
39.5
7.5 | 3087
1920
1167
5746
3806
4550
433
4503
5994
1174
1603
3
3
2592
53.3
13.5
39.8
37.1
5.5 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
38.0
6.1
1.3 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6
6.9
1.2 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 51.2 11.0 40.2 36.4 4.2 1.3 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 -1.2 -0.4 1.5 -2.8 4.3 0.9 6.2 -1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 -1.6 -3.3 -1.8 -1.9 -5.2 -2.6 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.9 -5.2 | 0.44
0.22
0.77
0.33
0.22
0.02
0.10
0.11
0.59
0.00
0.11
0.12
0.12
0.12
0.12
0.12
0.12 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 3513
2517
996
5603
3710
3272
6665
4176
6503
2531
1447
77.4
54.9
22.1
1.5
6.8 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
839
79.1
30.1
49.0
56.3
18.3
1.2
6.7 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1490 67.9 23.7 44.1 49.2 16.0 1.5 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
42.5
46.7
13.9
1.2 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.7
9.5
1.2
4.8 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
39.5
7.5
1.3
35.3 | 3087
1920
1167
5746
3806
4550
433
4503
34503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1
5.5
1.2 | 3177
1954
1222
5873
3799
4614
454
453
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
38.0
6.1
1.3
5.3 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6
6.9
1.2
5.0 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7
1.2
5.2 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 36.4 4.2 1.3 5.4 | 0.3 -1.9 -3.0 -0.6 -0.2 -0.2 -3.0 -3.2 -1.4 -1.5 -2.8 -1.3 -1.1 -3.2 -0.2 -2.3 | -0.1 -0.3 -0.4 -0.1 -0.3 0.5 -0.0 -2.4 -0.7 -0.1 0.3 0.5 2.2 93.7 -1.6 -3.8 -1.9 -5.2 -2.6 -1.2 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 -0.1 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 -0.9 -5.2 0.6 | 0.4 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 3513
2517
996
5603
3710
3272
6665
4176
6503
2531
1447
774
0
814
77.4
54.9
22.1
1.5
6.8
8.8
8.8
6.1 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
839
79.1
30.1
49.0
56.3
18.3
1.2
6.7
10.7
6.7 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1184 0 1490 67.9 23.7 44.1 49.2 16.0 1.5 5.4 8.6 5.2 12.5 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
42.5
46.7
13.9
1.2
4.7
8.8
5.5
5.5
12.5 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
11474
1
2274
57.5
17.0
40.5
40.7
9.5
1.2
4.8
8.0
5.6
11.7 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3
39.5
7.5
1.3
5.3
8.1
5.5
5.1 | 3087
1920
1167
5746
3806
4550
433
4503
4503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1
5.5
1.2
5.1
8.0
5.1 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3
38.0
6.1
1.3
5.3
8.2
4.8 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6
6.9
9
1.2
5.0
8.2
4.9 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7
1.2
5.2
8.1 | 18187 3328 1986 1342
6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 36.4 4.2 4.8 8.2 4.8 12.6 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 1.5 -2.8 4.3 0.9 6.2 -1.3 -1.1 -3.2 -0.2 -2.3 -0.2 -1.6 2.7 | -0.1 -0.3 -0.4 -0.1 -0.3 -0.5 -0.0 -2.4 -0.7 -0.1 -0.3 -0.5 -2.9 -0.7 -0.1 -1.6 -0.6 -0.6 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 -0.1 0.4 -0.1 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 -0.8 0.6 0.6 0.8 0.3 | 0.3 0.4 0.2 0.7 0.3 0.2 0.0 0.1 0.1 0.1 0.9 0.0 0.1 8.6 1.2 -1.0 0.3 0.2 0.3 0.1 -1.3 0.2 0.3 0.1 0.4 0.4 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 3513
2517
996
5603
3710
3272
665
4176
6503
2531
1447
77.4
54.9
22.1
1.5
6.8
8.8
6.1
9.5
5 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
79.1
30.1
49.0
56.3
18.3
1.2
6.7
10.7
6.7 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1180 67.9 23.7 44.1 49.2 16.0 1.5.4 8.6 5.2 12.5 3.3 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
46.7
13.9
1.2
4.7
8.8
5.5
12.5
3.1 | 2835
1785
1050
5530
3829
4380
378
4385
6179
3026
1149
1474
1
2274
57.5
17.0
40.5
40.7
9.5
1.2
4.8
8.0
5.6
11.7
3.2 | 3056 1942 1114 5703 3836 4407 433 4416 6190 3247 1172 1541 2 2500 56.3 16.0 40.3 39.5 7.5 1.3 8.1 5.5 11.8 | 3087
1920
1167
5746
3806
4550
433
4503
34503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1
5.5
1.2
5.1
8.0
5.1
12.1
12.1 | 3177
1954
1222
5873
3799
4614
453
6069
3612
1163
1626
5
2942
54.4
14.3
40.1
138.0
6.1
1.3
8.2
4.8
12.2
4.8
12.2
3.3 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
9
1.2
5.0
8.2
4.9
12.4
4.3 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7
1.2
8.1
4.7
1.2
8.1
4.7 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 36.4 4.2 1.3 5.4 8.2 4.8 12.6 1.8 | -1.1 -3.2 -1.3 -1.1 -3.2 -2.3 -0.2 -1.3 | -0.1 -0.3 -0.4 -0.1 -0.3 -0.5 -0.0 -0.1 -0.3 -0.5 -0.1 -0.1 -0.3 -0.5 -0.1 -0.1 -0.3 -0.5 -0.1 -0.0 -0.1 -0.0 -0.1 -0.0 -0.1 -0.0 -0.1 -0.0 -0.0 | 0.4 0.9 0.7 1.1 0.4 -0.1 1.4 0.3 1.4 0.2 0.8 15.0 1.3 -0.8 -2.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 | 0.44
0.22
0.7
0.3
0.2
0.2
0.0
0.1
0.1
0.0
0.1
1.2
0.2
0.3
0.2
0.3
0.3
0.2
0.2
0.3
0.3
0.2
0.2
0.2
0.3
0.3
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 3513
2517
996
5603
3710
3272
6665
4176
6503
2531
1447
774
0
814
77.4
54.9
22.1
1.5
6.8
8.8
8.8
6.1 | 3372
2271
1102
6464
4071
4266
690
4859
7852
2781
1308
683
0
839
79.1
30.1
49.0
56.3
18.3
1.2
6.7
10.7
6.7 | 16660 2912 1853 1058 5719 3628 4401 481 4703 6261 2941 1090 1184 0 1490 67.9 23.7 44.1 49.2 16.0 1.5 5.4 8.6 5.2 12.5 | 2769
1711
1057
5886
3800
4462
392
4652
6440
2968
1165
1300
0
1798
63.7
21.2
42.5
46.7
13.9
1.2
4.7
8.8
5.5
5.5
12.5 | 2835
1785
1050
5530
3829
4380
378
4365
6179
3026
11474
1
2274
57.5
17.0
40.5
40.7
9.5
1.2
4.8
8.0
5.6
11.7 | 3056
1942
1114
5703
3836
4407
433
4416
6190
3247
1172
1541
2
2500
56.3
16.0
40.3
39.5
7.5
1.3
5.3
8.1
5.5
5.1 | 3087
1920
1167
5746
3806
4550
433
4503
4503
3479
1174
1603
3
2592
53.3
13.5
39.8
37.1
5.5
1.2
5.1
8.0
5.1 | 3177
1954
1222
5873
3799
4614
454
4533
6069
3612
1163
1626
5
2942
54.4
14.3
38.0
6.1
1.3
5.3
8.2
4.8 | 3146
1946
1200
5923
3839
4701
453
4608
5935
3741
1272
1592
9
3232
55.1
15.0
40.0
38.6
6.9
9
1.2
5.0
8.2
4.9 | 3236
1967
1269
6015
3901
4725
438
4593
5982
4028
1205
1618
12
3144
51.6
11.7
39.8
36.4
4.7
1.2
5.2
8.1 | 18187 3328 1986 1342 6105 3977 4776 431 4586 6161 4197 1169 1628 16 3265 51.2 11.0 40.2 36.4 4.2 4.8 8.2 4.8 12.6 | 0.3 -1.9 -3.0 0.6 0.2 -0.2 3.0 -3.2 1.2 -0.4 1.5 -2.8 4.3 0.9 6.2 -1.3 -1.1 -3.2 -0.2 -2.3 -0.2 -1.6 2.7 | -0.1 -0.3 -0.4 -0.1 -0.3 -0.5 -0.0 -2.4 -0.7 -0.1 -0.3 -0.5 -2.9 -0.7 -0.1 -1.6 -0.6 -0.6 | 0.4 0.9 0.7 1.1 0.4 -0.1 0.4 -0.1 0.4 -0.1 1.4 0.3 -0.3 1.4 0.2 0.8 15.0 -0.8 0.6 0.6 0.8 0.3 | 0.44
0.22
0.7
0.3
0.2
0.2
0.0
0.1
1.2
-0.2
0.3
0.2
0.3
0.2
0.3 | | SUMMARY ENERGY BALANCE AND INDICAT | | | | | | | | | | | | ngary: R | | | | |---|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|-------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | Ar | nnual % | Change |) | | Main Energy System Indicators Population (Million) | 10.222 | 10.098 | 10.014 | 9.958 | 9.901 | 9.820 | 9.704 | 9.575 | 9.443 | 9.316 | 9.177 | -0.2 | -0.1 | -0.2 | | | GDP (in 000 M€10) | 79.9 | 98.0 | 97.1 | 101.7 | 106.6 | 115.9 | 127.3 | 137.5 | 146.5 | 154.4 | 162.0 | 2.0 | 0.9 | 1.8 | | | Gross Inl. Cons./GDP (toe/M€10) | 316.5 | 282.6 | 267.6 | 252.1 | 232.8 | 229.1 | 216.9 | 205.7 | 190.2 | 188.1 | 181.8 | -1.7 | -1.4 | -0.7 | | | Carbon intensity (t of CO ₂ /toe of GIC) | 2.17 | 2.03 | 1.90 | 1.82 | 1.64 | 1.49 | 1.34 | 1.34 | 1.38 | 1.25 | 1.24 | -1.3 | -1.4 | -2.0 | | | mport Dependency % | 55.2 | 63.2 | 58.3 | 57.3 | 58.2 | 53.5 | 50.7 | 52.6 | 56.5 | 56.3 | 57.1 | | | | | | otal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 12.2 | 17.2 | 21.6 | 24.8 | 27.7 | 30.5 | 33.5 | 35.6 | 37.9 | 39.3 | 40.3 | 5.8 | 2.5 | 1.9 | | | as % of GDP | 15.3 | 17.5 | 22.2 | 24.3 | 26.0 | 26.3 | 26.3 | 25.9 | 25.9 | 25.4 | 24.9 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | ndustry (Energy on Value added, index 2000=100) | 100.0 | 74.8 | 64.8 | 58.8 | 57.3 | 56.5 | 51.9 | 49.5 | 46.1 | 45.0 | 44.1 | -4.2 | -1.2 | -1.0 | | | esidential (Energy on Private Income, index 2000=100) | 100.0 | 90.3 | 85.4 | 84.2 | 75.6 | 71.8 | 65.9 | 62.2 | 58.8 | 56.5 | 54.4 | -1.6 | -1.2 | -1.4 | | | ertiary (Energy on Value added, index 2000=100) | 100.0 | 90.0 | 81.9 | 81.8 | 78.6 | 72.3 | 65.1 | 59.9 | 56.8 | 54.7 | 53.1 | -2.0 | -0.4 | -1.9 | | | assenger transport (toe/Mpkm) | 28.4 | 29.9 | 27.8 | 27.0 | 24.8 | 22.5 | 21.1 | 20.3 | 19.6 | 19.1 | 18.8 | -0.2 | -1.2 | -1.6 | | | reight transport (toe/Mtkm) | 34.4 | 48.0 | 46.1 | 45.1 | 43.6 | 41.1 | 39.5 | 38.4 | 37.2 | 36.3 | 35.5 | 3.0 | -0.6 | -1.0 | | | arbon Intensity indicators | | | | | | | | | | | | | | | | | lectricity and Steam production (t of CO ₂ /MWh) | 0.41 | 0.34 | 0.31 | 0.27 | 0.18 | 0.13 | 0.09 | 0.10 | 0.10 | 0.07 | 0.06 | -2.7 | -5.3 | -6.7 | | | inal energy demand (t of CO ₂ /toe) | 1.94 | 2.02 | 1.90 | 1.87 | 1.81 | 1.81 | 1.77 | 1.75 | 1.73 | 1.70 | 1.70 | -0.2 | -0.5 | -0.3 | | | Industry | 1.92 | 2.00 | 1.85 | 1.71 | 1.68 | 1.74 | 1.64 | 1.67 | 1.60 | 1.61 | 1.61 | -0.4 | -1.0 | -0.2 | | | Residential | 1.57 | 1.66 | 1.50 | 1.49 | 1.45 | 1.42 | 1.40 | 1.39 | 1.38 | 1.35 | 1.34 | -0.4 | -0.3 | -0.4 | | | Tertiary Transport (C) | 1.65 | 1.65 | 1.44 | 1.46 | 1.45 | 1.44 | 1.35 | 1.28 | 1.27 | 1.20 | 1.20 | -1.3 | 0.1 | -0.7 | | | | 2.92 | 2.94 | 2.84 | 2.81 | 2.68 | 2.67 | 2.66 | 2.65 | 2.64 | 2.63 | 2.63 | -0.3 | -0.6 | -0.1 | - | | dicators for renewables nare of RES in Gross Final Energy Consumption (b) (%) | 4.8 | 4.4 | 8.5 | 10.3 | 13.3 | 14.2 | 14.5 | 16.2 | 17.5 | 16.8 | 17.1 | | | | | | ES in transport (%) | 0.0 | 0.1 | 4.4 | 5.3 | 10.1 | 10.4 | 10.6 | 11.1 | 11.6 | 11.6 | 11.8 | | | | | | ross Electricity generation by source (in GWh _e) (E) | 35191 | 35756 | 37371 | 35383 | 36250 | 40959 | 44627 | 44883 | 48109 | 52694 | 54884 | 0.6 | -0.3 | 2.1 | | | Nuclear energy | 14180 | 13834 | 15761 | 16989 | 17323 | 25911 | 32289 | 25440 | 16744 | 26426 | 27068 | 1.1 | 0.9 | 6.4 | | | Solids | 9590 | 7023 | 6234 | 6678 | 1997 | 2011 | 1354 | 1134 | 5445 | 4825 | 5803 | -4.2 | -10.8 | -3.8 | | | Oil (including refinery gas) | 4404 | 455 | 490 | 639 | 473 | 259 | 267 | 351 | 466 | 486 | 502 | -19.7 |
-0.3 | -5.6 | | | Gas (including derived gases) | 6719 | 12502 | 11714 | 7732 | 10651 | 5508 | 3791 | 7456 | 12573 | 8321 | 8119 | 5.7 | -0.9 | -9.8 | | | Biomass-waste | 120 | 1730 | 2449 | 2326 | 3637 | 4177 | 3589 | 4850 | 6762 | 6119 | 6804 | 35.2 | 4.0 | -0.1 | | | Hydro (pumping excluded) | 178 | 202 | 188 | 249 | 255 | 254 | 258 | 258 | 255 | 258 | 258 | 0.5 | 3.1 | 0.1 | | | Wind | 0 | 10 | 534 | 768 | 1799 | 2281 | 2281 | 2598 | 2625 | 2733 | 2804 | 0.0 | 12.9 | 2.4 | | | Solar | 0 | 0 | 1 | 4 | 114 | 558 | 798 | 1063 | 1128 | 1415 | 1415 | 0.0 | 63.2 | 21.5 | | | Geothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1733 | 2109 | 2109 | 2109 | 0.0 | -100.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | et Generation Capacity in MW _e | 8237 | 8301 | 9135 | 9092 | 8258 | 8951 | 10167 | 10293 | 10753 | 11806 | 12338 | 1.0 | -1.0 | 2.1 | | | Nuclear energy | 1706 | 1728 | 1992 | 2017 | 2030 | 3029 | 4035 | 3019 | 2000 | 3125 | 3200 | 1.6 | 0.2 | 7.1 | | | Renewable energy | 44 | 65 | 353 | 478 | 1059 | 1793 | 2012 | 2379 | 2446 | 2731 | 2765 | 23.1 | 11.6 | 6.6 | | | Hydro (pumping excluded) | 44 | 48 | 56 | 63 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 2.4 | 1.4 | 0.0 | | | Wind
Solar | 0 | 18
0 | 295
2 | 413
3 | 903
93 | 1236
493 | 1236 | 1387
928 | 1400
981 | 1452
1215 | 1485 | 0.0 | 11.8
46.8 | 3.2
22.6 | | | | 0 | 0 | 0 | 0 | 93 | 493 | 712
0 | 926 | 961 | 0 | 1215
0 | 0.0 | 0.0 | 0.0 | | | Other renewables (tidal etc.) Thermal power | 6487 | 6508 | 6791 | 6596 | 5168 | 4129 | 4119 | 4894 | 6307 | 5950 | 6373 | 0.0 | -2.7 | -2.2 | | | of which cogeneration units | 1464 | 1608 | 1462 | 1292 | 1501 | 1655 | 1625 | 1599 | 2122 | 2155 | 1963 | 0.0 | 0.3 | 0.8 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 605 | 605 | 722 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1515 | 1324 | 1247 | 882 | 301 | 291 | 291 | 238 | 709 | 521 | 588 | -1.9 | -13.2 | -0.3 | | | Gas fired | 3722 | 4316 | 4678 | 4899 | 4172 | 3114 | 3114 | 3719 | 4268 | 4068 | 4221 | 2.3 | -1.1 | -2.9 | | | Oil fired | 957 | 514 | 515 | 433 | 147 | 133 | 104 | 107 | 137 | 139 | 126 | -6.0 | -11.8 | -3.4 | | | Biomass-waste fired | 293 | 354 | 350 | 382 | 549 | 591 | 610 | 633 | 953 | 981 | 1198 | 1.8 | 4.6 | 1.1 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 198 | 241 | 241 | 241 | 0.0 | 0.0 | 0.0 | | | vg. Load factor of net power capacity (F) (%) | 44.7 | 45.7 | 43.3 | 42.2 | 48.1 | 49.8 | 47.7 | 47.5 | 47.6 | 47.5 | 47.3 | | | | | | ectricity indicators | | | | | | | | | | | | | | | Т | | fficiency of gross thermal power generation (%) | 29.8 | 32.8 | 34.1 | 33.1 | 37.8 | 34.0 | 31.6 | 28.6 | 34.9 | 33.0 | 34.7 | | | | | | of gross electricity from CHP | 13.5 | 19.1 | 19.6 | 21.8 | 23.9 | 21.0 | 18.1 | 20.0 | 27.6 | 23.6 | 22.9 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 10.9 | 11.8 | | | | | | arbon free gross electricity generation (%) | 41.1 | 44.1 | 50.7 | 57.5 | 63.8 | 81.0 | 87.9 | 80.1 | 61.6 | 74.1 | 73.7 | | | | | | nuclear | 40.3 | 38.7 | 42.2 | 48.0 | 47.8 | 63.3 | 72.4 | 56.7 | 34.8 | 50.1 | 49.3 | | | | | | renewable energy forms | 0.8 | 5.4 | 8.5 | 9.5 | 16.0 | 17.8 | 15.5 | 23.4 | 26.8 | 24.0 | 24.4 | | | | | | ransport sector | | | | | | | | | | | | | | | | | assenger transport activity (Gpkm) | 80.1 | 84.2 | 83.6 | 87.4 | 91.4 | 100.3 | 110.0 | 116.5 | 123.3 | 127.6 | 131.9 | 0.4 | 0.9 | 1.9 | | | Public road transport | 18.7 | 17.8 | 16.0 | 16.6 | 17.2 | 18.1 | 19.0 | 19.6 | 20.2 | 20.6 | 21.0 | -1.6 | 0.7 | 1.0 | | | Private cars and motorcycles | 47.0 | 50.5 | 53.8 | 55.7 | 57.5 | 63.0 | 69.0 | 72.8 | 76.7 | 78.7 | 80.7 | 1.4 | 0.7 | 1.9 | | | Rail | 12.3 | 12.2 | 10.2 | 10.8 | 11.4 | 12.8 | 14.4 | 15.4 | 16.5 | 17.2 | 17.9 | -1.9 | 1.2 | 2.3 | | | Aviation | 2.1 | 3.7 | 3.6 | 4.4 | 5.3 | 6.4 | 7.7 | 8.7 | 9.9 | 11.0 | 12.2 | 5.7 | 3.9 | 3.8 | | | Inland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | reight transport activity (Gtkm) | 28.8 | 36.4 | 44.9 | 46.7 | 48.5 | 52.3 | 56.3 | 58.8 | 61.4 | 62.9 | 64.6 | 4.5 | 0.8 | 1.5 | | | Trucks
Rail | 19.1
8.8 | 25.2
9.1 | 33.7
8.8 | 34.6
9.6 | 35.4
10.4 | 37.8
11.4 | 40.4
12.6 | 42.1
13.2 | 43.9
13.9 | 45.1
14.3 | 46.2
14.6 | 5.8
0.0 | 0.5
1.7 | 1.3
1.9 | | | Inland navigation | 0.9 | 2.1 | 2.4 | 2.6 | 2.7 | 3.0 | 3.3 | 3.4 | 3.6 | 3.6 | 3.7 | 10.4 | 1.7 | 1.9 | | | nergy demand in transport (ktoe) (G) | 3270 | 4262 | 4401 | 4461 | 4379 | 4406 | 4549 | 4613 | 4700 | 4724 | 4775 | 3.0 | -0.1 | 0.4 | ٠ | | Public road transport | 340 | 318 | 278 | 286 | 289 | 289 | 290 | 291 | 294 | 295 | 294 | -2.0 | 0.4 | 0.4 | | | Private cars and motorcycles | 1665 | 1904 | 1791 | 1773 | 1644 | 1607 | 1628 | 1622 | 1641 | 1640 | 1651 | 0.7 | -0.9 | -0.1 | | | Trucks | 864 | 1625 | 1949 | 1972 | 1977 | 2004 | 2071 | 2101 | 2133 | 2138 | 2156 | 8.5 | 0.1 | 0.5 | | | | | 153 | 151 | 161 | 170 | 179 | 189 | 192 | 192 | 187 | 180 | -1.2 | 1.2 | 1.1 | | | Rail | 171 | | | | | | | .52 | | .57 | .00 | | | | | | | 171
230 | | | 268 | 299 | 324 | 369 | 406 | 439 | 463 | 492 | 0.0 | 2.7 | 2.1 | | | Rail Aviation Inland navigation | 230 | 261 | 230
1 | 268
1 | 299
1 | 324
1 | 369
1 | 406
1 | 439
1 | 463
1 | 492
1 | 0.0 | 2.7
1.3 | 2.1
1.7 | | | reland: Reference scenario | | | | | | | | | | NERGY | | | | | |--|--|---|---|---|---|---|---|--
--|--|---|--|--|---| | toe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | | | | | | | | | | | | | nnual % | | | Production (incl.recovery of products) Solids | 2190
997 | 1671
847 | 1994
1040 | 2412 | 2886
643 | 3412
447 | 3757
281 | 3797
68 | 3923 62 | 3998 | 4192
58 | -0.9
0.4 | 3.8
-4.7 | 2.7
-7.9 | | Oil | 0 | 0 | 1040 | 653
9 | 9 | 9 | 201 | 9 | 9 | 59
9 | 9 | 0.4 | 0.0 | 0.0 | | Natural gas | 958 | 461 | 316 | 642 | 537 | 519 | 661 | 761 | 736 | 656 | 639 | -10.5 | 5.4 | 2.1 | | Nuclear | 956 | 461 | 0 | 0 | 0 | 0 | 001 | 761 | 736 | 0 | 039 | 0.0 | 0.0 | 0.0 | | | 235 | 364 | 628 | 1107 | 1698 | 2436 | 2806 | 2958 | 3116 | 3274 | 3485 | 10.3 | 10.4 | 5.2 | | Renewable energy sources | | | | | | | | | | | | | | | | Hydro | 73 | 54 | 52 | 68 | 84 | 85 | 88 | 93 | 104 | 117 | 126 | -3.4 | 5.0 | 0.4 | | Biomass & Waste | 141 | 213 | 329 | 493 | 622 | 719 | 915 | 1004 | 1091 | 1135 | 1178 | 8.8 | 6.6 | 3.9 | | Wind | 21 | 96 | 242 | 494 | 872 | 1418 | 1498 | 1517 | 1544 | 1570 | 1658 | 27.7 | 13.7 | 5.6 | | Solar and others | 0 | 0 | 6 | 52 | 119 | 213 | 302 | 341 | 374 | 448 | 519 | 46.8 | 35.8 | 9.8 | | Geothermal | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 0.0 | 0.0 | 10.6 | | et Imports | 12156 | 13715 | 13001 | 12984 | 12211 | 11422 | 11437 | 11994 | 12359 | 12833 | 13339 | 0.7 | -0.6 | -0.7 | | Solids | 1693 | 2016 | 1038 | 2053 | 1921 | 1208 | 398 | 412 | 413 | 412 | 419 | -4.8 | 6.4 | -14.6 | | Oil | 7977 | 8514 | 7496 | 7656 | 7361 | 7426 | 7573 | 7724 | 7864 | 7975 | 8195 | -0.6 | -0.2 | 0.3 | | - Crude oil and Feedstocks | 2994 | 3316 | 2981 | 3057 | 2897 | 2865 | 2844 | 2811 | 2785 | 2777 | 2793 | 0.0 | -0.3 | -0.2 | | - Oil products | 4982 | 5198 | 4514 | 4599 | 4464 | 4561 | 4729 | 4913 | 5079 | 5199 | 5403 | -1.0 | -0.1 | 0.6 | | Natural gas | 2478 | 3010 | 4386 | 2789 | 2170 | 2027 | 2614 | 3004 | 3168 | 3480 | 3727 | 5.9 | -6.8 | 1.9 | | Electricity | 8 | 176 | 40 | 240 | 235 | 260 | 294 | 293 | 303 | 326 | 329 | 17.0 | 19.3 | 2.3 | | ross Inland Consumption | 14249 | 15235 | 15100 | 15294 | 14988 | 14718 | 15070 | 15664 | 16149 | 16690 | 17380 | 0.6 | -0.1 | 0.1 | | Solids | 2646 | 2789 | 2095 | 2706 | 2564 | 1655 | 679 | 481 | 475 | 471 | 476 | -2.3 | 2.0 | -12.4 | | Oil | 7924 | 8437 | 7604 | 7563 | 7263 | 7322 | 7461 | 7610 | 7744 | 7849 | 8060 | -0.4 | -0.5 | 0.3 | | Natural gas | 3436 | 3470 | 4696 | 3431 | 2706 | 2544 | 3272 | 3761 | 3900 | 4131 | 4361 | 3.2 | -5.4 | 1.9 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Electricity | 8 | 176 | 40 | 240 | 235 | 260 | 294 | 293 | 303 | 326 | 329 | 17.0 | 19.3 | 2.3 | | Renewable energy forms | 235 | 364 | 666 | 1354 | 2220 | 2937 | 3364 | 3519 | 3727 | 3913 | 4154 | 11.0 | 12.8 | 4.2 | | | 200 | 304 | 300 | 1004 | 2220 | 2331 | 0004 | 0010 | 0121 | 0310 | 7104 | 11.0 | 12.0 | 4.2 | | s % in Gross Inland Consumption | 10.0 | 400 | 40.0 | 47.7 | 47.4 | 44.0 | | 0.4 | 0.0 | 0.0 | o = | | | | | Solids | 18.6 | 18.3 | 13.9 | 17.7 | 17.1 | 11.2 | 4.5 | 3.1 | 2.9 | 2.8 | 2.7 | | | | | Oil | 55.6 | 55.4 | 50.4 | 49.5 | 48.5 | 49.8 | 49.5 | 48.6 | 48.0 | 47.0 | 46.4 | | | | | Natural gas | 24.1 | 22.8 | 31.1 | 22.4 | 18.1 | 17.3 | 21.7 | 24.0 | 24.1 | 24.8 | 25.1 | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Renewable energy forms | 1.6 | 2.4 | 4.4 | 8.9 | 14.8 | 20.0 | 22.3 | 22.5 | 23.1 | 23.4 | 23.9 | | | | | ross Electricity Generation in GWh _e | 23669 | 25621 | 28429 | 27355 | 27686 | 29853 | 32358 | 35596 | 38015 | 40478 | 43333 | 1.8 | -0.3 | 1.6 | | Self consumption and grid losses | 3467 | 3422 | 3406 | 3335 | 3204 | 3265 | 3233 | 3493 | 3733 | 3994 | 4267 | -0.2 | -0.6 | 0.1 | | iel Inputs to Thermal Power Generation | 4747 | 4742 | 4592 | 3875 | 3164 | 2214 | 2088 | 2350 | 2526 | 2718 | 2892 | -0.3 | -3.7 | -4.1 | | Solids | 1902 | 1906 | 1363 | 2087 | 1956 | 1161 | 218 | 8 | 5 | 5 | 5 | -3.3 | 3.7 | -19.7 | | Oil (including refinery gas) | 996 | 766 | 135 | 13 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | -18.1 | -20.4 | 2.6 | | Gas (including derived gases) | 1825 | 2040 | 3017 | 1642 | 976 | 797 | 1474 | 1925 | 2020 | 2182 | 2329 | 5.2 | -10.7 | 4.2 | | Biomass & Waste | 24 | 30 | 77 | 132 | 219 | 240 | 378 | 396 | 479 | 508 | 533 | 12.6 | 11.0 | 5.6 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | uel Input to other conversion processes | 3480 | 3495 | 3179 | 3359 | 3416 | 3363 | 3339 | 3308 | 3291 | 3300 | 3341 | -0.9 | 0.7 | -0.2 | | | 3317 | 3354 | 2943 | | | | 2853 | 2820 | | | 2802 | -1.2 | | | | Refineries | | | | 3066 | 2907 | 2874 | | | 2794 | 2786 | | | -0.1 | -0.2 | | Biofuels and hydrogen production | 0 | 1 | 90 | 182 | 402 | 412 | 419 | 421 | 433 | 454 | 480 | 0.0 | 16.1 | 0.4 | | District heating | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Derived gases, cokeries etc. | 162 | 139 | 146 | 111 | 108 | 77 | 67 | 67 | 63 | 61 | 59 | -1.1 | -3.0 | -4.6 | | nergy Branch Consumption | | | | | | | 174 | 165 | 168 | 171 | 176 | 0.1 | -1.3 | -2.5 | | | 254 | 296 | 257 | 240 | 225 | 204 | 1/4 | | | | | | -1.0 | | | on-Energy Uses | 254
552 | 296
308 | 257
265 | 240
301 | 225
332 | 204
348 | 373 | 395 | 412 | 429 | 450 | -7.1 | 2.3 | 1.2 | | | | | | | | | | 395
13861 | 412
14336 | 429
14813 | | -7.1
1.0 | | 1.2
0.7 | | nal Energy Demand | 552 | 308 | 265 | 301 | 332 | 348 | 373 | | | | 450 | | 2.3 | | | nal Energy Demand
v sector | 552 | 308 | 265 | 301 | 332 | 348 | 373 | | | | 450 | | 2.3 | | | nal Energy Demand
v sector
dustry | 552
10688 | 308
12515 | 265
11790 | 301
12379 | 332
12407 | 348
12691 | 373
13279 | 13861 | 14336 | 14813 | 450
15471 | 1.0 | 2.3
0.5 | 0.7 | | nal Energy Demand
y sector
dustry
energy intensive industries | 552
10688
2497
1242 | 308
12515
2631
1344 | 265
11790
1921
895 | 301
12379
2335
1056 | 332
12407
2441
1105 | 348
12691
2650 | 373
13279
2867
1239 | 3046
1274 | 14336
3197
1290 | 14813
3364
1298 | 450
15471
3582
1307 | 1.0
-2.6
-3.2 | 2.3
0.5
2.4
2.1 | 0.7
1.6
1.2 | | nal Energy Demand y sector dustry energy intensive industries other industrial
sectors | 552
10688
2497
1242
1256 | 308
12515
2631
1344
1287 | 265
11790
1921
895
1026 | 301
12379
2335
1056
1278 | 332
12407
2441
1105
1337 | 348
12691
2650
1190
1460 | 373
13279
2867
1239
1628 | 3046
1274
1772 | 3197
1290
1907 | 3364
1298
2066 | 450
15471
3582
1307
2276 | 1.0
-2.6
-3.2
-2.0 | 2.3
0.5
2.4
2.1
2.7 | 1.6
1.2
2.0 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors esidential | 552
10688
2497
1242
1256
2503 | 308
12515
2631
1344
1287
2907 | 265
11790
1921
895
1026
3241 | 301
12379
2335
1056
1278
3213 | 332
12407
2441
1105
1337
3107 | 348
12691
2650
1190
1460
3129 | 373
13279
2867
1239
1628
3209 | 3046
1274
1772
3336 | 3197
1290
1907
3403 | 3364
1298
2066
3483 | 450
15471
3582
1307
2276
3592 | -2.6
-3.2
-2.0
2.6 | 2.3
0.5
2.4
2.1
2.7
-0.4 | 1.6
1.2
2.0
0.3 | | mal Energy Demand // sector dustry dustry energy intensive industries other industrial sectors ssidential entiary | 552
10688
2497
1242
1256
2503
1670 | 308
12515
2631
1344
1287
2907
1980 | 265
11790
1921
895
1026
3241
1961 | 301
12379
2335
1056
1278
3213
1924 | 332
12407
2441
1105
1337
3107
1896 | 348
12691
2650
1190
1460
3129
1881 | 373
13279
2867
1239
1628
3209
1911 | 3046
1274
1772
3336
1964 | 3197
1290
1907
3403
1995 | 3364
1298
2066
3483
2055 | 450
15471
3582
1307
2276
3592
2138 | 1.0
-2.6
-3.2
-2.0
2.6
1.6 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3 | 1.6
1.2
2.0
0.3
0.1 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors esidential witary ansport | 552
10688
2497
1242
1256
2503 | 308
12515
2631
1344
1287
2907 | 265
11790
1921
895
1026
3241 | 301
12379
2335
1056
1278
3213 | 332
12407
2441
1105
1337
3107 | 348
12691
2650
1190
1460
3129 | 373
13279
2867
1239
1628
3209 | 3046
1274
1772
3336 | 3197
1290
1907
3403 | 3364
1298
2066
3483 | 450
15471
3582
1307
2276
3592 | -2.6
-3.2
-2.0
2.6 | 2.3
0.5
2.4
2.1
2.7
-0.4 | 1.6
1.2
2.0
0.3 | | nal Energy Demand s sector dustry energy intensive industries other industrial sectors ssidential witary ansport r fuel | 552
10688
2497
1242
1256
2503
1670
4018 | 308
12515
2631
1344
1287
2907
1980
4997 | 265
11790
1921
895
1026
3241
1961
4667 | 301
12379
2335
1056
1278
3213
1924
4907 | 332
12407
2441
1105
1337
3107
1896
4963 | 348
12691
2650
1190
1460
3129
1881
5031 | 373
13279
2867
1239
1628
3209
1911
5291 | 3046
1274
1772
3336
1964
5516 | 3197
1290
1907
3403
1995
5742 | 3364
1298
2066
3483
2055
5910 | 450
15471
3582
1307
2276
3592
2138
6159 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6 | 1.6
1.2
2.0
0.3
0.1
0.6 | | nal Energy Demand / sector dustry dustry dustry string industrial sectors asidential settory sasport / fuel Solids | 552
10688
2497
1242
1256
2503
1670
4018 | 308
12515
2631
1344
1287
2907
1980
4997 | 265
11790
1921
895
1026
3241
1961
4667 | 301
12379
2335
1056
1278
3213
1924
4907 | 332
12407
2441
1105
1337
3107
1896
4963 | 348
12691
2650
1190
1460
3129
1881
5031 | 373
13279
2867
1239
1628
3209
1911
5291 | 3046
1274
1772
3336
1964
5516 | 3197
1290
1907
3403
1995
5742 | 14813
3364
1298
2066
3483
2055
5910 | 450
15471
3582
1307
2276
3592
2138
6159 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6 | 0.7
1.6
1.2
2.0
0.3
0.1
0.6 | | nal Energy Demand / sector dustry dustry energy intensive industries other industrial sectors esidential aritary ansport / fuel Solids Oil | 552
10688
2497
1242
1256
2503
1670
4018 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019 | 265
11790
1921
895
1026
3241
1961
4667
606
7111 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933 | 3046
1274
1772
3336
1964
5516
463
7071 | 14336
3197
1290
1907
3403
1995
5742
461
7189 | 14813
3364
1298
2066
3483
2055
5910
458
7270 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5 | 0.7
1.6
1.2
2.0
0.3
0.1
0.6 | | nal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential entiary ansport y fuel Solids Oil Gas | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461 | 265
11790
1921
895
1026
3241
1961
4667
606
7111
1614 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761 | 3046
1274
1772
3336
1964
5516
463
7071
1786 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 -1.5 0.3 3.0 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5 | 0.7
1.6
1.2
2.0
0.3
0.1
0.6
-2.6
0.2 | | nal Energy Demand / sector dustry dustry energy intensive industries other industrial sectors ssidential eritary ansport / fuel Solids Oil Gas Electricity | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094 | 265
11790
1921
895
1026
3241
1961
4667
606
7111
1614
2163 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5
-1.5
0.3
3.0
2.2 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5
0.7 | 0.7
1.6
1.2
2.0
0.3
0.1
0.6
-2.6
0.2
0.4
1.8 | | nal Energy Demand / sector dustry dustry energy intensive industries other industrial sectors asidential artiary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
17444 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0 | 265
11790
1921
895
1026
3241
1961
4667
606
7111
1614
2163
0 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5
-1.5
0.3
3.0
2.2
0.0 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5
0.7
0.0 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors seidential retriary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms |
552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659 | 332
12407
2441
1105
1337
1896
4963
579
6773
1694
2328
0 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5
-1.5
0.3
3.0
2.2
0.0
9.6 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 | | nal Energy Demand s sector dustry energy intensive industries other industrial sectors sidential witary ansport fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
17444 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0 | 265
11790
1921
895
1026
3241
1961
4667
606
7111
1614
2163
0 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5
-1.5
0.3
3.0
2.2
0.0 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5
0.7
0.0 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 | | nal Energy Demand s sector dustry energy intensive industries other industrial sectors sidential witary ansport fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659 | 332
12407
2441
1105
1337
1896
4963
579
6773
1694
2328
0 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518 | 1.0
-2.6
-3.2
-2.0
2.6
1.6
1.5
-1.5
0.3
3.0
2.2
0.0
9.6 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 | | nal Energy Demand s sector dustry energy intensive industries other industrial sectors sidential witary ansport fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0 | 265
11790
1921
895
1026
3241
1961
4667
606
7111
1614
2163
0
295 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3 | 3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 | | nal Energy Demand / sector dustry dustry dustry energy intensive industries other industrial sectors ssidential eritary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0
184
0 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128
2
2783
57.4 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 | | nal Energy Demand / sector dustry dustry dustry energy intensive industries other industrial sectors asidential striary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) Es in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8 | 348 12691 2650 1190 1460 3129 1881 5031 473 6829 1706 2535 18 1128 2783 57.4 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
33177
55.0 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0 | 14336
3197
1290
1997
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 -1.2 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors seidential setiary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) TAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS
sectors GHG emissions | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0
217 | 308
12515
2631
1344
1287
2907
1980
4997
758
8019
1461
2094
0
184
0
355
71.5
25.4
46.1 | 265 11779 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
0
59
0
1227
63.7
19.9
43.8 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8
17.7
43.0 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128
2
2783
57.4
14.4 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
3177
55.0
12.0
43.1 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
1422
6
3500
57.1
12.5
44.7 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.9 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8 | 1.0 -2.6 -3.2 -2.0 -2.6 1.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 -1.2 -0.1 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 | | nal Energy Demand / sector dustry dustry energy intensive industries other industrial sectors seidential entiary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which PTS sectors (C013 scope) GHG emissions of which non ETS sectors GHG emissions Oto ETS sectors GHG emissions Oto ETS sectors GHG emissions | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0
217
69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8
17.7
43.0
37.9 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128
2
2783
57.4
14.4
43.0
34.0 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
3177
55.0
12.0
43.1
31.9 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
12.9
45.5
34.1 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0 | 1.0 -2.6 -3.2 -2.0 2.6 1.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 -1.2 -0.9 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.9 -1.7 | | nal Energy Demand / sector dustry dustry dustry energy intensive industries other industrial sectors ssidential eritary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) TTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions O ₂ Emissions (energy related) Power generation/District heating | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0
217
69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 5 71.5 25.4 46.1 46.9 15.3 | 265 11790 1921 895 1026 3241 1981 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 | 301
12379
2335
1056
1278
3213
31924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8
17.7
43.0
37.9
10.5 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128
2
2783
57.4
14.4
43.0
34.0
6.8 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
3
177
55.0
12.0
43.1
31.9
4.5 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
4.6 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.9
45.5
34.1
5.2 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
5.5 | 1.0 -2.6 -3.2 -2.0 -2.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 -1.2 -0.9 -2.3 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.9 -1.7 -8.2 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors seidential ritiary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Oz Emissions (energy related) Dewer generation/District heating Energy Branch | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0
217
69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 46.9 15.3 0.4 | 265 11779 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 0.3 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2
12.6 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
0
1032
1
2074
60.8
17.7
43.0
37.9
10.3 | 348
12691
2650
1190
1460
3129
1881
5031
473
6829
1706
2535
18
1128
2
2783
57.4
14.4
43.0
34.0
6.8 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
3177
55.0
12.0
43.1
31.9
4.5 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
4.0 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
48.0 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
3644
58.4
12.9
45.5
34.1
5.2
0.2 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
5.0 | 1.0 -2.6 -3.2 -2.0 -2.6 -1.6 -1.5 -1.5 -3.3 -3.0 -2.2 -0.0 -1.7 -0.9 | 2.3
0.5
2.4
2.1
2.7
-0.4
-0.3
0.6
-0.5
-0.5
0.7
0.0
13.3
74.9
12.2
-0.1
-0.2
-0.1
-0.2
-0.1 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 -1.7 -8.2 -1.6 | | nal Energy Demand / sector dustry energy intensive industries other industrial sectors seidential sertiary ansport / fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions O2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
0
118
0
217
69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 46.9 15.3 0.4 5.6 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 0.3 3.5 | 301 12379 2335 1056 1278 3213 1924 4907 589 7102 1736 2293 0 0 1227 63.7 19.8 41.2 12.6 0.3 3.9 | 332
12407
2441
1105
1337
3107
1896
4963
579
6773
1694
2328
0
1032
1
2074
60.8
17.7
43.0
37.9
10.5
0.3
3.7 | 348 12691 2650 1190 1460 3129 1881 5031 473 6829 1706 2535 18 1128 2 2783 57.4 14.4 43.0 34.0 6.8 0.3 3 4.0 | 373 13279 2867 1239 1628 3209 1911 5291 446 6933 1761 2788 64 1282 3 3177 55.0 12.0 43.1 31.9 4.5 0.3 4.1 |
13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
4.6
0.2 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8
0.2
4.0 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.5
34.1
5.2
0.2 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
4.2 | 1.0 -2.6 -3.2 -2.0 -2.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.1 -0.9 -2.3 -1.0 0.8 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -8.2 0.0 -1.7 -8.2 -1.6 0.9 | | nal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential eritary ansport y fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) TAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Oz Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 552 10688 2497 1242 1256 2503 1670 4018 707 6918 1200 1744 0 118 0 217 69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 40 355 71.5 25.4 46.1 46.9 15.3 0.4 5.6 7.0 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 658 63.3 20.0 43.3 0.3 3.5 7.6 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2
12.6
0.3
3.9
7.0 | 332 12407 2441 1105 1337 3107 1896 4963 579 6773 1694 2328 0 1032 1 2074 60.8 17.7 43.0 3.7 9 10.5 0.3 3.7 6.6 | 348 12691 2650 1190 1460 3129 1881 5031 473 6829 1706 2535 18 1128 2 2783 57.4 14.4 3.4.0 6.8 0.3 4.0 6.4 | 373
13279
2867
1239
1628
3209
1911
5291
446
6933
1761
2788
64
1282
3
3177
55.0
12.0
43.1
9
4.5
0.3
4.1
6.1 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
4.6
0.2
4.0
6.2 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8
0.2
4.0
6.1 | 14813 3364 1298 2066 3483 2055 5910 458 7270 1908 3450 248 1472 8 3644 58.4 12.9 45.5 34.1 5.2 0.2 4.1 6.1 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
25.5
0.2
4.2
6.1 | 1.0 -2.6 -3.2 -2.0 2.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 -0.5 0.7 0.0 13.3 74.9 12.2 -0.4 -1.2 -0.9 -2.3 -1.0 0.8 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 -1.7 -8.2 -1.6 0.9 -0.9 | | inal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential eritary ransport y fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions of which energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 552
10688
2497
1242
1256
2503
1670
4018
707
6918
1200
1744
174
0
118
0
217
69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 46.9 15.3 0.4 5.6 7.0 3.5 | 265 11779 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 0.3 3.5 7.6 | 301 12379 2335 1056 1278 3213 1924 4907 589 7102 1736 2293 0 659 0 1227 63.7 19.9 43.8 41.2 12.6 0.3 3.9 7.0 3.0 | 332 12407 2441 1105 1337 3107 1896 4963 579 6773 1694 2328 0 1032 1 2074 60.8 17.7 43.0 37.9 10.5 0.3 3.7 6.6 6.2.9 | 348 12691 2650 1190 1460 3129 1881 5031 473 6629 1706 2535 18 1128 2 2783 57.4 43.0 34.0 6.4 6.5 | 373 13279 2867 1239 1628 3209 1911 5291 446 6933 1761 2788 64 1282 3 3177 55.0 12.0 43.1 31.9 0.3 4.1 6.1 6.1 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
0.2
4.0
6.2 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
1422
6
3500
57.1
12.5
44.7
3.3
4.8
0.2
4.0
6.1 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.9
45.5
34.1
5.2
0.2
4.1
6.1 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
46.8
35.2
46.8
35.2 | 1.0 -2.6 -3.2 -2.0 -2.6 -1.5 -1.5 -3.3 -3.0 -2.2 -0.0 -1.7 -0.9 -0.3 -1.5 -1.1 -4.3 -4.3 -1.5 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 0.5 0.7 74.9 12.2 -0.1 -0.2 -0.3 -1.0 0.8 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 1.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | inal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential eritiary ransport y fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Oy, Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Teritary Transport | 552 10688 2497 1242 1256 2503 1670 4018 707 6918 1200 1744 0 118 0 217 69.2 42.9 15.5 0.3 5.3 6.3 3.3 12.1 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 46.9 15.3 0.4 5.6 7.0, | 265 11779 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 3.5 7.6 3.1 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2
12.3
3.9
7.0
3.0
3.0
4.3 | 332 12407 2441 1105 1337 3107 1896 4963 579 6773 1694 2328 0 1032 1 2074 60.8 17,7 43.0 37,9 10.5 0.3 3.7 6.6 2.9 13.8 | 348 12691 2650 1190 1460 3129 1881 5031 473 6829 1706 2535 18 1128 2 2783 57.4 14.4 43.0 34.0 6.8 0.3 4.0 6.4 2.5 14.0 | 373 13279 2867 1239 1628 3209 1911 5291 446 6933 1761 2788 64 1282 3 3177 55.0 12.0 43.1 31.9 4.5 0.3 4.1 6.1 2.3 14.7 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
4.0
6.2
2.2
2.2 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8
0.2
4.0
6.1
2.2
2.2
16.0 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.5
34.1
5.2
4.1
6.1
6.2 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
5.2
6.1
2.2
4.2
4.2 | 1.0 -2.6 -3.2 -2.0 -2.6 1.6 -1.5 -1.5 0.3 3.0 -2.2 0.0 9.6 0.0 11.7 -0.9 -0.3 -1.5 1.1 -4.3 1.8 -0.7 1.3 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 0.5 0.7 0.0 13.3 74.9 12.2 -0.1 -0.9 -2.3 0.8 -1.4 -0.7 0.0 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 -1.7 -8.1 6 0.9 -0.9 -0.9 | | on-Energy Uses inal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential eritiary ransport y fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) OTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions of which non ETS sectors GHG emissions O2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport O2 Emissions (non energy related) | 552 10688 2497 1242 1256 2503 1670 4018 707 6918 1200 1744 0 118 0 217 69.2 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 355 71.5 25.4 46.9 15.3 0.4 5.6 7.0 3.5.6 15.0 2.6 | 265 11790 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 0.3 5.7 6.6 3.1 13.8 | 301 12379 2335 1056 1278 3213 1924 4907 589 7102 1736 2293 0 659 0 1227 63.7 19.9 43.8 41.2 12.6 0.3 3.9 7.0 3.0 14.3 1.6 | 332 12407 2441 1105 1337 3107 1896 4963 579 6773 1694 2328 0 1032 1 2074 60.8 17.7 43.0 37.9 10.5 0.3 3.7 6.6 6.2.9 | 348 12691 2650 1190 1460 3129 1881 5031 473 6629 1706 2535 18 1128 2 2783 57.4 43.0 34.0 6.4 6.5 | 373 13279 2867 1239 1628 3209 1911 5291 446 6933 1761 2788 64 1282 3 3177 55.0 12.0 43.1 31.9 4.5 0.3 4.1 6.1 2.3 14.7 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
0.2
4.0
6.2 |
14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8
0.2
4.0
6.1
2.2
16.0
17.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18. | 14813 3364 1298 2066 3483 2055 5910 458 7270 1908 3450 248 1472 8 3644 58.4 12.9 45.5 34.1 5.2 0.2 4.1 6.1 2.1 16.4 1.8 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
4.2
6.1
2.2
17.0
1.7 | 1.0 -2.6 -3.2 -2.0 -2.6 1.5 -1.5 0.3 3.0 2.2 0.0 9.6 0.0 11.7 -0.9 -0.3 -1.5 1.1 -4.3 1.8 -0.7 1.3 -7.1 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 0.5 0.7 74.9 12.2 -0.1 -0.2 -0.3 -1.0 0.8 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 -1.7 -8.2 -1.6 0.9 -0.9 -0.9 -0.0 | | nal Energy Demand y sector dustry energy intensive industries other industrial sectors esidential ertiary ansport y fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) ES in Gross Final Energy Consumption (A) DTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (2013 scope) GHG emissions of which energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 552 10688 2497 1242 1256 2503 1670 4018 707 6918 1200 1744 0 118 0 217 69.2 42.9 15.5 0.3 5.3 6.3 3.3 12.1 | 308 12515 2631 1344 1287 2907 1980 4997 758 8019 1461 2094 0 184 0 355 71.5 25.4 46.1 46.9 15.3 0.4 5.6 7.0, | 265 11779 1921 895 1026 3241 1961 4667 606 7111 1614 2163 0 295 0 658 63.3 20.0 43.3 41.6 13.3 3.5 7.6 3.1 | 301
12379
2335
1056
1278
3213
1924
4907
589
7102
1736
2293
0
659
0
1227
63.7
19.9
43.8
41.2
12.3
3.9
7.0
3.0
3.0
4.3 | 332 12407 2441 1105 1337 3107 1896 4963 579 6773 1694 2328 0 1032 1 2074 60.8 17,7 43.0 37,9 10.5 0.3 3.7 6.6 2.9 13.8 | 348 12691 2650 1190 1460 3129 1881 5031 473 6829 1706 2535 18 1128 2 2783 57.4 14.4 43.0 34.0 6.8 0.3 4.0 6.4 2.5 14.0 | 373 13279 2867 1239 1628 3209 1911 5291 446 6933 1761 2788 64 1282 3 3177 55.0 12.0 43.1 31.9 4.5 0.3 4.1 6.1 2.3 14.7 | 13861
3046
1274
1772
3336
1964
5516
463
7071
1786
3043
121
1373
4
3313
56.0
12.2
43.8
32.6
4.0
6.2
2.2
2.2 | 14336
3197
1290
1907
3403
1995
5742
461
7189
1831
3239
189
1422
6
3500
57.1
12.5
44.7
33.3
4.8
0.2
4.0
6.1
2.2
2.2
16.0 | 14813
3364
1298
2066
3483
2055
5910
458
7270
1908
3450
248
1472
8
3644
58.4
12.5
34.1
5.2
4.1
6.1
6.2 | 450
15471
3582
1307
2276
3592
2138
6159
463
7458
1995
3673
355
1518
9
3866
60.0
13.2
46.8
35.2
5.2
6.1
2.2
4.2
4.2 | 1.0 -2.6 -3.2 -2.0 -2.6 1.6 -1.5 -1.5 0.3 3.0 -2.2 0.0 9.6 0.0 11.7 -0.9 -0.3 -1.5 1.1 -4.3 1.8 -0.7 1.3 | 2.3 0.5 2.4 2.1 2.7 -0.4 -0.3 0.6 -0.5 0.5 0.7 0.0 13.3 74.9 12.2 -0.1 -0.9 -2.3 0.8 -1.4 -0.7 0.0 | 0.7 1.6 1.2 2.0 0.3 0.1 0.6 -2.6 0.2 0.4 1.8 316.8 2.2 13.2 4.4 -1.0 -3.9 0.0 -1.7 -8.1 6 0.9 -0.9 -0.9 | | SUMMARY ENERGY BALANCE AND INDICAT | OKS (B) | | | | | | | | | | lre | land: R | eferen | ce sce | n | |---|---------------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 ' | 20-'30 | '30 | | | | | | | | | | | | | | Ar | nnual % | Change | <u>}</u> | | ain Energy System Indicators | | | | | | | | | | | | | | | | | pulation (Million) | 3.778 | 4.112 | 4.468 | 4.605 | 4.815 | 5.052 | 5.276 | 5.513 | 5.758 | 5.995 | 6.207 | 1.7 | 0.8 | 0.9 | | | DP (in 000 M€10) oss Inl. Cons./GDP (toe/M€10) | 123.2 | 156.7 | 156.0 | 170.7
89.6 | 191.6 | 225.3 | 262.2
57.5 | 294.8 | 324.6
49.7 | 353.2
47.3 | 385.9
45.0 | 2.4
-1.8 | 2.1
-2.1 | 3.2
-3.0 | | | rbon intensity (t of CO ₂ /toe of GIC) | 115.7
3.01 | 97.2
3.08 | 96.8
2.75 | 2.69 | 78.2
2.53 | 65.3
2.31 | 2.12 | 53.1
2.08 | 2.06 | 2.04 | 2.03 | -0.9 | -0.8 | -3.0 | | | port Dependency % | 84.4 | 89.4 | 85.6 | 84.3 | 80.9 | 77.0 | 75.3 | 76.0 | 75.9 | 76.2 | 76.1 | -0.5 | -0.0 | -1.0 | | | al energy-rel. and other mitigation costs ^(B) (in 000 M€10) | | | | | | | | | | | | | 0.0 | 4.7 | | | | 10.1 | 13.9 | 16.3 | 20.0 | 22.0 | 23.8 | 26.1 | 27.9 | 29.7 | 31.4 | 33.6 | 5.0 | 3.0 | 1.7 | | | s % of GDP | 8.2 | 8.9 | 10.5 | 11.7 | 11.5 | 10.6 | 10.0 | 9.5 | 9.2 | 8.9 | 8.7 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | ustry (Energy on Value added, index 2000=100) | 100.0 | 82.2 | 45.5 | 49.5 | 46.2 | 43.7 | 41.2 | 39.5 | 38.2 | 37.3 | 36.9 | -7.6 | 0.1 | -1.1 | | | sidential (Energy on Private Income, index 2000=100)
tiary (Energy on Value added, index 2000=100) | 100.0 | 94.0 | 102.1 | 98.9 | 86.2 | 74.2 | 65.9 | 61.4 | 57.3 | 54.3 | 51.2 | 0.2 | -1.7 | -2.6 | | | ssenger transport (toe/Mpkm) | 100.0 | 99.1 | 97.6
47.7 | 88.6 | 77.7 | 64.8 | 56.2
33.7 | 51.1
32.4 | 46.8 | 44.2
30.5 | 41.9
30.0 | -0.2 | -2.3 | -3.2 | | | ight transport (toe/Mtkm) | 50.1
101.1 | 48.4
103.8 | 130.9 | 45.3
130.4 | 40.7
127.1 | 36.3
120.5 | 117.5 | 115.3 | 31.4
111.5 | 109.1 | 108.5 | -0.5
2.6 | -1.6
-0.3 | -1.9
-0.8 | | | | 101.1 | 103.6 | 130.9 | 130.4 | 127.1 | 120.5 | 117.5 | 110.3 | 111.3 | 109.1 | 100.5 | 2.0 | -0.3 | -0.6 | | | rbon Intensity indicators | 0.05 | 0.00 | 0.47 | 0.40 | 0.20 | 0.00 | 0.42 | 0.40 | 0.40 | 0.40 | 0.40 | 2.2 | 2.0 | 0.0 | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.65 | 0.60 | 0.47 | 0.46 | 0.38 | 0.23 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | -3.3 | -2.0 | -9.9 | | | al energy demand (t of CO ₂ /toe) | 2.53 | 2.49 | 2.37 | 2.28 | 2.18 | 2.12 | 2.05 | 2.00 | 1.97 | 1.93 | 1.90 | -0.7 | -0.8 | -0.6 | | | dustry
esidential | 2.14
2.53 | 2.14
2.43 | 1.80
2.35 | 1.65
2.19 | 1.54
2.14 | 1.50
2.04 | 1.43
1.89 | 1.32
1.85 | 1.25
1.79 | 1.21
1.74 | 1.16
1.69 | -1.7
-0.8 | -1.5
-0.9 | -0.7
-1.2 | | | | 1.99 | 1.76 | 1.58 | 1.58 | 1.53 | 1.35 | 1.22 | 1.12 | 1.08 | 1.03 | 1.09 | -2.3 | -0.9 | -2.3 | | | ertiary
ransport ^(C) | 3.00 | 3.01 | 2.95 | 2.91 | 2.78 | 2.78 | 2.78 | 2.79 | 2.78 | 2.77 | 2.76 | -0.2 | -0.6 | 0.0 | | | | 3.00 | 3.01 | 2.90 | 2.91 | 2.70 | 2.70 | 2.70 | 2.19 | 2.70 | 2.11 | 2.70 | -0.2 | -0.0 | 0.0 | _ | | icators for renewables | 0.0 | 0.0 | | 0.7 | 40.4 | 04.0 | 00.0 | 00.0 | 04.4 | 040 | 04.0 | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 2.0 | 2.8 | 5.4 | 9.7 | 16.4 | 21.6 | 23.6 | 23.6 | 24.1 | 24.2 | 24.6 | | | | | | S in transport (%) | 0.0 | 0.0 | 2.3 | 4.5 | 10.0 | 10.4 | 10.5 | 10.4 | 10.7 | 11.1 | 11.4 | | | | | | oss Electricity generation by source (in GWh _e) (E) | 23673 | 25626 | 28434 | 27355 | 27686 | 29853 | 32358 | 35596 | 38015 | 40478 | 43333 | 1.8 | -0.3 | 1.6 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 8587 | 8839 | 6384 | 10272 |
9610 | 5804 | 985 | 36 | 22 | 22 | 22 | -2.9 | 4.2 | -20.4 | | | il (including refinery gas) | 4638 | 3340 | 605 | 58 | 36 | 20 | 73 | 81 | 100 | 92 | 137 | -18.4 | -24.6 | 7.3 | | | as (including derived gases) | 9263 | 11574 | 17714 | 9921 | 5847 | 4781 | 9919 | 13561 | 14678 | 15917 | 16733 | 6.7 | -10.5 | 5.4 | | | iomass-waste | 95 | 130 | 317 | 564 | 929 | 1019 | 1604 | 1605 | 2023 | 2016 | 2038 | 12.8 | 11.4 | 5.6 | | | ydro (pumping excluded) | 846
244 | 631
1112 | 599
2815 | 795
5745 | 980
10143 | 986
16493 | 1025
17418 | 1081
17641 | 1210
17956 | 1357
18261 | 1471
19280 | -3.4
27.7 | 5.0
13.7 | 0.4
5.6 | | | Vind
colar | 0 | 0 | 2013 | 0 | 0 | 379 | 735 | 810 | 851 | 1200 | 1200 | 0.0 | 0.0 | 0.0 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 141 | 379 | 600 | 781 | 1176 | 1614 | 2452 | 0.0 | 0.0 | 15.6 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 761 | 0 | 0 | 2452 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 4398 | 5775 | 8269 | 8454 | 9793 | 11984 | 12648 | 13894 | 14712 | 15893 | 16996 | 6.5 | 1.7 | 2.6 | | | luclear energy | 0 | 0 | 0 | 0434 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | denewable energy | 351 | 729 | 1665 | 2334 | 3914 | 6487 | 7222 | 7457 | 7853 | 8433 | 9117 | 16.8 | 8.9 | 6.3 | | | Hydro (pumping excluded) | 233 | 233 | 237 | 246 | 296 | 301 | 312 | 332 | 375 | 418 | 454 | 0.2 | 2.2 | 0.5 | | | Wind | 118 | 496 | 1428 | 2088 | 3561 | 5688 | 5992 | 6059 | 6212 | 6252 | 6559 | 28.3 | 9.6 | 5.3 | | | Solar | 0 | 0 | 0 | 0 | 0 | 346 | 674 | 748 | 786 | 1104 | 1104 | 0.0 | 0.0 | 0.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 58 | 151 | 244 | 319 | 479 | 658 | 1000 | 0.0 | 0.0 | 15.6 | | | hermal power | 4047 | 5046 | 6604 | 6120 | 5879 | 5497 | 5426 | 6437 | 6859 | 7460 | 7879 | 5.0 | -1.2 | -0.8 | | | of which cogeneration units | 77 | 173 | 246 | 331 | 422 | 578 | 749 | 1003 | 960 | 1076 | 1129 | 12.3 | 5.6 | 5.9 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1386 | 1370 | 1370 | 1370 | 1268 | 1234 | 351 | 351 | 240 | 240 | 240 | -0.1 | -0.8 | -12.0 | | | Gas fired | 1834 | 2820 | 4340 | 4545 | 4341 | 3993 | 4569 | 5427 | 5892 | 6435 | 6793 | 9.0 | 0.0 | 0.5 | | | Oil fired | 772 | 780 | 783 | 43 | 45 | 29 | 179 | 184 | 186 | 192 | 229 | 0.1 | -24.8 | 14.7 | | | Biomass-waste fired | 55 | 77 | 111 | 162 | 225 | 241 | 326 | 475 | 542 | 593 | 617 | 7.4 | 7.3 | 3.8 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 58.1 | 48.3 | 37.7 | 35.5 | 31.2 | 27.7 | 28.8 | 28.9 | 29.1 | 28.7 | 28.7 | | | | | | ctricity indicators | | | | | | | | | | | | | | | Ī | | ciency of gross thermal power generation (%) | 40.9 | 43.3 | 46.8 | 46.2 | 44.6 | 45.1 | 51.8 | 55.9 | 57.3 | 57.1 | 56.3 | | | | | | of gross electricity from CHP | 2.4 | 2.4 | 6.7 | 5.0 | 6.0 | 7.4 | 10.4 | 12.1 | 13.6 | 11.9 | 11.2 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | rbon free gross electricity generation (%) | 5.0 | 7.3 | 13.1 | 26.0 | 44.0 | 64.5 | 66.1 | 61.6 | 61.1 | 60.4 | 61.0 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 5.0 | 7.3 | 13.1 | 26.0 | 44.0 | 64.5 | 66.1 | 61.6 | 61.1 | 60.4 | 61.0 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 53.5 | 63.4 | 66.4 | 70.6 | 75.1 | 81.9 | 89.5 | 95.5 | 101.9 | 107.1 | 112.5 | 2.2 | 1.2 | 1.8 | | | ublic road transport | 6.1 | 6.7 | 6.9 | 7.1 | 7.2 | 7.7 | 8.2 | 8.6 | 9.1 | 9.4 | 9.8 | 1.2 | 0.5 | 1.3 | | | rivate cars and motorcycles | 38.8 | 43.8 | 46.5 | 49.0 | 51.7 | 56.2 | 61.1 | 64.9 | 69.0 | 72.3 | 75.8 | 1.8 | 1.1 | 1.7 | | | ail | 1.4 | 1.9 | 1.8 | 1.9 | 2.0 | 2.1 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.7 | 0.9 | 1.3 | | | viation | 6.3 | 10.1 | 10.3 | 11.6 | 13.1 | 14.8 | 16.6 | 18.2 | 19.9 | 21.3 | 22.7 | 5.1 | 2.4 | 2.4 | | | land navigation | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 0.3 | 0.9 | 1.7 | | | ight transport activity (Gtkm) | 13.2 | 18.6 | 11.4 | 13.1 | 14.9 | 17.0 | 19.3 | 21.0 | 22.8 | 24.2 | 25.6 | -1.5 | 2.7 | 2.6 | | | rucks | 12.3 | 17.9 | 10.9 | 12.5 | 14.4 | 16.3 | 18.6 | 20.2 | 21.9 | 23.3 | 24.7 | -1.1 | 2.8 | 2.6 | | | dail | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -15.4 | 1.4 | 1.3 | | | nland navigation | 0.5 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | 0.7 | 0.8 | -1.6 | 2.1 | 2.4 | | | ergy demand in transport (ktoe) (G) | 4016 | 4994 | 4664 | 4902 | 4958 | 5025 | 5285 | 5509 | 5735 | 5904 | 6152 | 1.5 | 0.6 | 0.6 | f | | ublic road transport | 74 | 79 | 96 | 98 | 100 | 104 | 109 | 113 | 118 | 121 | 125 | 2.7 | 0.4 | 0.8 | | | rivate cars and motorcycles | 1965 | 2126 | 2292 | 2252 | 2070 | 1973 | 1950 | 1966 | 2011 | 2061 | 2130 | 1.6 | -1.0 | -0.6 | | | rucks | 1299 | 1893 | 1466 | 1672 | 1867 | 2014 | 2238 | 2382 | 2501 | 2599 | 2748 | 1.2 | 2.4 | 1.8 | | | ail | 40 | 42 | 43 | 45 | 47 | 49 | 50 | 51 | 50 | 48 | 45 | 0.8 | 0.9 | 0.7 | | | wiation | 613 | 836 | 748 | 814 | 852 | 863 | 913 | 970 | 1025 | 1045 | 1073 | 2.0 | 1.3 | 0.7 | | | nland navigation | 25 | 18 | 20 | 21 | 22 | 24 | 25 | 27 | 29 | 30 | 31 | -2.1 | 0.9 | 1.5 | Italy: Reference scenario | | | | | | | | SUN | IMARY E | ENERGY | BALAN | CE AND | INDIC | ATORS | (A) | |---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|---------------------|----------------------|---------------------|---------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 28491
4 | 28116
60 | 30583
64 | 43259
0 | 50276 | 49500
0 | 49909
0 | 47215 | 48881
0 | 48506
0 | 46431
0 | 0.7
33.7 | 5.1
-100.0 | -0.1
0.0 | -0.4
0.0 | | Oil | 5004 | 6527 | 6362 | 12467 | 13180 | 12678 | 12564 | 9135 | 7752 | 5843 | 4563 | 2.4 | 7.6 | -0.5 | -4.9 | | Natural gas | 13627 | 9886 | 6885 | 8738 | 10139 | 7985 | 6795 | 5468 | 4371 | 2342 | 1463 | -6.6 | 3.9 | -3.9 | -7.4 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources Hydro | 9856
3801 | 11642
3101 | 17272
4395 | 22053
4225 | 26957
4205 | 28837
4279 | 30550
4385 | 32612
4434 | 36758
4412 | 40321
4389 | 40405
4361 | 5.8
1.5 | 4.6
-0.4 | 1.3
0.4 | 1.4
0.0 | | Biomass & Waste | 1736 | 3518 | 7033 | 7820 | 9482 | 9276 | 9667 | 9503 | 10424 | 10690 | 10050 | 15.0 | 3.0 | 0.2 | 0.2 | | Wind | 48 | 202 | 785 | 1061 | 1802 | 3054 | 3803 | 4209 | 4545 | 4845 | 5181 | 32.1 | 8.7 | 7.8 | 1.6 | | Solar and others | 12 | 30 | 298 | 3144 | 4897 | 5684 | 6179 | 7892 | 9310 | 9760 | 9780 | 37.4 | 32.3 | 2.4 | 2.3 | | Geothermal Net Imports | 4259
153560 | 4791
161019 | 4762
149536 | 5804
130612 | 6571
120982 | 6544
119001 | 6516
118263 | 6574
119800 | 8068
120932 | 10637
125204 | 11033
128919 | 1.1
-0.3 | 3.3
-2.1 | -0.1
-0.2 | 2.7
0.4 | | Solids | 13133 | 16367 | 149536 | 15347 | 15095 | 13947 | 14012 | 10101 | 10053 | 125204 | 12478 | 0.9 | 0.5 | -0.2
-0.7 | -0.6 | | Oil | 89091 | 79934 | 68108 | 53183 | 49383 | 47583 | 47160 | 49902 | 50607 | 51853 | 52162 | -2.6 | -3.2 | -0.5 | 0.5 | | - Crude oil and Feedstocks | 90943 | 95086 | 85163 | 70454 | 65573 | 63054 | 61721 | 63551 | 63392 | 63813 | 63395 | -0.7 | -2.6 | -0.6 | 0.1 | | - Oil products | -1852
47008 | -15153
59840 | -17056
61600 | -17271
56864 | -16190
50758 | -15471
51966 | -14560
51506 | -13649
54247 | -12785
53968 | -11961
53920 | -11233
57131 | 24.9
2.7 | -0.5
-1.9 | -1.1
0.1 | -1.3
0.5 | | Natural gas Electricity | 3813 | 4227 | 3797 | 3070 | 2854 | 2394 | 2215 | 2028 | 1882 | 1819 | 1739 | 0.0 | -2.8 | -2.5 | -1.2 | | Gross Inland Consumption | 175798 | 188523 | 175515 | 170589 | 167799 | 164862 | 164293 | 163100 | 165905 | 169704 | 171237 | 0.0 | -0.4 | -0.2 | 0.2 | | Solids | 12550 | 16461 | 14170 | 15347 | 15095 | 13947 | 14012 | 10101 | 10053 | 12521 | 12478 | 1.2 | 0.6 | -0.7 | -0.6 | | Oil | 91119 | 84889 | 70513 | 62381 | 59156 | 56732 | 55995 | 55330 | 54690 | 53972 | 52954 | -2.5 | -1.7 | -0.5 | -0.3 | | Natural gas
Nuclear | 57945
0 | 70651
0 | 68057
0 | 65591
0 | 60845
0 | 59839
0 | 58152
0 | 59507
0 | 58099
0 | 55979
0 | 58252
0 | 1.6
0.0 | -1.1
0.0 | -0.5
0.0 | 0.0 | | Electricity | 3813 | 4227 | 3797 | 3070 | 2854 | 2394 | 2215 | 2028 | 1882 | 1819 | 1739 | 0.0 | -2.8 | -2.5 | -1.2 | | Renewable energy forms | 10371 | 12295 | 18977 | 24200 | 29849 | 31949 | 33919 | 36134 | 41181 | 45414 | 45815 | 6.2 | 4.6 | 1.3 | 1.5 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 7.1
51.8 | 8.7 | 8.1
40.2 | 9.0 | 9.0 | 8.5
34.4 | 8.5
34.1 | 6.2
33.9 | 6.1 | 7.4 | 7.3
30.9 | | | | | | Oil
Natural gas | 33.0 | 45.0
37.5 | 40.2
38.8 | 36.6
38.4 | 35.3
36.3 | 34.4 | 34.1
35.4 | 36.5 | 33.0
35.0 | 31.8
33.0 | 34.0 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
| 0.0 | | | | | | Renewable energy forms | 5.9 | 6.5 | 10.8 | 14.2 | 17.8 | 19.4 | 20.6 | 22.2 | 24.8 | 26.8 | 26.8 | | | | | | Gross Electricity Generation in GWh _e | 269898 | 296786 | 298718 | 319241 | 320696 | 333722 | 350221 | 369286 | 403151 | 434790 | 455481 | 1.0 | 0.7 | 0.9 | 1.3 | | Self consumption and grid losses | 34969 | 36143 | 33042 | 32343 | 32590 | 33226 | 36712 | 37601 | 45716 | 54348 | 58190 | -0.6 | -0.1 | 1.2 | 2.3 | | Fuel Inputs to Thermal Power Generation Solids | 49150
6045 | 58911 10399 | 53965
9484 | 47466
11789 | 45335
12357 | 43045
11527 | 42588
11796 | 40412
8044 | 42722
8096 | 46314
10664 | 48238
10693 | 0.9
4.6 | -1.7
2.7 | -0.6
-0.5 | 0.6
-0.5 | | Oil (including refinery gas) | 18954 | 12079 | 7365 | 938 | 757 | 713 | 870 | 832 | 832 | 924 | 910 | -9.0 | -20.3 | 1.4 | 0.2 | | Gas (including derived gases) | 19668 | 29585 | 28966 | 25790 | 21747 | 20347 | 18889 | 20456 | 18685 | 16104 | 17661 | 3.9 | -2.8 | -1.4 | -0.3 | | Biomass & Waste | 438 | 2270 | 3527 | 3754 | 4545 | 4530 | 5103 | 5152 | 7769 | 8814 | 8790 | 23.2 | 2.6 | 1.2 | 2.8 | | Geothermal heat
Hydrogen - Methanol | 4046
0 | 4578
0 | 4622
0 | 5194
0 | 5929
0 | 5929
0 | 5929
0 | 5929
0 | 7339
0 | 9807
0 | 10185
0 | 1.3
0.0 | 2.5
0.0 | 0.0 | 2.7
0.0 | | Fuel Input to other conversion processes | 103181 | 107863 | 98336 | 89690 | 85774 | 82503 | 80979 | 79166 | 77371 | 75810 | 74039 | -0.5 | -1.4 | -0.6 | -0.4 | | Refineries | 97473 | 102914 | 92366 | 84432 | 80330 | 77271 | 75822 | 74239 | 72690 | 71226 | 69530 | -0.5 | -1.4 | -0.6 | -0.4 | | Biofuels and hydrogen production | 0 | 176 | 1466 | 1900 | 2933 | 3020 | 3146 | 3070 | 3018 | 3029 | 3040 | 0.0 | 7.2 | 0.7 | -0.2 | | District heating | 5709 | 0
4773 | 95
4408 | 96
3262 | 96
2415 | 118
2094 | 117
1894 | 119
1738 | 35
1628 | 34
1522 | 32
1437 | 0.0
-2.6 | 0.1
-5.8 | 2.0
-2.4 | -6.3
-1.4 | | Derived gases, cokeries etc. Energy Branch Consumption | 7696 | 10052 | 9539 | 9106 | 8860 | 8552 | 8618 | 8328 | 8647 | 9005 | 9004 | -2.0
2.2 | -0.7 | -2.4 | 0.2 | | Non-Energy Uses | 8429 | 8608 | 9560 | 9570 | 9796 | 9735 | 9816 | 9900 | 9977 | 10237 | 10491 | 1.3 | 0.2 | 0.0 | 0.3 | | Final Energy Demand | 126142 | 134621 | 124769 | 125072 | 123585 | 122645 | 122251 | 122905 | 124437 | 125704 | 126375 | -0.1 | -0.1 | -0.1 | 0.2 | | by sector | | | | | | | | | | | | | | | | | Industry | 41069 | 39858 | 31059 | 32376 | 32361 | 32439 | 32207 | 32074 | 32219 | 32660 | 32992 | -2.8 | 0.4 | 0.0 | 0.1 | | energy intensive industries other industrial sectors | 26005
15064 | 25613
14245 | 19287
11772 | 19889
12487 | 20009
12352 | 20025
12414 | 19824
12383 | 19731
12343 | 19816
12402 | 20090
12570 | 20074
12918 | -2.9
-2.4 | 0.4 | -0.1
0.0 | 0.1 | | Residential | 27528 | 31232 | 31395 | 31639 | 31881 | 31425 | 31119 | 31105 | 31530 | 31883 | 31568 | 1.3 | 0.3 | -0.2 | 0.2 | | Tertiary | 15026 | 18668 | 20358 | 19065 | 18438 | 18378 | 18202 | 18815 | 19201 | 19514 | 19625 | 3.1 | -1.0 | -0.1 | 0.4 | | Transport | 42519 | 44863 | 41957 | 41992 | 40905 | 40403 | 40724 | 40911 | 41488 | 41647 | 42190 | -0.1 | -0.3 | 0.0 | 0.2 | | by fuel Solids | 3586 | 3980 | 2910 | 2299 | 1851 | 1672 | 1548 | 1443 | 1376 | 1309 | 1263 | -2.1 | -4.4 | -1.8 | -1.0 | | Oil | 57838 | 59032 | 48910 | 47088 | 44187 | 42217 | 41514 | 40927 | 40408 | 39599 | 38574 | -2.1
-1.7 | -4.4 | -0.6 | -0.4 | | Gas | 38022 | 40609 | 38499 | 38372 | 37401 | 37702 | 37378 | 37217 | 37608 | 38035 | 38707 | 0.1 | -0.3 | 0.0 | 0.2 | | Electricity | 23472 | 25871 | 25736 | 26849 | 26763 | 27390 | 28331 | 29716 | 31784 | 33702 | 35074 | 0.9 | 0.4 | 0.6 | 1.1 | | Heat (from CHP and District Heating) Renewable energy forms | 1424
1799 | 3082
2046 | 3332
5381 | 2718
7745 | 2785
10595 | 3084
10576 | 2931
10541 | 2940
10646 | 3326
9908 | 3111
9908 | 3232
9474 | 8.9
11.6 | -1.8
7.0 | 0.5
-0.1 | 0.5
-0.5 | | Other fuels (hydrogen, ethanol) | 0 | 0 | 0 | 1745 | 2 | 4 | 9 | 16 | 27 | 39 | 51 | -16.5 | 140.9 | 14.8 | 9.0 | | RES in Gross Final Energy Consumption (A) | 5958 | 7312 | 12871 | 17715 | 22185 | 23382 | 24753 | 26981 | 30083 | 31460 | 32206 | 8.0 | 5.6 | 1.1 | 1.3 | | TOTAL GHG emissions (Mt of CO2 eq.) | 552.6 | 591.7 | 502.0 | 467.5 | 446.2 | 432.1 | 415.1 | 393.0 | 365.7 | 342.3 | 337.9 | -1.0 | -1.2 | -0.7 | -1.0 | | of which ETS sectors (2013 scope) GHG emissions | | 262.6 | 213.7 | 185.1 | 176.9 | 172.0 | 160.6 | 144.1 | 118.8 | 96.5 | 92.5 | | -1.9 | -1.0 | -2.7 | | of which non ETS sectors GHG emissions | 424.0 | 329.1 | 288.3 | 282.4 | 269.3 | 260.1 | 254.5 | 248.9 | 247.0 | 245.8 | 245.4 | | -0.7 | -0.6 | -0.2 | | CO ₂ Emissions (energy related) Power generation/District heating | 434.9
137.1 | 470.5
158.5 | 404.7
135.9 | 374.4
115.7 | 351.8
106.5 | 337.8
99.2 | 326.6
91.8 | 306.7
74.9 | 286.1 55.8 | 271.8
43.7 | 267.1
41.2 | -0.7
-0.1 | -1.4
-2.4 | -0.7
-1.5 | -1.0
-3.9 | | Energy Branch | 15.9 | 18.4 | 16.4 | 14.9 | 14.1 | 13.3 | 12.8 | 12.4 | 11.9 | 11.5 | 11.0 | 0.4 | -1.5 | -1.0 | -0.8 | | Industry | 79.9 | 72.5 | 49.5 | 48.8 | 47.5 | 44.6 | 43.8 | 42.6 | 42.6 | 43.4 | 43.3 | -4.7 | -0.4 | -0.8 | -0.1 | | Residential | 53.4 | 59.9 | 53.6 | 51.9 | 50.1 | 49.7 | 48.0 | 46.8 | 45.1 | 43.2 | 41.5 | 0.0 | -0.7 | -0.4 | -0.7 | | Tertiary Transport | 24.4
124.3 | 29.3
131.9 | 30.2
119.1 | 25.3
117.7 | 22.8
110.9 | 22.5
108.5 | 21.5
108.6 | 21.1
108.8 | 20.8
109.9 | 20.3
109.7 | 19.8
110.3 | 2.2
-0.4 | -2.8
-0.7 | -0.6
-0.2 | -0.4
0.1 | | Transport CO ₂ Emissions (non energy related) | 124.3
28.6 | 30.8 | 119.1
24.4 | 117.7
21.5 | 24.2 | 108.5
26.0 | 21.6 | 108.8
21.6 | 109.9 | 109.7
5.4 | 110.3
4.7 | -0.4
-1.6 | -0.7
-0.1 | -0.2
-1.1 | -7.3 | | Non-CO ₂ GHG emissions | 89.1 | 90.3 | 72.9 | 71.5 | 70.2 | 68.3 | 66.9 | 64.8 | 64.6 | 65.1 | 66.0 | -2.0 | -0.4 | -0.5 | -0.1 | | TOTAL GHG emissions Index (1990=100) | 105.6 | 113.0 | 95.9 | 89.3 | 85.3 | 82.6 | 79.3 | 75.1 | 69.9 | 65.4 | 64.6 | | | | | | Source: PRIMES | | | | | | | | | | | | | | | | | UMMARY ENERGY BALANCE AND INDICAT | | | | | | | | | | | | Italy: R | | | | |--|-----------------|----------------|-----------------|--------------------|--------------------|------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-------------|--------------|--------------|------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | ain Energy System Indicators | | | | | | | | | | | | An | nual % | Change | : | | opulation (Million) | 56.924 | 58.462 | 60.340 | 61.788 | 62.877 | 63.737 | 64.491 | 65.166 | 65.694 | 65.968 | 65.915 | 0.6 | 0.4 | 0.3 | | | DP (in 000 M€10) | 1496.6 | 1571.6 | 1553.2 | 1605.3 | 1691.3 | 1824.6 | 1964.2 | 2093.8 | 2225.2 | 2374.1 | 2546.7 | 0.4 | 0.9 | 1.5 | | | ross Inl. Cons./GDP (toe/M€10) | 117.5 | 120.0 | 113.0 | 106.3 | 99.2 | 90.4 | 83.6 | 77.9 | 74.6 | 71.5 | 67.2 | -0.4 | -1.3 | -1.7 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.47 | 2.50 | 2.31 | 2.19 | 2.10 | 2.05 | 1.99 | 1.88 | 1.72 | 1.60 | 1.56 | -0.7 | -0.9 | -0.5 | | | port Dependency % | 86.5 | 84.4 | 83.8 | 75.1 | 70.6 | 70.6 | 70.3 | 71.7 | 71.2 | 72.1 | 73.5 | | | | | | otal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 144.3 | 162.0 | 191.5 | 229.0 | 249.9 | 267.8 | 280.8 | 286.7 | 300.7 | 309.9 | 316.7 | 2.9 | 2.7 | 1.2 | | | as % of GDP | 9.6 | 10.3 | 12.3 | 14.3 | 14.8 | 14.7 | 14.3 | 13.7 | 13.5 | 13.1 | 12.4 | | | | | | nergy intensity indicators | | | | | | = | = | | | | | | | | | | dustry (Energy on Value added, index 2000=100) esidential (Energy on Private Income, index 2000=100) | 100.0 | 98.9 | 83.3 | 84.6 | 80.7 | 76.2 | 72.6
87.5 | 70.0 | 67.9 | 66.6 | 64.8 | -1.8 | -0.3 | -1.1 | | | rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 109.3
116.8 | 108.5
125.3 | 106.8
113.2 | 103.1
103.7 | 95.0
95.3 | 87.5
87.2 | 81.7
84.0 | 77.3
80.2 | 72.2
75.9 | 65.2
70.7 | 0.8
2.3 | -0.5
-1.9 | -1.6
-1.7 | | | ssenger transport (toe/Mpkm) | 30.5 | 29.7 | 27.3 | 26.3 | 24.2 | 22.4 | 21.0 | 20.4 | 20.0 | 19.7 | 19.3 | -1.1 | -1.2 | -1.4 | | | ight transport (toe/Mtkm) | 54.4 | 58.6 | 63.8 | 62.0 | 59.9 | 56.3 | 54.0 | 52.7 | 51.6 | 50.5 | 50.5 | 1.6 | -0.6 | -1.0 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.47 | 0.45 | 0.38 | 0.31 | 0.29 | 0.26 | 0.23 | 0.18 | 0.12 | 0.09 | 0.08 | -2.0 | -2.8 | -2.3 | | | al energy demand (t of CO ₂ /toe) | 2.23 | 2.18 | 2.02 | 1.95 | 1.87 | 1.84 | 1.82 | 1.78 | 1.75 | 1.72 | 1.70 | -1.0 | -0.8 | -0.3 | | | ndustry | 1.94 | 1.82 | 1.59 | 1.51 | 1.47 | 1.38 | 1.36 | 1.33 | 1.32 | 1.33 | 1.31 | -2.0 | -0.8 | -0.7 | | | tesidential | 1.94 | 1.92 | 1.71 | 1.64 | 1.57 | 1.58 | 1.54 | 1.50 | 1.43 | 1.36 | 1.32 | -1.3 | -0.8 | -0.2 | | | ertiary | 1.62 | 1.57 | 1.49 | 1.33 | 1.24 | 1.22 | 1.18 | 1.12 | 1.08 | 1.04 | 1.01 | -0.9 | -1.8 | -0.5 | | | ransport (C) | 2.92 | 2.94 | 2.84 | 2.80 | 2.71 | 2.69 | 2.67 | 2.66 | 2.65 | 2.63 | 2.61 | -0.3 | -0.5 | -0.2 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (%) | 4.6 | 5.3 | 10.0 | 13.8 | 17.5 | 18.6 | 19.7 | 21.4 | 23.4 | 24.1 | 24.5 | | | | | | S in transport (%) | 0.3 | 0.9 | 4.7 | 6.4 | 10.2 | 11.2 |
12.0 | 12.4 | 13.0 | 13.4 | 13.9 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 269947 | 296839 | 298772 | 319241 | 320696 | 333722 | 350221 | 369286 | 403151 | 434790 | 455481 | 1.0 | 0.7 | 0.9 | .111 | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 26272 | 43606 | 39734 | 54109 | 59925 | 57251 | 60029 | 44013 | 50548 | 70382 | 70419 | 4.2 | 4.2 | 0.0 | | | il (including refinery gas) | 85878
106398 | 47124 | 21713 | 4929 | 4014 | 4065 | 4896 | 4662 | 4668 | 5305 | 5255 | -12.8 | -15.5 | 2.0 | | | as (including derived gases) iomass-waste | 1908 | 156191
6152 | 158215
11586 | 154337
14623 | 130647
19632 | 121304
20122 | 115587
22864 | 126217
23266 | 114993
38882 | 111744
42384 | 128288
40636 | 4.0
19.8 | -1.9
5.4 | -1.2
1.5 | | | ydro (pumping excluded) | 44205 | 36067 | 51116 | 49127 | 48893 | 49751 | 50983 | 51556 | 51298 | 51030 | 50713 | 1.5 | -0.4 | 0.4 | | | /ind | 563 | 2344 | 9126 | 12333 | 20954 | 35514 | 44223 | 48940 | 52844 | 56337 | 60243 | 32.1 | 8.7 | 7.8 | | | olar | 18 | 31 | 1905 | 23407 | 29397 | 38484 | 44408 | 63398 | 81045 | 85865 | 87745 | 59.4 | 31.5 | 4.2 | | | eothermal and other renewables | 4705 | 5324 | 5377 | 6377 | 7232 | 7232 | 7232 | 7232 | 8872 | 11742 | 12181 | 1.3 | 3.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 67866 | 78649 | 104353 | 116633 | 119980 | 132074 | 139254 | 144420 | 157462 | 157465 | 153310 | 4.4 | 1.4 | 1.5 | | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | enewable energy | 13658 | 15960 | 27098 | 42001 | 49300 | 62175 | 69979 | 80970 | 92590 | 96516 | 99067 | 7.1 | 6.2 | 3.6 | | | Hydro (pumping excluded) | 13212 | 14209 | 17834 | 18426 | 18547 | 18827 | 19175 | 19439 | 19503 | 19567 | 19631 | 3.0 | 0.4 | 0.3 | | | Wind | 427 | 1717 | 5793 | 7371 | 11200 | 18005 | 22598 | 25258 | 27517 | 29205 | 30931 | 29.8 | 6.8 | 7.3 | | | Solar (idel etc.) | 19 | 34 | 3470 | 16204 | 19553 | 25343 | 28206 | 36273 | 45570 | 47744 | 48505 | 68.3 | 18.9 | 3.7 | | | Other renewables (tidal etc.) | 0
54207 | 0
62689 | 0
77255 | 0
74632 | 0
70680 | 0
69898 | 0
69275 | 0
63450 | 0
64872 | 0
60950 | 0
54244 | 0.0
3.6 | 0.0
-0.9 | 0.0
-0.2 | | | hermal power of which cogeneration units | 6476 | 7547 | 8435 | 7931 | 8405 | 9696 | 9915 | 9803 | 10512 | 10520 | 10923 | 2.7 | 0.0 | 1.7 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 706 | 1343 | 3937 | 6894 | 9351 | 0.0 | 0.0 | 0.0 | | | Solids fired | 8749 | 7864 | 8676 | 8950 | 8688 | 7087 | 7733 | 5244 | 7833 | 10790 | 10811 | -0.1 | 0.0 | -1.2 | | | Gas fired | 23807 | 36671 | 54126 | 55374 | 53894 | 54950 | 54695 | 51611 | 47118 | 40027 | 32017 | 8.6 | 0.0 | 0.1 | | | Oil fired | 20233 | 16046 | 10546 | 6221 | 3706 | 3461 | 2394 | 2069 | 1959 | 1683 | 1927 | -6.3 | -9.9 | -4.3 | | | Biomass-waste fired | 868 | 1472 | 3217 | 3397 | 3604 | 3614 | 3667 | 3740 | 6988 | 7148 | 8137 | 14.0 | 1.1 | 0.2 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 551 | 636 | 689 | 689 | 787 | 787 | 787 | 787 | 974 | 1302 | 1352 | 2.3 | 1.3 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 43.2 | 41.2 | 31.5 | 30.2 | 29.5 | 27.9 | 27.7 | 28.2 | 27.9 | 29.8 | 31.9 | | | | | | ectricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 39.4 | 37.7 | 37.7 | 42.5 | 42.0 | 42.0 | 42.5 | 43.7 | 43.9 | 44.9 | 45.8 | | | | | | of gross electricity from CHP | 8.3 | 9.0 | 11.5 | 12.2 | 14.2 | 16.2 | 16.6 | 16.2 | 15.6 | 15.0 | 14.5 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 3.6 | 9.5 | 15.5 | 19.2 | | | | | | bon free gross electricity generation (%) | 19.0 | 16.8 | 26.5 | 33.2 | 39.3 | 45.3 | 48.5 | 52.6 | 57.8 | 56.9 | 55.2 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 19.0 | 16.8 | 26.5 | 33.2 | 39.3 | 45.3 | 48.5 | 52.6 | 57.8 | 56.9 | 55.2 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 943.0 | 931.4 | 952.9 | 971.6 104.3 | 990.7 105.2 | 1041.4
108.8 | 1094.8 | 1128.9 | 1164.1 | 1192.6 | 1221.3 122.2 | 0.1 | 0.4 | 1.0 | | | ublic road transport rivate cars and motorcycles | 93.4
755.9 | 101.0
726.5 | 102.9
740.5 | 747.8 | 754.7 | 786.3 | 113.0
818.0 | 115.8
837.8 | 118.6
857.8 | 120.4
874.4 | 890.9 | 1.0
-0.2 | 0.2
0.2 | 0.7
0.8 | | | ail | 55.2 | 56.5 | 55.6 | 58.2 | 60.7 | 67.3 | 74.8 | 78.9 | 83.1 | 86.0 | 88.8 | 0.1 | 0.9 | 2.1 | | | viation | 33.5 | 42.7 | 49.4 | 56.6 | 65.5 | 74.1 | 83.9 | 91.1 | 99.2 | 106.4 | 113.9 | 3.9 | 2.9 | 2.5 | | | land navigation | 5.0 | 4.7 | 4.5 | 4.6 | 4.7 | 4.9 | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | -0.9 | 0.2 | 0.9 | | | ight transport activity (Gtkm) | 245.8 | 285.5 | 241.8 | 256.1 | 271.2 | 292.0 | 314.5 | 325.7 | 337.4 | 345.6 | 353.9 | -0.2 | 1.2 | 1.5 | | | rucks | 185.1 | 211.8 | 175.8 | 186.6 | 197.9 | 213.6 | 230.6 | 239.1 | 248.0 | 254.0 | 260.2 | -0.5 | 1.2 | 1.5 | | | tail | 22.8 | 22.8 | 18.6 | 20.0 | 21.4 | 23.3 | 25.4 | 26.4 | 27.5 | 28.3 | 29.1 | -2.0 | 1.4 | 1.7 | | | aland navigation | 37.9 | 50.9 | 47.4 | 49.5 | 51.8 | 55.1 | 58.6 | 60.2 | 61.8 | 63.3 | 64.7 | 2.3 | 0.9 | 1.2 | | | ergy demand in transport (ktoe) (G) | 42174 | 44403 | 41415 | 41386 | 40273 | 39742 | 40033 | 40200 | 40756 | 40897 | 41421 | -0.2 | -0.3 | -0.1 | Ī | | ublic road transport | 1484 | 1642 | 1643 | 1659 | 1643 | 1636 | 1638 | 1646 | 1661 | 1655 | 1663 | 1.0 | 0.0 | 0.0 | | | rivate cars and motorcycles | 22919 | 21483 | 19791 | 18953 | 17259 | 16355 | 15874 | 15609 | 15629 | 15702 | 15877 | -1.5 | -1.4 | -0.8 | | | rucks | 12485 | 15699 | 14551 | 14967 | 15301 | 15424 | 15945 | 16110 | 16345 | 16385 | 16799 | 1.5 | 0.5 | 0.4 | | | tail | 526 | 492 | 439 | 456 | 473 | 503 | 533 | 544 | 550 | 543 | 533 | -1.8 | 0.7 | 1.2 | | | viation | 3491 | 3700 | 3863 | 4189 | 4406
1192 | 4581 | 4747 | 4979 | 5243 | 5278 | 5213 | 1.0 | 1.3 | 0.7 | | | nland navigation | 1269 | 1387 | 1128 | 1162 | | 1245 | 1296 | 1312 | 1327 | 1333 | 1337 | -1.2 | 0.6 | 0.8 | | | Latvia: Reference scenario | | | | | | | | SUM | MARY E | NERGY | BALAN | CE AND | INDIC | ATOR | S (A) | |--|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------|------------------|------------------|------------------|---------------------|-------------------|---------------------|-------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 1411
16 | 1868
3 | 2116
2 | 2336
3 | 2643
3 | 2502
3 | 2527
3 | 2638 | 2518
0 | 2742
0 | 2767
0 | 4.1
-17.4 | 2.2
1.5 | -0.4
-0.9 | 0.5 | | Oil | 2 | 7 | 2 | 3 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0.6 | 2.2 | -1.2 | 0.0 | | Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -89.9 | -100.0 | 0.0 | 0.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 1393 | 1858 | 2111 | 2330 | 2637 | 2498 | 2522 | 2639 | 2519 | 2743 | 2768 | 4.2 | 2.3 | -0.4 | 0.5 | | Hydro
Biomass & Waste | 242
1150 | 286
1568 | 303
1804 | 270
2031 | 277
2279 | 287
2102 | 287
2096 | 287
2199 | 287
2062 | 287
2270 | 287
2266 | 2.2
4.6 | -0.9
2.4 | 0.4
-0.8 | 0.0 | | Wind | 0 | 4 | 4 | 28 | 80 | 107 | 137 | 149 | 167 | 182 | 211 | 28.5 | 34.2 | 5.6 | 2.2 | | Solar and others | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 0.0 | 0.0 | 7.2 | 3.3 | | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 2.0 | 0.2 | | Net Imports | 2239 | 2989 | 1993 | 2868 | 2687 | 2929 | 2991 | 2980 | 3132 | 2911 | 2876 | -1.2 | 3.0 | 1.1 | -0.2 | | Solids | 61 | 77 | 112 | 107 | 92 | 76 | 73 | 75 | 71 | 63 | 48 | 6.3 | -2.0 | -2.3 | -2.1 | | Oil - Crude oil and Feedstocks | 1113
87 | 1676
4 | 1443
2 | 1824
1 | 1797
1 | 1850
1 | 1914
1 | 1947
1 | 1968
1 | 1982
1 | 1982
1 | 2.6
-31.9 | 2.2
-6.7 | 0.6
0.0 | 0.2 | | - Oil products | 1026 | 1672 | 1442 | 1823 | 1796 | 1849 | 1913 | 1946 | 1967 | 1981 | 1981 | 3.5 | 2.2 | 0.6 | 0.0 | | Natural gas | 1113 | 1434 | 903 | 1461 | 1306 | 1405 | 1429 | 1374 | 1451 | 1275 | 1267 | -2.1 | 3.8 | 0.9 | -0.6 | | Electricity | 154 | 185 | 75 | 29 | 58 | 75 | 67 | 95 | 112 | 111 | 92 | -6.9 | -2.6 | 1.5 | 1.6 | | Gross Inland Consumption | 3742 | 4484 | 4538 | 4920 | 5028 | 5111 | 5179 | 5261 | 5271 | 5257 | 5236 | 1.9 | 1.0 | 0.3 | 0.1 | | Solids | 132 | 82 | 109 | 110 | 94 | 79 | 75 | 75 | 71 | 63 | 48 | -1.9 | -1.4 | -2.2 | -2.2 | | Oil | 1173 | 1379 | 1293 | 1544 | 1503 | 1541 | 1590 | 1609 | 1616 | 1617 | 1612 | 1.0 | 1.5 | 0.6 | 0.1 | | Natural gas
Nuclear | 1092
0 | 1358
0 | 1462
0 | 1460
0 | 1301
0 | 1395
0 | 1417
0 | 1354
0 | 1423
0 | 1241
0 | 1228
0 | 3.0
0.0 | -1.2
0.0 | 0.9
0.0 | -0.7
0.0 | | Electricity | 154 | 185 | 75 | 29 | 58 | 75 | 67 | 95 | 112 | 111 | 92 | -6.9 | -2.6 | 1.5 | 1.6 | | Renewable energy forms | 1191 | 1481 | 1599 | 1776 | 2072 | 2020 | 2031 | 2127 | 2049 | 2225 | 2255 | 3.0 | 2.6 | -0.2 | 0.5 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 3.5 | 1.8 | 2.4 | 2.2 | 1.9 | 1.5 | 1.5 | 1.4 | 1.3 | 1.2 | 0.9 | | | | | | Oil | 31.4 | 30.8 | 28.5 | 31.4 | 29.9 | 30.2 | 30.7 | 30.6 | 30.7 | 30.8 | 30.8 | | | | | | Natural gas |
29.2 | 30.3 | 32.2 | 29.7 | 25.9 | 27.3 | 27.3 | 25.7 | 27.0 | 23.6 | 23.4 | | | | | | Nuclear
Renewable energy forms | 0.0
31.8 | 0.0
33.0 | 0.0
35.2 | 0.0
36.1 | 0.0
41.2 | 0.0
39.5 | 0.0
39.2 | 0.0
40.4 | 0.0
38.9 | 0.0
42.3 | 0.0
43.1 | | | | | | Gross Electricity Generation in GWh | 4135 | 4905 | 6626 | 7642 | 7651 | 8171 | 8714 | 9048 | 9773 | 10180 | 10582 | 4.8 | 1.4 | 1.3 | 1.0 | | Self consumption and grid losses | 1438 | 1325 | 1285 | 1019 | 1010 | 1103 | 1159 | 1286 | 1413 | 1481 | 1510 | -1.1 | -2.4 | 1.4 | 1.3 | | Fuel Inputs to Thermal Power Generation | 545 | 602 | 815 | 970 | 916 | 921 | 986 | 1054 | 1077 | 1145 | 1111 | 4.1 | 1.2 | 0.7 | 0.6 | | Solids | 53 | 0 | 9 | 14 | 22 | 21 | 20 | 20 | 19 | 15 | 2 | -15.9 | 9.0 | -0.9 | -10.1 | | Oil (including refinery gas) | 84 | 18 | 10 | 9 | 14 | 10 | 15 | 13 | 0 | 0 | 0 | -19.3 | 3.3 | | -100.0 | | Gas (including derived gases) | 408 | 562 | 767 | 771 | 661 | 671 | 731 | 647 | 733 | 590 | 561 | 6.5 | -1.5 | 1.0 | -1.3 | | Biomass & Waste Geothermal heat | 0 | 21
0 | 29
0 | 175
0 | 219
0 | 220
0 | 220
0 | 375
0 | 324
0 | 540
0 | 548
0 | 0.0 | 22.4
0.0 | 0.1
0.0 | 4.7
0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 570 | 478 | 382 | 433 | 506 | 558 | 532 | 538 | 515 | 471 | 515 | -3.9 | 2.8 | 0.5 | -0.2 | | Refineries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Biofuels and hydrogen production | 0 | 3 | 27 | 47 | 95 | 90 | 84 | 87 | 87 | 84 | 91 | 0.0 | 13.4 | -1.2 | 0.4 | | District heating | 569 | 476 | 355 | 386 | 410 | 467 | 444 | 447 | 425 | 384 | 422 | -4.6 | 1.4 | 0.8 | -0.3 | | Derived gases, cokeries etc. | 1 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 3 | 3 | 3 | | 2264.8 | 15.1 | -0.7 | | Energy Branch Consumption | 39
75 | 42
97 | 48
73 | 18 | 15 | 16 | 16 | 20 | 21 | 23 | 24 | 2.1 | -10.8 | 0.4 | 2.0 | | Non-Energy Uses | 3255 | 4021 | 73
4271 | 78
4371 | 89
4434 | 95
4495 | 94
4548 | 96
4575 | 95
4617 | 93
4590 | 93
4566 | -0.3
2.8 | 2.0
0.4 | 0.5
0.3 | 0.0 | | Final Energy Demand by sector | 3233 | 4021 | 42/1 | 43/1 | 4434 | 4495 | 4346 | 43/3 | 4017 | 4590 | 4300 | 2.0 | 0.4 | 0.3 | 0.0 | | Industry | 576 | 699 | 774 | 761 | 804 | 816 | 820 | 825 | 819 | 808 | 790 | 3.0 | 0.4 | 0.2 | -0.2 | | - energy intensive industries | 229 | 282 | 305 | 310 | 339 | 354 | 341 | 346 | 345 | 337 | 334 | 2.9 | 1.1 | 0.1 | -0.1 | | - other industrial sectors | 347 | 417 | 469 | 451 | 465 | 462 | 478 | 479 | 474 | 470 | 456 | 3.0 | -0.1 | 0.3 | -0.2 | | Residential | 1327 | 1504 | 1511 | 1547 | 1559 | 1568 | 1577 | 1562 | 1560 | 1540 | 1530 | 1.3 | 0.3 | 0.1 | -0.2 | | Tertiary Transport | 603
750 | 749
1069 | 773
1213 | 793
1269 | 786
1285 | 789
1323 | 771
1380 | 772
1416 | 773
1465 | 764
1478 | 748
1498 | 2.5
4.9 | 0.2
0.6 | -0.2
0.7 | -0.2
0.4 | | by fuel | 750 | 1009 | 1213 | 1209 | 1200 | 1323 | 1300 | 1410 | 1400 | 1470 | 1490 | 4.9 | 0.6 | 0.7 | 0.4 | | Solids | 62 | 74 | 94 | 92 | 69 | 55 | 52 | 53 | 50 | 47 | 45 | 4.2 | -3.1 | -2.7 | -0.8 | | Oil | 1057 | 1325 | 1456 | 1448 | 1391 | 1426 | 1471 | 1490 | 1515 | 1519 | 1515 | 3.3 | -0.5 | 0.6 | 0.1 | | Gas | 329 | 508 | 498 | 492 | 472 | 509 | 503 | 514 | 515 | 506 | 508 | 4.2 | -0.5 | 0.6 | 0.0 | | Electricity | 385 | 493 | 534 | 599 | 629 | 683 | 716 | 763 | 831 | 858 | 872 | 3.3 | 1.6 | 1.3 | 1.0 | | Heat (from CHP and District Heating) | 598 | 603 | 579 | 619 | 611 | 658 | 673 | 685 | 680 | 680 | 677 | -0.3 | 0.5 | 1.0 | 0.0 | | Renewable energy forms Other fuels (hydrogen, ethanol) | 824
0 | 1018
0 | 1110
0 | 1120
0 | 1262
1 | 1162
2 | 1130
3 | 1067
4 | 1022
3 | 976
3 | 946
3 | 3.0
0.0 | 1.3
0.0 | -1.1
15.3 | -0.9
0.0 | | RES in Gross Final Energy Consumption (A) | 1180 | 1378 | 1456 | 1595 | 1849 | 1782 | 1781 | 1805 | 1774 | 1916 | 1931 | 2.1 | 2.4 | -0.4 | 0.0 | | TOTAL GHG emissions (Mt of CO2 eq.) | 10.2 | 11.6 | 12.5 | 12.1 | 11.5 | 12.0 | 12.1 | 12.0 | 12.3 | 11.9 | 11.8 | 2.1 | -0.9 | 0.6 | -0.1 | | of which ETS sectors (2013 scope) GHG emissions | 10.2 | 3.0 | 3.8 | 3.7 | 3.5 | 3.8 | 3.9 | 3.7 | 3.9 | 3.5 | 3.4 | 2.1 | -0.7 | 1.0 | -0.6 | | of which non ETS sectors GHG emissions | | 8.5 | 8.7 | 8.3 | 7.9 | 8.2 | 8.2 | 8.3 | 8.4 | 8.4 | 8.4 | | -0.9 | 0.4 | 0.1 | | CO ₂ Emissions (energy related) | 6.8 | 7.7 | 8.4 | 8.3 | 7.8 | 8.0 | 8.2 | 8.1 | 8.3 | 7.8 | 7.7 | 2.0 | -0.7 | 0.6 | -0.3 | | Power generation/District heating | 2.6 | 2.2 | 2.4 | 2.4 | 2.1 | 2.2 | 2.3 | 2.1 | 2.2 | 1.8 | 1.7 | -0.9 | -1.2 | 0.9 | -1.5 | | Energy Branch | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Industry | 1.0 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.0 | -1.5 | -0.3 | -0.5 | | Residential
Tertiary | 0.3
0.7 | 0.4
0.8 | 0.6
0.8 | 0.5
0.8 | 0.5
0.8 | 0.4
0.8 | 0.5
0.7 | 0.5
0.7 | 0.5
0.7 | 0.5
0.7 | 0.5
0.7 | 6.5
2.0 | -1.8
-1.1 | 0.7
-0.1 | 0.3
-0.5 | | Transport | 2.2 | 3.2 | 3.6 | 3.7 | 3.5 | 3.6 | 3.8 | 3.9 | 4.0 | 4.0 | 4.0 | 5.0 | 0.0 | 0.7 | 0.3 | | · | 0.2 | 0.3 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 10.0 | 0.1 | 0.3 | -0.9 | | CO ₂ Emissions (non energy related) | 0.2 | | | | | | | | | | | | | | | | CO ₂ Emissions (non energy related) Non-CO ₂ GHG emissions | 3.2 | 3.6 | 3.6 | 3.2 | 3.1 | 3.3 | 3.3 | 3.4 | 3.5 | 3.5 | 3.6 | 1.3 | -1.4 | 0.6 | 0.4 | | | | | | | | | | | | | | | -1.4 | | 0.4 | | UMMARY ENERGY BALANCE AND INDICATO | | | | | | | | | | | | atvia: Re | | | | |--|-------|-------|-------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-------------------|-------------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | | | | | | | | | | | | | | | | | An | ınual % (| Change | } | | ain Energy System Indicators opulation (Million) | 2.382 | 2.306 | 2.248 | 2.194 | 2.141 | 2.083 | 2.022 | 1.963 | 1.909 | 1.854 | 1.797 | -0.6 | -0.5 | -0.6 | | | DP (in 000 M€10) | 12.5 | 18.6 | 18.0 | 21.0 | 23.6 | 26.4 | 29.7 | 32.1 | 34.4 | 36.0 | 36.7 | 3.7 | 2.8 | 2.3 | | | ross Inl. Cons./GDP (toe/M€10) | 298.6 | 241.0 | 252.5 | 233.8 | 213.1 | 193.3 | 174.5 | 163.9 | 153.4 | 146.2 | 142.5 | -1.7 | -1.7 | -2.0 | | | arbon intensity (t of CO ₂ /toe of GIC) | 1.82 | 1.72 | 1.84 | 1.70 | 1.54 | 1.57 | 1.58 | 1.54 | 1.57 | 1.49 | 1.47 | 0.1 | -1.8 | 0.3 | | | port Dependency % | 59.7 | 63.0 | 41.6 | 55.1 | 50.4 | 53.9 | 54.2 | 53.0 | 55.4 | 51.5 | 51.0 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 2.0 | 3.2 | 4.6 | 5.7 | 6.6 | 7.2 | 7.9 | 8.4 | 8.8 | 9.3 | 9.7 | 8.6 | 3.6 | 1.9 | | | is % of GDP | 16.1 | 17.0 | 25.6 | 26.9 | 27.8 | 27.1 | 26.6 | 26.2 | 25.6 | 25.8 | 26.4 | 0.0 | 3.0 | 1.9 | | | | 10.1 | 17.0 | 23.0 | 20.9 | 21.0 | 21.1 | 20.0 | 20.2 | 23.0 | 23.6 | 20.4 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | lustry (Energy on Value added, index 2000=100) | 100.0 | 87.7 | 107.1 | 86.1 | 86.1 | 82.8 | 77.5 | 74.9 | 72.0 | 69.3 | 68.1 | 0.7 | -2.2 | -1.0 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 74.7 | 73.9 | 62.6 | 55.3 | 49.0 | 43.6 | 39.9 | 37.4 | 35.4 | 34.6 | -3.0 | -2.9 | -2.3 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 83.0 | 83.4 | 72.8 | 63.6 | 56.2 | 48.3 | 44.4 | 41.1 | 38.7 | 36.9 | -1.8 | -2.7 | -2.7 | | | ssenger transport (toe/Mpkm) | 34.5 | 34.2 | 30.4 | 29.0 | 26.7 | 24.9 | 23.3 | 22.3 | 21.9 | 21.6 | 21.4 | -1.2 | -1.3 | -1.4 | | | ight transport (toe/Mtkm) | 11.6 | 16.6 | 19.5 | 19.4 | 18.7 | 17.8 | 17.2 | 16.6 | 15.9 | 15.4 | 15.0 | 5.4 | -0.4 | -0.9 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.21 | 0.17 | 0.16 | 0.15 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.09 | 0.09 | -2.2 | -2.1 | -0.3 | | | al energy demand (t of CO ₂ /toe) | 1.29 | 1.37 | 1.40 | 1.36 | 1.27 | 1.29 | 1.30 | 1.31 | 1.31 | 1.31 | 1.32 | 0.8 | -1.0 | 0.2 | | | ndustry | 1.80 | 1.55 | 1.34 | 1.25 | 1.11 | 1.13 | 1.05 | 1.06 | 1.02 | 0.99 | 0.99 | -2.9 | -1.9 | -0.5 | | | Residential | 0.22 | 0.29 | 0.37 | 0.35 | 0.29 | 0.28 | 0.31 | 0.33 | 0.34 | 0.34 | 0.34 | 5.1 | -2.1 | 0.6 | | | ertiary | 1.14 | 1.10 | 1.08 | 1.01 | 0.96 | 0.99 | 0.97 | 0.95 | 0.92 | 0.91 | 0.91 | -0.5 | -1.3 | 0.1 | | | ransport (C) | 2.93 | 2.97 | 2.93 | 2.88 | 2.76 | 2.76 | 2.75 | 2.73 | 2.72 | 2.71 | 2.68 | 0.0 | -0.6 | 0.0 | | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 33.2 | 32.1 | 32.2 | 35.0 | 40.0 | 38.0 | 37.4 | 37.6 | 36.6 | 39.7 | 40.3 | | | | | | S in transport (%) | 0.7 | 0.8 | 3.0 | 5.2 | 10.4 | 10.6 | 10.7 | 11.8 | 12.0 | 12.7 | 14.2 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 4136 | 4906 | 6627 | 7642 | 7651 | 8171 | 8714 | 9048 | 9773 | 10180 | 10582 | 4.8 | 1.4 | 1.3 | | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | iolids | 78 | 0 | 2 | 68 | 84 | 98 | 81 | 75 | 78 | 56 | 10 | -30.7 | 45.2 | -0.3 | | | Dil (including refinery gas) | 107 | 6 | 2 | 53 | 50 | 50 | 50 | 46 | 0 | 0 | 0 | -32.8 | 38.0 | 0.0 | | | Gas (including derived gases) | 1128 | 1486 | 2988 | 3258 | 2383 | 2459 | 2681 | 2114 | 2839 | 2390 | 2483 | 10.2 | -2.2 | 1.2 | | | iomass-waste | 0 | 41 | 66 | 792 | 982 | 986 | 963 | 1734 | 1578 | 2275 | 2293 | 0.0 | 31.0 | -0.2 | | | lydro (pumping excluded) | 2819 | 3326 | 3520 | 3144 | 3224 | 3336 | 3342 | 3342 | 3334 | 3337 | 3339 | 2.2 | -0.9 | 0.4 | | | Vind | 4 | 47 | 49 | 326 | 927 | 1241 | 1594 | 1735 | 1942 | 2121 |
2455 | 28.5 | 34.2 | 5.6 | | | Solar | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0 | 0.0 | 0.4 | | | Geothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 1944 | 2053 | 2504 | 3113 | 3577 | 3754 | 3927 | 4108 | 4154 | 4281 | 4468 | 2.6 | 3.6 | 0.9 | | | Nuclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Renewable energy | 1499 | 1544 | 1587 | 1791 | 2101 | 2280 | 2415 | 2458 | 2525 | 2583 | 2715 | 0.6 | 2.8 | 1.4 | | | Hydro (pumping excluded) | 1497 | 1517 | 1557 | 1635 | 1672 | 1733 | 1733 | 1733 | 1733 | 1733 | 1733 | 0.4 | 0.7 | 0.4 | | | Wind | 2 | 27 | 30 | 155 | 428 | 545 | 681 | 723 | 790 | 848 | 980 | 29.4 | 30.5 | 4.7 | | | Solar | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0 | 0.0 | 0.4 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 444 | 509 | 917 | 1322 | 1476 | 1474 | 1511 | 1650 | 1629 | 1697 | 1753 | 7.5 | 4.9 | 0.2 | | | of which cogeneration units | 254 | 400 | 1079 | 1133 | 1140 | 1140 | 1159 | 1178 | 1185 | 1343 | 1395 | 15.6 | 0.5 | 0.2 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 31 | 30 | 40 | 16 | 18 | 16 | 16 | 16 | 16 | 16 | 16 | 2.4 | -7.4 | -1.3 | | | Gas fired | 331 | 412 | 773 | 1070 | 1167 | 1167 | 1204 | 1229 | 1215 | 1235 | 1269 | 8.8 | 4.2 | 0.3 | | | Oil fired | 79 | 49 | 51 | 53 | | | 67 | 67 | 37 | 37 | 13 | | 2.6 | 0.1 | | | Biomass-waste fired | 3 | 18 | 54 | 183 | 66
225 | 66
225 | 225 | 338 | 361 | 409 | 454 | -4.4
35.8 | 15.3 | 0.0 | | | | 0 | 0 | 0 | 0 | 0 | 225 | 0 | 0 | 0 | 409 | 454 | 0.0 | 0.0 | 0.0 | | | Hydrogen plants
Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (*) (%) | 21.7 | 24.6 | 27.7 | 27.3 | 23.8 | 24.3 | 24.8 | 24.5 | 26.2 | 26.4 | 26.3 | | | | _ | | ectricity indicators | | | | | | | | | | | | | | | | | iciency of gross thermal power generation (%) | 20.7 | 21.9 | 32.3 | 37.0 | 32.9 | 33.5 | 32.9 | 32.4 | 35.9 | 35.5 | 37.1 | | | | | | of gross electricity from CHP | 31.4 | 30.7 | 45.0 | 48.6 | 31.0 | 32.6 | 32.2 | 30.6 | 37.1 | 36.2 | 33.9 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | rbon free gross electricity generation (%) | 68.3 | 69.6 | 54.9 | 55.8 | 67.1 | 68.1 | 67.7 | 75.3 | 70.1 | 76.0 | 76.4 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 68.3 | 69.6 | 54.9 | 55.8 | 67.1 | 68.1 | 67.7 | 75.3 | 70.1 | 76.0 | 76.4 | | | | | | ansport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 15.4 | 17.3 | 21.8 | 23.1 | 24.5 | 26.4 | 28.4 | 30.3 | 32.1 | 33.3 | 34.5 | 3.5 | 1.2 | 1.5 | | | Public road transport | 2.3 | 2.9 | 2.0 | 2.1 | 2.2 | 2.3 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | -1.7 | 1.0 | 1.2 | | | rivate cars and motorcycles | 11.8 | 12.4 | 16.9 | 17.6 | 18.2 | 19.0 | 19.8 | 20.6 | 21.1 | 21.3 | 21.4 | 3.7 | 0.7 | 0.8 | | | tail | 1.0 | 1.2 | 0.9 | 1.0 | 1.1 | 1.2 | 1.4 | 1.5 | 1.6 | 1.8 | 1.9 | -1.2 | 2.2 | 2.4 | | | viation | 0.3 | 0.8 | 2.0 | 2.5 | 3.1 | 3.9 | 4.8 | 5.7 | 6.6 | 7.4 | 8.4 | 20.5 | 4.5 | 4.6 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | eight transport activity (Gtkm) | 18.1 | 28.2 | 27.8 | 30.3 | 33.1 | 36.8 | 41.0 | 43.8 | 46.8 | 48.1 | 49.4 | 4.4 | 1.7 | 2.2 | | | Frucks | 4.8 | 8.4 | 10.6 | 11.5 | 12.6 | 14.0 | 15.5 | 16.5 | 17.6 | 18.0 | 18.4 | 8.3 | 1.7 | 2.1 | | | rrucks
Rail | 13.3 | 19.8 | 17.2 | 18.7 | 20.4 | 22.7 | 25.3 | 27.1 | 29.1 | 30.0 | 30.9 | 2.6 | 1.7 | 2.1 | | | रवा।
nland navigation | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 25.3
0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 202.9 | 1.7 | 3.0 | | | ergy demand in transport (ktoe) ^(G) | | | | | | | | | | | | | | | - | | | 740 | 1060 | 1206 | 1259 | 1274 | 1311 | 1367 | 1402 | 1449 | 1462 | 1481 | 5.0 | 0.6 | 0.7 | | | Public road transport | 24 | 29 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 26 | 27 | -1.6 | 0.8 | 0.9 | | | Private cars and motorcycles | 479 | 505 | 524 | 505 | 461 | 432 | 415 | 405 | 403 | 398 | 392 | 0.9 | -1.3 | -1.0 | | | | | 380 | 467 | 509 | 538 | 570 | 616 | 636 | 655 | 653 | 657 | 12.7 | 1.4 | 1.4 | | | Trucks | 141 | | | | | | | | | | | | | | | | Rail | 69 | 87 | 71 | 72 | 73 | 75 | 77 | 79 | 79 | 77 | 74 | 0.2 | 0.3 | 0.6 | | | | | | | 72
144
8 | 73
172
8 | 75
202
9 | 77
224
11 | 79
245
12 | 79
273
12 | 77
295
12 | 74
320
13 | 0.2
15.9
0.0 | 0.3
3.9
1.5 | 0.6
2.7
2.7 | | | Lithuania: Reference scenario | | | | | | | | SUM | MARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|----------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | Ar | nual % | Change | | | Production (incl.recovery of products) | 3275 | 3903 | 1318 | 1325 | 1489 | 3123 | 4144 | 4251 | 4387 | 4436 | 4468 | -8.7 | 1.2 | 10.8 | 0.4 | | Solids
Oil | 12
358 | 20
269 | 9
125 | 8
89 | 6
65 | 5
51 | 5
41 | 5
35 | 5
26 | 5
8 | 5
0 | -3.0
-10.0 | -3.8
-6.3 | -1.3
-4.6 | -0.6
-100.0 | | Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | 0.0 | | Nuclear | 2223 | 2713 | 0 | 0 | 0 | 1802 | 2597 | 2610 | 2636 | 2636 | 2636 | -100.0 | 0.0 | 0.0 | 0.1 | | Renewable energy sources | 682 | 902 | 1185 | 1228 | 1418 | 1265 | 1501 | 1602 | 1720 | 1787 | 1828 | 5.7 | 1.8 | 0.6 | 1.0 | | Hydro | 29 | 39 | 46 | 41 | 50 | 51 | 53 | 66 | 68 | 68 | 69 | 4.7 | 0.8 | 0.5 | 1.3 | | Biomass & Waste
Wind | 653
0 | 860
0 | 1114
19 | 1158
28 | 1337
28 | 1179
30 | 1409
34 | 1476
53 | 1513
132 | 1568
143 | 1595
155 | 5.5
0.0 | 1.8
3.9 | 0.5
1.7 | 0.6
8.0 | | Solar and others | 0 | 0 | 0 | 1 | 2 | 4 | 6 | 7 | 7 | 8 | 8 | 0.0 | 0.0 | 10.7 | 2.0 | | Geothermal | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -29.5 | 2.2 | -0.1 | | Net Imports | 4337 | 5101 | 5737 | 5866 | 5714 | 4920 | 4570 | 4564 | 4563 | 4605 | 4677 | 2.8 | 0.0 | -2.2 | 0.1 | | Solids | 87 | 191 | 182 | 205 | 160 | 163 | 163 | 169 | 177 | 179 | 178 | 7.6 | -1.2 | 0.1 | 0.4 | | Oil - Crude oil and Feedstocks | 2307
4842 | 2681
9082 | 2691
9347 | 2468
8784 | 2509
8435 | 2389
7949 | 2424
7602 | 2420
7220 | 2407
6833 | 2408
6458 | 2455
6126 | 1.6
6.8 | -0.7 | -0.3 | 0.1 | | - Oil products | -2535 | -6401 | -6656 | -6316 | -5926 | -5560 | -5178 | -4800 | -4426 | -4050 | -3671 | 10.1 | -1.0
-1.2 | -1.0
-1.3 | -1.1
-1.7 | | Natural gas | 2065 | 2492 | 2484 | 3092 | 3039 | 2506 | 2497 | 2507 | 2588 | 2619 | 2625 | 1.9 | 2.0 | -1.9 | 0.2 | | Electricity | -115 | -255 | 515 | 227 | 117 | -43 | -387 | -395 | -470 | -462 | -443 | 0.0 | -13.8 | 0.0 | 0.7 | | Gross Inland Consumption | 7160 | 8790 | 6864 | 7044 | 7053 | 7890 | 8563 | 8661 | 8794 | 8880 | 8977 | -0.4 | 0.3 | 2.0 | 0.2 | | Solids | 98 | 202 | 205 | 213 | 166 | 168 | 168 | 174 | 182 | 184 | 182 | 7.6 | -2.1 | 0.1 | 0.4 | | Oil | 2214 | 2773 | 2587 | 2411 | 2427 | 2294 | 2323 | 2313 | 2294 | 2277 | 2312 | 1.6 | -0.6 | -0.4 | 0.0 | | Natural gas
Nuclear | 2064
2223 | 2476
2713 | 2492
0 | 3091
0 | 3035
0 | 2499
1802 | 2489
2597 | 2495
2610 | 2571
2636 | 2598
2636 | 2600
2636 | 1.9
-100.0 | 2.0
0.0 | -2.0
0.0 | 0.2 | | Electricity | -115 | -255 | 515 | 227 | 117 | -43 | -387 | -395 | -470 | -462 | -443 | 0.0 | -13.8 | 0.0 | 0.1 | | Renewable energy forms | 675 | 882 | 1065 | 1102 | 1307 | 1171 | 1373 | 1464 | 1581 | 1648 | 1690 | 4.7 | 2.1 | 0.5 | 1.0 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 1.4 | 2.3 | 3.0 | 3.0 | 2.4 | 2.1 | 2.0 | 2.0 | 2.1 | 2.1 | 2.0 | | | | | | Oil | 30.9 | 31.5 | 37.7 | 34.2 | 34.4 | 29.1 | 27.1 | 26.7 | 26.1 | 25.6 | 25.8 | | | | | | Natural gas | 28.8 | 28.2 | 36.3 | 43.9 | 43.0 | 31.7 | 29.1 | 28.8 | 29.2 | 29.3 | 29.0 | | | | | | Nuclear
Renewable energy forms | 31.1
9.4 | 30.9
10.0 | 0.0
15.5 | 0.0
15.6 | 0.0
18.5 | 22.8
14.8 | 30.3
16.0 | 30.1
16.9 | 30.0
18.0 | 29.7
18.6 | 29.4
18.8 | | | | | | Gross Electricity Generation in GWh _e | 11119 | 14412 | 4993 | 8739 | 9969 | 12697 | 18086 | 18981 | 20858 | 21623 | 22081 | -7.7 | 7.2 | 6.1 | 1.0 | | Self consumption and grid losses | 3076 | 2783 | 2003 | 1778 | 1656 | 2131 | 2533 | 2564 | 2709 | 2836 | 2937 | -4.2 | -1.9 | 4.3 | 0.7 | | Fuel Inputs to Thermal Power Generation | 917 | 1227 | 1282 | 1810 | 2058 | 1437 | 1700 | 1672 | 1764 | 1816 | 1791 | 3.4 | 4.8 | -1.9 | 0.3 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -100.0 | 0.0 | 0.0 | 0.0 | | Oil (including refinery gas) | 200 | 178 | 100 | 8 | 15 | 15 | 21 | 26 | 30 | 31 | 33 | -6.7 | -17.5 | 3.4 | 2.4 | | Gas (including derived gases) | 716 | 1044 | 1117 | 1700 | 1934 | 1334 | 1397 | 1343 | 1404 | 1436 | 1425 | 4.5 | 5.6 | -3.2 | 0.1 | | Biomass & Waste Geothermal heat | 1 | 5
0 | 65
0 | 101
0 | 109
0 | 87
0 | 282
0 | 303
0 | 329
0 | 348
0 | 333 | 59.8
0.0 | 5.3
0.0 | 10.0
0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 8007 | 12723 | 9999 | 9504 | 9305 | 10745 | 11209 | 11045 | 10822 |
10569 | 10386 | 2.2 | -0.7 | 1.9 | -0.4 | | Refineries | 5120 | 9471 | 9454 | 8978 | 8748 | 8363 | 8049 | 7775 | 7547 | 7292 | 7069 | 6.3 | -0.8 | -0.8 | -0.6 | | Biofuels and hydrogen production | 0 | 4 | 45 | 55 | 131 | 125 | 124 | 120 | 119 | 118 | 120 | 0.0 | 11.3 | -0.5 | -0.2 | | District heating | 653 | 519 | 498 | 469 | 425 | 454 | 437 | 540 | 518 | 522 | 559 | -2.7 | -1.6 | 0.3 | 1.2 | | Derived gases, cokeries etc. | 2235 | 2730 | 2 | 2 | 1 | 1802 | 2598 | 2611 | 2637 | 2637 | 2637 | -49.9 | -7.2 | 118.2 | 0.1 | | Energy Branch Consumption Non-Energy Uses | 613
662 | 854
804 | 722
714 | 675
626 | 655
584 | 649
566 | 669
558 | 653
554 | 651
553 | 647
548 | 643
547 | 1.6
0.8 | -1.0
-2.0 | 0.2
-0.4 | -0.2
-0.1 | | Final Energy Demand | 3772 | 4614 | 4751 | 4976 | 4940 | 4912 | 4946 | 5020 | 5126 | 5209 | 5293 | 2.3 | 0.4 | 0.0 | 0.3 | | by sector | 3/12 | 4014 | 4/51 | 4970 | 4940 | 4912 | 4940 | 3020 | 3120 | 3209 | 3293 | 2.3 | 0.4 | 0.0 | 0.3 | | Industry | 780 | 995 | 897 | 1048 | 1037 | 1060 | 1087 | 1117 | 1166 | 1211 | 1227 | 1.4 | 1.5 | 0.5 | 0.6 | | - energy intensive industries | 363 | 443 | 487 | 571 | 581 | 593 | 608 | 623 | 644 | 656 | 655 | 3.0 | 1.8 | 0.5 | 0.4 | | - other industrial sectors | 417 | 552 | 410 | 477 | 456 | 468 | 479 | 493 | 523 | 555 | 572 | -0.2 | 1.1 | 0.5 | 0.9 | | Residential | 1369 | 1512 | 1584 | 1615 | 1584 | 1559 | 1563 | 1590 | 1615 | 1634 | 1700 | 1.5 | 0.0 | -0.1 | 0.4 | | Tertiary Transport | 568
1055 | 677
1431 | 720
1548 | 725
1588 | 712
1607 | 702
1591 | 706
1590 | 710
1603 | 707
1638 | 709
1655 | 688
1679 | 2.4
3.9 | -0.1
0.4 | -0.1
-0.1 | -0.1
0.3 | | by fuel | 1000 | 1451 | 1540 | 1300 | 1007 | 1551 | 1550 | 1003 | 1030 | 1000 | 1075 | 5.5 | 0.4 | -0.1 | 0.5 | | Solids | 88 | 192 | 199 | 205 | 157 | 160 | 159 | 165 | 174 | 176 | 174 | 8.5 | -2.4 | 0.1 | 0.5 | | Oil | 1355 | 1614 | 1609 | 1620 | 1607 | 1588 | 1573 | 1572 | 1560 | 1565 | 1598 | 1.7 | 0.0 | -0.2 | 0.1 | | Gas | 363 | 519 | 567 | 558 | 459 | 517 | 487 | 503 | 527 | 535 | 548 | 4.6 | -2.1 | 0.6 | 0.6 | | Electricity | 533 | 686 | 716 | 771 | 779 | 813 | 899 | 965 | 1039 | 1101 | 1150 | 3.0 | 0.8 | 1.4 | 1.2 | | Heat (from CHP and District Heating) | 828 | 905 | 922 | 1021 | 1016 | 1034 | 1044 | 1046 | 1047 | 1045 | 1014 | 1.1 | 1.0 | 0.3 | -0.1 | | Renewable energy forms Other fuels (hydrogen, ethanol) | 605
0 | 698
0 | 737
0 | 801
0 | 922
0 | 800
0 | 783
1 | 767
1 | 778
1 | 785
2 | 807
2 | 2.0
-5.7 | 2.3
41.7 | -1.6
16.9 | 0.2
6.1 | | RES in Gross Final Energy Consumption (A) | 754 | 864 | 995 | 1058 | 1248 | 1098 | 1185 | 1254 | 1361 | 1429 | 1442 | 2.8 | 2.3 | -0.5 | 1.0 | | TOTAL GHG emissions (Mt of CO2 eq.) | 19.2 | 23.1 | 21.0 | 21.8 | 21.7 | 20.0 | 19.6 | 19.7 | 19.8 | 19.8 | 20.0 | 0.9 | 0.3 | -1.0 | 0.1 | | of which ETS sectors (2013 scope) GHG emissions | 10.2 | 10.6 | 8.3 | 9.7 | 9.8 | 8.3 | 8.2 | 8.2 | 8.4 | 8.4 | 8.4 | 0.5 | 1.7 | -1.8 | 0.1 | | of which non ETS sectors GHG emissions | | 12.6 | 12.7 | 12.1 | 11.8 | 11.7 | 11.5 | 11.5 | 11.4 | 11.4 | 11.6 | | -0.7 | -0.3 | 0.1 | | CO ₂ Emissions (energy related) | 10.3 | 12.5 | 12.2 | 13.4 | 13.2 | 11.6 | 11.7 | 11.7 | 11.9 | 11.9 | 12.1 | 1.7 | 8.0 | -1.2 | 0.2 | | Power generation/District heating | 4.0 | 3.9 | 3.7 | 4.8 | 5.1 | 3.8 | 3.9 | 3.9 | 4.0 | 4.0 | 4.0 | -0.7 | 3.4 | -2.8 | 0.2 | | Energy Branch | 1.1 | 1.7 | 1.6 | 1.5 | 1.5 | 1.2 | 1.3 | 1.3 | 1.3 | 1.3 | 1.2 | 3.8 | -0.5 | -1.4 | -0.3 | | Industry Residential | 1.1
0.6 | 1.4
0.7 | 1.2
0.7 | 1.2
0.7 | 1.2
0.5 | 1.4
0.5 | 1.4
0.5 | 1.4
0.5 | 1.4
0.5 | 1.5
0.5 | 1.5
0.5 | 0.7
2.9 | 0.7
-3.4 | 1.1
-0.7 | 0.5
0.1 | | Tertiary | 0.6 | 0.7 | 0.7 | 0.7 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1.8 | -3.4 | -0.7 | -0.2 | | Transport | 3.1 | 4.2 | 4.5 | 4.6 | 4.4 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 3.7 | -0.3 | -0.2 | 0.2 | | CO ₂ Emissions (non energy related) | 1.6 | 1.7 | 1.6 | 1.9 | 2.1 | 2.1 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 0.2 | 3.0 | -2.2 | -0.3 | | Non-CO ₂ GHG emissions | 7.3 | 8.9 | 7.2 | 6.5 | 6.3 | 6.3 | 6.2 | 6.3 | 6.2 | 6.2 | 6.4 | -0.2 | -1.3 | -0.2 | 0.1 | | TOTAL GHG emissions Index (1990=100) | 38.4 | 46.5 | 42.2 | 43.8 | 43.5 | 40.1 | 39.4 | 39.5 | 39.8 | 39.8 | 40.2 | | | | | | Source: PRIMES | | | | | | | | | | | | | | | | | SUMMARY ENERGY BALANCE AND INDICATO | . , | | | | | | | | | | | ania: R | | | | |---|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|-------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | | | | | | | | | | | | | An | ınual % | Change | !
 | | lain Energy System Indicators opulation (Million) | 3.512 | 3.425 | 3.329 | 3.246 | 3.180 | 3.115 | 3.044 | 2.977 | 2.922 | 2.869 | 2.812 | -0.5 | -0.5 | -0.4 | | | DP (in 000 M€10) | 18.0 | 26.2 | 27.5 | 32.4 | 35.1 | 38.1 | 41.8 | 45.3 | 49.3 | 53.0 | 55.6 | 4.4 | 2.4 | 1.8 | | | oss Inl. Cons./GDP (toe/M€10) | 398.1 | 335.9 | 249.3 | 217.5 | 201.2 | 207.0 | 204.9 | 191.4 | 178.5 | 167.5 | 161.5 | -4.6 | -2.1 | 0.2 | | | arbon intensity (t of CO ₂ /toe of GIC) | 1.44 | 1.42 | 1.78 | 1.90 | 1.87 | 1.47 | 1.37 | 1.35 | 1.35 | 1.34 | 1.34 | 2.2 | 0.5 | -3.1 | | | port Dependency % | 59.8 | 57.1 | 81.9 | 81.6 | 79.3 | 61.2 | 52.4 | 51.8 | 51.0 | 50.9 | 51.1 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 2.9 | 4.2 | 6.1 | 7.4 | 8.4 | 9.4 | 9.9 | 10.2 | 10.6 | 11.0 | 11.4 | 7.9 | 3.3 | 1.6 | | | as % of GDP | 15.9 | 16.0 | 22.2 | 22.8 | 24.1 | 24.6 | 23.7 | 22.6 | 21.6 | 20.8 | 20.6 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 80.3 | 61.3 | 61.0 | 58.8 | 57.4 | 54.4 | 52.2 | 50.0 | 48.2 | 46.8 | -4.8 | -0.4 | -0.8 | | | sidential (Energy on Private Income, index 2000=100) rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 72.3
88.2 | 75.7
87.1 | 64.0
73.1 | 57.3
65.8 | 51.3
58.9 | 46.4
53.6 | 43.3
49.4 | 40.0
45.0 | 37.4
41.7 | 37.0
38.5 | -2.8
-1.4 | -2.7
-2.8 | -2.1
-2.0 | | | ssenger transport (toe/Mpkm) | 23.8 | 20.5 | 23.1 | 21.9 | 20.4 | 18.4 | 16.9 | 16.1 | 15.8 | 15.7 | 15.6 | -0.3 | -1.2 | -1.9 | | | ight transport (toe/Mtkm) | 20.1 | 20.6 | 21.7 | 21.1 | 20.3 | 19.3 | 18.3 | 17.7 | 17.1 | 16.5 | 16.0 | 0.8 | -0.7 | -1.0 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.17 | 0.14 | 0.21 | 0.21 | 0.22 | 0.14 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 2.5 | 0.2 | -5.9 | | | al energy demand (t of CO ₂ /toe) | 1.39 | 1.48 | 1.47 | 1.41 | 1.33 | 1.35 | 1.32 | 1.31 | 1.30 | 1.29 | 1.29 | 0.5 | -1.0 | -0.1 | | | ndustry | 1.38 | 1.37 | 1.28 | 1.18 | 1.20 | 1.33 | 1.28 | 1.29 | 1.23 | 1.21 | 1.24 | -0.7 | -0.7 | 0.6 | | | tesidential | 0.41 | 0.43 | 0.47 | 0.43 | 0.33 | 0.33 | 0.31 | 0.30 | 0.30 | 0.29 | 0.30 | 1.4 | -3.4 | -0.5 | | | ertiary | 0.91 | 0.87 | 0.85 | 0.75 | 0.63 | 0.60 | 0.56 | 0.54 | 0.54 | 0.54 | 0.55 | -0.6 | -3.0 | -1.2 | | | ransport (C) | 2.94 | 2.94 | 2.89 | 2.87 | 2.71 | 2.70 | 2.68 | 2.67 | 2.66 | 2.65 | 2.64 | -0.2 | -0.6 | -0.1 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (%) | 17.1 | 16.8 | 19.5 | 20.0 | 23.8 | 20.8 | 22.2 | 23.2 | 24.6 | 25.4 | 25.3 | | | | | | S in transport (%) | 0.1 | 0.3 | 3.5 | 4.3 | 10.2 | 10.1 | 10.5 | 10.4 | 10.8 | 10.8 | 11.1 | | | | | | ss Electricity generation by source (in GWh _e) ^(E) | 11121 | 14415 | 4994 | 8739 | 9969 | 12697 | 18086 | 18981 | 20858 | 21623 | 22081 | -7.7 | 7.2 | 6.1 | | | luclear energy | 8419 | 10337 | 0 | 0 | 0 | 7684 | 11076 | 11130 | 11240 | 11240 | 11240 | -100.0 | 0.0 | 0.0 | | | olids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | il (including refinery gas)
as (including derived gases) | 655
1707 | 401
3217 | 647
3436 | 53
7456 | 86
8507 | 13
3676 | 15
4608 | 151
4842 | 176
5486 | 184
6079 | 194
6345 | -0.1
7.2 | -18.3
9.5 | -15.8
-5.9 | | | iomass-waste | 0 | 7 | 147 | 428 | 464 | 380 | 1383 | 1479 | 1628 | 1665 | 1694 | 0.0 | 12.2 | 11.5 | | | ydro (pumping excluded) | 340 | 451 | 540 | 474 | 582 | 593 | 614 | 768 | 791 | 793 | 800 | 4.7 | 0.8 | 0.5 | | | /ind | 0 | 2 | 224 | 327 | 329 | 351 | 390 | 611 | 1536 | 1663 | 1807 | 0.0 | 3.9 | 1.7 | | | olar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 4222 | 3419 | 2544 | 3173 | 2624 | 3572 | 3762 | 3907 | 4526 | 4610 | 4689 | -4.9 | 0.3 | 3.7 | | | uclear energy | 2291 | 1200 | 0 | 0 | 0 | 1326 | 1326 | 1326 | 1339 | 1339 | 1339 | -100.0 | 0.0 | 0.0 | | | enewable energy | 99 | 121 | 267 | 351 | 378 | 388 | 407 | 549 | 990 | 1042 | 1088 | 10.4 | 3.5 | 0.7 | | | Hydro (pumping excluded) | 99 | 114 | 113 | 130 | 156 | 156 | 156 | 193 | 199 | 206 | 206 | 1.3 | 3.2 | 0.0 | | | Wind
Solar | 0 | 6
0 | 154
0 | 221
0 | 222
0 | 233
0 | 251
0 | 356
0 | 791
0 | 836
0 | 882
0 | 0.0 | 3.7
0.0 | 1.2
0.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 1832 | 2098 | 2276 | 2822 | 2246 | 1858 | 2030 | 2033 | 2198 | 2229 | 2263 | 2.2 | -0.1 | -1.0 | | | of which cogeneration units | 650 | 829 | 961 | 888 | 926 | 969 | 1020 | 978 | 1142 | 1172 | 1157 | 4.0 | -0.4 | 1.0 | | | of
which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 5 | 6 | 6 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 3.4 | 1.2 | -100.0 | | | Gas fired | 1506 | 1685 | 1816 | 2421 | 1836 | 1740 | 1792 | 1820 | 1963 | 1963 | 1988 | 1.9 | 0.1 | -0.2 | | | Oil fired | 298 | 372 | 413 | 334 | 338 | 57 | 57 | 20 | 23 | 24 | 26 | 3.3 | -2.0 | -16.3 | | | Biomass-waste fired | 24 | 35 | 41 | 60 | 65 | 60 | 181 | 192 | 211 | 241 | 249 | 5.5 | 4.8 | 10.8 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Load factor of net power capacity (F) (%) | 26.3 | 44.2 | 20.7 | 29.7 | 41.8 | 38.7 | 52.2 | 52.8 | 50.3 | 51.2 | 51.5 | | | | | | ctricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 22.2 | 25.4 | 28.4 | 37.7 | 37.9 | 24.4 | 30.4 | 33.3 | 35.6 | 37.5 | 39.5 | | | | | | of gross electricity from CHP | 15.5 | 15.5 | 34.6 | 57.5 | 51.2 | 32.3 | 27.8 | 28.0 | 29.3 | 31.8 | 31.2 | | | | | | of electricity from CCS
bon free gross electricity generation (%) | 0.0
78.8 | 0.0
74.9 | 0.0
18.2 | 0.0
14.1 | 0.0
13.8 | 0.0
70.9 | 0.0
74.4 | 0.0
73.7 | 0.0
72.9 | 0.0
71.0 | 0.0
70.4 | | | | | | uclear | 78.8
75.7 | 74.9
71.7 | 0.0 | 0.0 | 0.0 | 70.9
60.5 | 61.2 | 73.7
58.6 | 72.9
53.9 | 71.0
52.0 | 70.4
50.9 | | | | | | enewable energy forms | 3.1 | 3.2 | 18.2 | 14.1 | 13.8 | 10.4 | 13.2 | 15.1 | 19.0 | 19.1 | 19.5 | | | | | | nsport sector | J. 1 | | | | | | | | . 5.5 | | . 5.5 | | | | | | ssenger transport activity (Gpkm) | 30.0 | 40.1 | 34.9 | 36.7 | 38.7 | 40.6 | 42.4 | 43.7 | 45.1 | 46.1 | 46.9 | 1.5 | 1.0 | 0.9 | | | ublic road transport | 2.8 | 3.7 | 2.7 | 2.8 | 2.9 | 3.0 | 3.1 | 3.2 | 3.2 | 3.2 | 3.3 | -0.2 | 0.8 | 0.7 | | | rivate cars and motorcycles | 26.3 | 35.1 | 30.6 | 31.9 | 33.3 | 34.6 | 35.7 | 36.4 | 37.1 | 37.4 | 37.5 | 1.5 | 0.9 | 0.7 | | | ail | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | -4.8 | 2.1 | 2.5 | | | viation | 0.3 | 0.8 | 1.2 | 1.5 | 1.9 | 2.4 | 2.9 | 3.4 | 4.1 | 4.6 | 5.3 | 14.3 | 4.5 | 4.2 | | | land navigation | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -0.2 | 1.0 | 0.9 | | | ight transport activity (Gtkm) | 16.7 | 28.4 | 32.8 | 35.6 | 38.7 | 42.2 | 46.0 | 49.1 | 52.4 | 54.7 | 57.0 | 7.0 | 1.6 | 1.8 | | | rucks | 7.8 | 15.9 | 19.4 | 20.7 | 22.1 | 23.9 | 25.9 | 27.4 | 29.1 | 30.2 | 31.3 | 9.6 | 1.3 | 1.6 | | | ail | 8.9 | 12.5 | 13.4 | 14.9 | 16.6 | 18.2 | 20.1 | 21.6 | 23.3 | 24.5 | 25.6 | 4.2 | 2.1 | 1.9 | | | land navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.9 | 1.9 | | | ergy demand in transport (ktoe) (G) | 1049 | 1407 | 1520 | 1555 | 1575 | 1560 | 1560 | 1572 | 1607 | 1624 | 1648 | 3.8 | 0.4 | -0.1 | | | ublic road transport | 17 | 22 | 16 | 17 | 17 | 17 | 18 | 17 | 17 | 17 | 17 | -0.5 | 0.7 | 0.3 | | | rivate cars and motorcycles | 664 | 749 | 737 | 722 | 697 | 644 | 609 | 587 | 579 | 575 | 573 | 1.0 | -0.6 | -1.3 | | | rucks | 266 | 510 | 652 | 686 | 719 | 745 | 771 | 794 | 819 | 828 | 841 | 9.4 | 1.0 | 0.7 | | | Rail | 72 | 75 | 61 | 65 | 67 | 69 | 72 | 74 | 76 | 75 | 74 | -1.6 | 1.0 | 0.6 | | | viation
nland navigation | 27 | 46 | 48 | 59 | 69 | 78 | 83 | 93 | 108 | 121 | 136 | 6.1 | 3.6 | 1.9 | | | | 3 | 5 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7.2 | 0.9 | 0.6 | | | Luxembourg: Reference scenario | | | | | | | | SUM | MARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | '00-'10 | | | _ ` ′ | | | | | | | | | | | | | | Aı | nnual % | Change | | | Production (incl.recovery of products) | 64 | 107 | 130 | 178 | 237 | 301 | 321 | 325 | 354 | 391 | 402 | 7.4 | 6.2 | 3.1 | 1.1 | | Solids
Oil | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Natural gas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 64 | 107 | 130 | 178 | 237 | 301 | 321 | 325 | 354 | 391 | 402 | 7.4 | 6.2 | 3.1 | 1.1 | | Hydro | 11 | 8 | 9 | 10 | 11 | 11 | 12 | 12 | 13 | 13 | 13 | -1.4 | 1.9 | 0.7 | 0.4 | | Biomass & Waste
Wind | 51
2 | 93
4 | 113
5 | 144
10 | 165
32 | 201
35 | 205
40 | 196
41 | 198
41 | 197
50 | 194
58 | 8.4
7.4 | 3.9
21.1 | 2.2
2.1 | -0.3
2.0 | | Solar and others | 0 | 2 | 3 | 14 | 29 | 53 | 64 | 76 | 102 | 130 | 136 | 97.3 | 26.7 | 8.4 | 3.8 | | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | -0.2 | 0.1 | | Net Imports | 3613 | 4685 | 4510 | 4462 | 4278 | 4231 | 4256 | 4272 | 4269 | 4258 | 4319 | 2.2 | -0.5 | -0.1 | 0.1 | | Solids | 108 | 77 | 66 | 38 | 31 | 30 | 28 | 26 | 24 | 23 | 22 | -4.8 | -7.3 | -0.9 | -1.4 | | Oil | 2342 | 3150 | 2857 | 2887 | 2713 | 2658 | 2695 | 2711 | 2761 | 2810 | 2865 | 2.0 | -0.5 | -0.1 | 0.3 | | - Crude oil and Feedstocks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | - Oil products | 2342 | 3150 | 2857 | 2887 | 2713 | 2658 | 2695 | 2711 | 2761 | 2810 | 2865 | 2.0 | -0.5 | -0.1 | 0.3 | | Natural gas
Electricity | 671
491 | 1176
280 | 1197
349 | 1005
381 | 868
389 | 893
395 | 855
409 | 853
413 | 788
413 | 705
424 | 698
424 | 5.9
-3.3 | -3.2
1.1 | -0.2
0.5 | -1.0
0.2 | | Gross Inland Consumption | 3627 | 4810 | 4658 | 4640 | 4515 | 4532 | 4577 | 4597 | 4623 | 4649 | 4721 | 2.5 | -0.3 | 0.1 | 0.2 | | Solids | 108 | 77 | 66 | 38 | 31 | 30 | 28 | 26 | 24 | 23 | 22 | -4.8 | -7.3 | -0.9 | -1.4 | | Oil | 2293 | 3169 | 2875 | 2887 | 2713 | 2658 | 2695 | 2711 | 2761 | 2810 | 2865 | 2.3 | -0.6 | -0.1 | 0.3 | | Natural gas | 671 | 1176 | 1197 | 1005 | 868 | 893 | 855 | 853 | 788 | 705 | 698 | 5.9 | -3.2 | -0.2 | -1.0 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Electricity | 491 | 280 | 349 | 381 | 389 | 395 | 409 | 413 | 413 | 424 | 424 | -3.3 | 1.1 | 0.5 | 0.2 | | Renewable energy forms | 64 | 107 | 171 | 329 | 514 | 555 | 590 | 594 | 637 | 688 | 713 | 10.3 | 11.7 | 1.4 | 1.0 | | as % in Gross Inland Consumption | 0.0 | | | 2.2 | ^ 7 | ^ 7 | 2.0 | 2.2 | 0.5 | 0.5 | 0.5 | | | | | | Solids
Oil | 3.0
63.2 | 1.6
65.9 | 1.4
61.7 | 0.8
62.2 | 0.7
60.1 | 0.7
58.7 | 0.6 | 0.6
59.0 | 0.5
59.7 | 0.5
60.4 | 0.5
60.7 | | | | | | Natural gas | 18.5 | 24.5 | 25.7 | 21.7 | 19.2 | 19.7 | 58.9
18.7 | 18.6 | 17.1 | 15.2 | 14.8 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 1.8 | 2.2 | 3.7 | 7.1 | 11.4 | 12.3 | 12.9 | 12.9 | 13.8 | 14.8 | 15.1 | | | | | | Gross Electricity Generation in GWh _e | 422 | 3346 | 3232 | 2813 | 2787 | 3035 | 3337 | 3448 | 3487 | 3561 | 3707 | 22.6 | -1.5 | 1.8 | 0.5 | | Self consumption and grid losses | 341 | 462 | 706 | 765 | 763 | 798 | 846 | 865 | 856 | 872 | 886 | 7.5 | 0.8 | 1.0 | 0.2 | | Fuel Inputs to Thermal Power Generation | 95 | 577 | 566 | 443 | 365 | 379 | 396 | 400 | 359 | 301 | 300 | 19.5 | -4.3 | 0.8 | -1.4 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Oil (including refinery gas) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Gas (including derived gases) | 67 | 545 | 521 | 371 | 280 | 293 | 296 | 311 | 266 | 203 | 206 | 22.8 | -6.0 | 0.5 | -1.8 | | Biomass & Waste Geothermal heat | 29
0 | 32
0 | 45
0 | 72
0 | 84
0 | 86
0 | 100
0 | 89
0 | 93
0 | 99
0 | 94 | 4.8
0.0 | 6.4
0.0 | 1.8
0.0 | -0.3
0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 0 | 1 | 42 | 114 | 215 | 222 | 230 | 230 | 240 | 251 | 267 | 96.7 | 17.8 | 0.7 | 0.8 | | Refineries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Biofuels and hydrogen production | 0 | 1 | 41 | 113 | 213 | 221 | 228 | 229 | 238 | 250 | 266 | 0.0 | 18.1 | 0.7 | 0.8 | | District heating | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 36.8 | 0.0 | -2.3 | -5.4 | | Derived gases, cokeries etc. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 42.8 | 1846.5 | -0.4 | 0.0 | | Energy Branch Consumption | 26 | 30 | 50 | 55 | 55 | 57 | 60 | 61 | 60 | 61 | 62 | 6.9 | 0.9 | 0.9 | 0.1 | | Non-Energy Uses | 12 | 21 | 17 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 4.1 | 0.1 | -0.6 | -0.1 | | Final Energy Demand | 3517 | 4443 | 4302 | 4358 | 4274 | 4283 | 4326 | 4352 | 4404 | 4467 | 4540 | 2.0 | -0.1 | 0.1 | 0.2 | | by sector
Industry | 714 | 721 | 748 | 685 | 683 | 689 | 668 | 649 | 632 | 616 | 613 | 0.5 | -0.9 | -0.2 | -0.4 | | - energy intensive industries | 603 | 597 | 642 | 587 | 586 | 591 | 572 | 554 | 536 | 518 | 511 | 0.5 | -0.9 | -0.2 | -0.4 | | - other industrial sectors | 110 | 123 | 106 | 98 | 98 | 97 | 96 | 95 | 96 | 98 | 102 | -0.4 | -0.8 | -0.2 | 0.3 | | Residential | 469 | 525 | 486 | 543 | 530 | 535 | 529 | 530 | 525 | 526 | 519 | 0.4 | 0.9 | 0.0 | -0.1 | | Tertiary | 404 | 400 | 446 | 437 | 424 | 423 | 427 | 432 | 430 | 434 | 434 | 1.0 | -0.5 | 0.1 | 0.1 | | Transport | 1930 | 2797 | 2622 | 2692 | 2637 | 2636 | 2702 | 2741 | 2818 | 2890 | 2975 | 3.1 | 0.1 | 0.2 | 0.5 | | by fuel | | | | | | | | | | | | | | | | | Solids | 108 | 77 | 66 | 38 | 31 | 30 | 28 | 26 | 24 | 23 | 22 | -4.8 | -7.3 | -0.9 | -1.4 | | Oil
Gas | 2278
605 | 3123
631 | 2856
676 | 2870
634 | 2695
587 | 2641
600 | 2679
559 | 2695
542 | 2745
522 | 2795
502 | 2849
492 | 2.3
1.1 |
-0.6
-1.4 | -0.1
-0.5 | 0.3
-0.6 | | Electricity | 497 | 529 | 568 | 557 | 563 | 587 | 623 | 634 | 638 | 653 | 664 | 1.3 | -0.1 | 1.0 | 0.3 | | Heat (from CHP and District Heating) | 8 | 22 | 28 | 29 | 30 | 33 | 36 | 40 | 45 | 48 | 50 | 14.0 | 0.7 | 1.7 | 1.6 | | Renewable energy forms | 22 | 61 | 108 | 229 | 367 | 391 | 401 | 413 | 428 | 444 | 462 | 17.2 | 13.0 | 0.9 | 0.7 | | Other fuels (hydrogen, ethanol) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | -11.0 | 61.5 | 2.4 | 6.9 | | RES in Gross Final Energy Consumption (A) | 27 | 62 | 120 | 218 | 391 | 428 | 456 | 471 | 516 | 561 | 583 | 15.8 | 12.6 | 1.5 | 1.2 | | TOTAL GHG emissions (Mt of CO2 eq.) | 10.6 | 14.3 | 13.5 | 12.9 | 12.0 | 11.9 | 11.8 | 11.8 | 11.8 | 11.7 | 11.8 | 2.4 | -1.2 | -0.2 | 0.0 | | of which ETS sectors (2013 scope) GHG emissions | | 4.2 | 3.9 | 3.5 | 3.3 | 3.4 | 3.3 | 3.2 | 3.1 | 2.9 | 2.9 | | -1.5 | -0.2 | -0.5 | | of which non ETS sectors GHG emissions | | 10.1 | 9.7 | 9.3 | 8.7 | 8.5 | 8.5 | 8.5 | 8.7 | 8.8 | 8.9 | | -1.1 | -0.2 | 0.2 | | CO ₂ Emissions (energy related) | 8.9 | 12.6 | 11.8 | 11.3 | 10.4 | 10.3 | 10.3 | 10.4 | 10.4 | 10.3 | 10.5 | 2.9 | -1.2 | -0.1 | 0.1 | | Power generation/District heating | 0.2 | 1.3 | 1.2 | 0.9 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.5 | 0.5 | 22.8 | -6.0 | 0.5 | -1.8 | | Energy Branch
Industry | 0.0
1.2 | 0.0
1.1 | 0.0
1.1 | 0.0 | 0.0
0.7 | 0.0
0.7 | 0.0
0.7 | 0.0
0.7 | 0.0
0.6 | 0.0
0.6 | 0.0 | 0.0
-1.4 | 0.0
-3.6 | 0.0
-0.6 | 0.0
-1.0 | | Residential | 1.2 | 1.1 | 1.1 | 1.2 | 1.1 | 1.1 | 1.0 | 1.0 | 0.6 | 0.6 | 0.6 | -1.4 | -3.6
0.6 | -0.6
-0.9 | -0.8 | | Tertiary | 0.6 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | -0.2 | -1.2 | -2.3 | -0.8 | | Transport | 5.8 | 8.5 | 7.9 | 7.8 | 7.4 | 7.3 | 7.5 | 7.6 | 7.8 | 8.0 | 8.2 | 3.1 | -0.6 | 0.2 | 0.4 | | CO ₂ Emissions (non energy related) | 0.7 | 0.7 | 0.6 | 0.5 | 0.6 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | -2.1 | 0.0 | -2.1 | -0.8 | | Non-CO ₂ GHG emissions | 1.0 | 1.1 | 1.1 | 1.0 | 1.0 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.4 | -1.2 | -0.6 | 0.1 | | TOTAL GHG emissions Index (1990=100) | 80.4 | 108.4 | 102.3 | 97.2 | 90.8 | 89.7 | 88.9 | 88.9 | 88.8 | 88.4 | 89.5 | | | | | | Source: PRIMES | | | | | | | | | | | | | | | | | JMMARY ENERGY BALANCE AND INDICATO | | | | | | | | | | | Luxemb | | | | |--|--|--|---|--|---|--|--|---|--|--|---|--|---|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | Ar | nnual % | Change | | nin Energy System Indicators | 0.434 | 0.461 | 0.502 | 0.541 | 0.572 | 0.600 | 0.636 | 0.640 | 0.670 | 0.600 | 0.704 | 1 5 | 1 2 | 0.0 | | pulation (Million)
DP (in 000 M€10) | 30.8 | 0.461
36.7 | 0.502
40.3 | 0.541
44.1 | 0.573
48.6 | 0.600
53.3 | 0.626
58.3 | 0.649
63.6 | 0.670
69.3 | 0.688
75.4 | 0.704
82.1 | 1.5
2.7 | 1.3
1.9 | 0.9
1.8 | | oss Inl. Cons./GDP (toe/M€10) | 117.8 | 131.0 | 115.7 | 105.3 | 93.0 | 85.0 | 78.6 | 72.3 | 66.7 | 61.6 | 57.5 | -0.2 | -2.2 | -1.7 | | rbon intensity (t of CO ₂ /toe of GIC) | 2.46 | 2.62 | 2.54 | 2.44 | 2.31 | 2.28 | 2.26 | 2.26 | 2.24 | 2.22 | 2.22 | 0.3 | -0.9 | -0.2 | | port Dependency % | 99.6 | 97.4 | 96.8 | 96.2 | 94.8 | 93.4 | 93.0 | 92.9 | 92.3 | 91.6 | 91.5 | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 3.1 | 4.3 | 4.8 | 5.8 | 6.1 | 6.4 | 6.7 | 6.9 | 7.3 | 7.7 | 8.0 | 4.6 | 2.6 | 0.8 | | as % of GDP | 9.9 | 11.8 | 11.8 | 13.1 | 12.7 | 12.0 | 11.5 | 10.9 | 10.6 | 10.2 | 9.8 | 4.0 | 2.0 | 0.0 | | ergy intensity indicators | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 97.5 | 142.2 | 127.5 | 120.2 | 114.9 | 107.3 | 101.4 | 96.4 | 91.2 | 86.8 | 3.6 | -1.7 | -1.1 | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 103.1 | 83.8 | 86.7 | 77.4 | 71.3 | 64.3 | 58.6 | 52.5 | 47.5 | 42.1 | -1.8 | -0.8 | -1.8 | | tiary (Energy on Value added, index 2000=100) | 100.0 | 81.9 | 78.9 | 70.0 | 61.1 | 55.2 | 50.6 | 46.5 | 42.3 | 39.1 | 35.8 | -2.3 | -2.5 | -1.9 | | ssenger transport (toe/Mpkm) | 157.3 | 160.5 | 143.2 | 132.2 | 113.7 | 104.7 | 99.5 | 95.6 | 93.1 | 91.5 | 90.6 | -0.9 | -2.3 | -1.3 | | ight transport (toe/Mtkm) | 90.6 | 156.1 | 151.7 | 146.6 | 137.2 | 129.0 | 123.4 | 119.3 | 116.8 | 115.2 | 113.7 | 5.3 | -1.0 | -1.1 | | bon Intensity indicators | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.31 | 0.36 | 0.34 | 0.28 | 0.21 | 0.20 | 0.18 | 0.19 | 0.16 | 0.12 | 0.11 | 1.1 | -4.8 | -1.3 | | al energy demand (t of CO ₂ /toe) | 2.49 | 2.55 | 2.46 | 2.39 | 2.28 | 2.25 | 2.23 | 2.22 | 2.21 | 2.20 | 2.20 | -0.1 | -0.7 | -0.2 | | dustry | 1.71 | 1.54 | 1.43 | 1.20 | 1.08 | 1.09 | 1.04 | 1.01 | 0.97 | 0.94 | 0.93 | -1.8 | -2.8 | -0.4 | | esidential | 2.30 | 2.28 | 2.16 | 2.14 | 2.10 | 1.99 | 1.92 | 1.83 | 1.76 | 1.70 | 1.65 | -0.6 | -0.3 | -0.9 | | ertiary | 1.61 | 1.31 | 1.39 | 1.38 | 1.31 | 1.15 | 1.03 | 0.97 | 0.94 | 0.89 | 0.86 | -1.4 | -0.7 | -2.4 | | ransport (C) | 3.01 | 3.04 | 2.99 | 2.91 | 2.79 | 2.78 | 2.77 | 2.77 | 2.77 | 2.76 | 2.75 | -0.1 | -0.7 | -0.1 | | icators for renewables | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (0) (%) | 8.0 | 1.4 | 2.9 | 5.2 | 9.5 | 10.3 | 10.9 | 11.2 | 12.1 | 13.0 | 13.4 | | | | | S in transport (%) | 0.0 | 0.0 | 1.9 | 5.1 | 10.1 | 10.5 | 10.7 | 10.5 | 10.7 | 11.1 | 11.5 | | | | | ss Electricity generation by source (in GWh _e) ^(E) | 422 | 3347 | 3232 | 2813 | 2787 | 3035 | 3337 | 3448 | 3487 | 3561 | 3707 | 22.6 | -1.5 | 1.8 | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | olids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | il (including refinery gas) | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | as (including derived gases) | 215
56 | 3106
76 | 2918
129 | 2190
313 | 1708
359 | 1770
367 | 1881
439 | 2001
389 | 1728
439 | 1431
458 | 1453
432 | 29.8
8.7 | -5.2
10.8 | 1.0
2.0 | | iomass-waste | 124 | 94 | 108 | 113 | 130 | 133 | 140 | 142 | 146 | 148 | 150 | -1.4 | 1.9 | 0.7 | | lydro (pumping excluded)
/ind | 27 | 52 | 55 | 121 | 372 | 411 | 459 | 474 | 479 | 585 | 680 | 7.4 | 21.1 | 2.1 | | olar | 0 | 18 | 21 | 76 | 218 | 355 | 418 | 440 | 696 | 938 | 992 | 89.8 | 26.3 | 6.7 | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.9 | -94.6 | 7.2 | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Generation Capacity in MW _e | 153 | 621 | 630 | 762 | 1083 | 1241 | 1374 | 1384 | 1603 | 1679 | 1797 | 15.2 | 5.6 | 2.4 | | luclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | tenewable energy | 42 | 93 | 106 | 194 | 497 | 653 | 745 | 777 | 1024 | 1360 | 1504 | 9.6 | 16.7 | 4.1 | | Hydro (pumping excluded) | 32 | 34 | 34 | 38 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 0.4 | 2.9 | 0.5 | | Wind | 10 | 35 | 43 | 78 | 226 | 256 | 290 | 301 | 304 | 392 | 480 | 15.8 | 18.0 | 2.5 | | Solar | 0 | 24 | 29 | 78 | 226 | 350 | 409 | 429 | 671 | 918 | 973 | 93.3 | 22.8 | 6.1 | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | hermal power | 111 | 528 | 524 | 568 | 586 | 588 | 629 | 606 | 579 | 320 | 293 | 16.8 | 1.1 | 0.7 | | of which cogeneration units | 63 | 66 | 84 | 71 | 92 | 95 | 125 | 122 | 114 | 121 | 115 | 2.9 | 0.8 | 3.2 | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Solids fired | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Gas fired Oil fired | 95
0 | 506
0 | 505
0 | 501
0 | 497
0 | 497
0 | 513
0 | 484
0 | 439
0 | 208
0 | 204 | 18.2
0.0 | -0.2
0.0 | 0.3 | | Biomass-waste fired | 16 | 22 | 19 | 67 | 89 | 91 | 116 | 122 | 140 | 111 | 89 | 1.8 | 16.6 | 2.6 | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | g. Load factor of net power capacity (F) (%) | 29.7 | 61.2 | 58.2 | 40.7 | 28.5 | 27.1 | 27.0 | 27.7 | 24.3 | 23.7 | 23.1 | | | | | ctricity indicators | | | | | | | | | | | | | | | | iciency of gross thermal power generation (%) | 24.4 | 47.4 | 46.3 | 48.6 | 48.7 | 48.5 | 50.4 | 51.4 | 51.9 | 53.9 | 54.1 | | | | | of gross electricity from CHP | 17.7 | 10.1 | 9.6 | 14.7 | 15.9 | 14.1 | 18.9 | 18.6 | 18.7 | 17.9 | 17.6 | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | bon free gross electricity generation (%) | 49.1 | 7.2 | 9.7 | 22.1 | 38.7 | 41.7 | 43.6 | 42.0 | 50.5 | 59.8 | 60.8 | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | enewable energy forms | 49.1 | 7.2 | 9.7 | 22.1 | 38.7 | 41.7 | 43.6 | 42.0 | 50.5 | 59.8 | 60.8 | | | | | nsport sector
 | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 7.3 | 8.1 | 8.5 | 9.2 | 10.0 | 10.5 | 11.1 | 11.6 | 12.2 | 12.6 | 13.1 | 1.5 | 1.6 | 1.1 | | | 0.6 | 8.0 | 0.9 | 1.0 | 1.1 | 1.1 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 4.2 | 1.4 | 1.1 | | ublic road transport | 5.7 | 6.5 | 6.7 | 7.2 | 7.7 | 8.1 | 8.5 | 8.8 | 9.2 | 9.5 | 9.7 | 1.5 | 1.5 | 0.9 | | rivate cars and motorcycles | | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.4 | 1.7 | 1.5 | | rivate cars and motorcycles ail | 0.3 | | 0.6 | 0.6 | 0.7 | 8.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | -0.9 | 2.5 | 2.7 | | rrivate cars and motorcycles
tail
viation | 0.6 | 0.6 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | trivate cars and motorcycles
tail
viation
nland navigation | 0.6
0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | vublic road transport virvate cars and motorcycles kail viation nland navigation sight transport activity (Gtkm) | 0.6
0.0
8.6 | 0.0
9.5 | 9.2 | 10.1 | 11.0 | 11.9 | 12.9 | 13.6 | 14.4 | 15.0 | 15.7 | 0.7 | 1.7 | 1.7 | | riviate cars and motorcycles
tall
viation
aland navigation
ight transport activity (Gtkm)
rucks | 0.6
0.0
8.6
7.6 | 0.0
9.5
8.8 | 9.2
8.7 | 10.1 9.5 | 11.0 10.3 | 11.2 | 12.1 | 13.6 12.8 | 13.5 | 14.1 | 14.7 | 1.3 | 1.7 | 1.7 | | rivate cars and motorcycles all viation land navigation ight transport activity (Gtkm) rucks ail | 0.6
0.0
8.6
7.6
0.6 | 0.0
9.5
8.8
0.4 | 9.2
8.7
0.2 | 10.1
9.5
0.2 | 11.0
10.3
0.3 | 11.2
0.3 | 12.1
0.3 | 13.6
12.8
0.4 | 13.5
0.4 | 14.1
0.4 | 14.7
0.5 | 1.3
-11.3 | 1.7
3.8 | 1.7
2.2 | | rivate cars and motorcycles
ail
viation
iland navigation
ight transport activity (Gtkm)
rucks
ail
iland navigation | 0.6
0.0
8.6
7.6
0.6
0.4 | 0.0
9.5
8.8
0.4
0.3 | 9.2
8.7
0.2
0.4 | 9.5
0.2
0.4 | 11.0
10.3
0.3
0.4 | 11.2
0.3
0.4 | 12.1
0.3
0.4 | 13.6
12.8
0.4
0.5 | 13.5
0.4
0.5 | 14.1
0.4
0.5 | 14.7
0.5
0.5 | 1.3
-11.3
-0.5 | 1.7
3.8
1.1 | 1.7
2.2
1.0 | | rivate cars and motorcycles all viation lland navigation ight transport activity (Gtkm) rucks ail lland navigation ergy demand in transport (ktoe) (G) | 0.6
0.0
8.6
7.6
0.6
0.4 | 0.0
9.5
8.8
0.4
0.3
2797 | 9.2
8.7
0.2
0.4
2622 | 10.1
9.5
0.2
0.4
2691 | 11.0
10.3
0.3
0.4
2636 | 11.2
0.3
0.4
2635 | 12.1
0.3
0.4
2701 | 13.6
12.8
0.4
0.5
2740 | 13.5
0.4
0.5
2817 | 14.1
0.4
0.5
2889 | 14.7
0.5
0.5
2974 | 1.3
-11.3
-0.5 | 1.7
3.8
1.1
0.1 | 1.7
2.2
1.0
0.2 | | Irrivate cars and motorcycles tall viviation Island navigation sight transport activity (Gtkm) rucks tall Island navigation ergy demand in transport (ktoe) (G) | 0.6
0.0
8.6
7.6
0.6
0.4
1930 | 0.0
9.5
8.8
0.4
0.3
2797
15 | 9.2
8.7
0.2
0.4
2622
17 | 10.1
9.5
0.2
0.4
2691
19 | 11.0
10.3
0.3
0.4
2636
20 | 11.2
0.3
0.4
2635
20 | 12.1
0.3
0.4
2701
21 | 13.6
12.8
0.4
0.5
2740
22 | 13.5
0.4
0.5
2817
22 | 14.1
0.4
0.5
2889
23 | 14.7
0.5
0.5
2974
23 | 1.3
-11.3
-0.5
3.1
4.7 | 1.7
3.8
1.1
0.1
1.1 | 1.7
2.2
1.0
0.2
0.7 | | Private cars and motorcycles Itali Inviation Inland navigation Ingith transport activity (Gtkm) Incks Itali Inland navigation Inland navigation Inland navigation Inland navigation Inland regy demand in transport (ktoe) Invivate cars and motorcycles | 0.6
0.0
8.6
7.6
0.6
0.4
1930
11
816 | 0.0
9.5
8.8
0.4
0.3
2797
15
859 | 9.2
8.7
0.2
0.4
2622
17
770 | 10.1
9.5
0.2
0.4
2691
19
725 | 11.0
10.3
0.3
0.4
2636
20
628 | 11.2
0.3
0.4
2635
20
592 | 12.1
0.3
0.4
2701
21
583 | 13.6
12.8
0.4
0.5
2740
22
591 | 13.5
0.4
0.5
2817
22
604 | 14.1
0.4
0.5
2889
23
609 | 14.7
0.5
0.5
2974
23
617 | 1.3
-11.3
-0.5
3.1
4.7
-0.6 | 1.7
3.8
1.1
0.1
1.1
-2.0 | 1.7
2.2
1.0
0.2
0.7
-0.7 | | Private cars and motorcycles (tail viviation Iland navigation eight transport activity (Gtkm) rucks (tail Iland navigation ergy demand in transport (ktoe) (G) (G) (G) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H | 0.6
0.0
8.6
7.6
0.6
0.4
1930
11
816
766 | 0.0
9.5
8.8
0.4
0.3
2797
15
859
1476 | 9.2
8.7
0.2
0.4
2622
17
770
1387 | 10.1
9.5
0.2
0.4
2691
19
725
1458 | 11.0
10.3
0.3
0.4
2636
20
628
1482 | 11.2
0.3
0.4
2635
20
592
1512 | 12.1
0.3
0.4
2701
21
583
1571 | 13.6
12.8
0.4
0.5
2740
22
591
1602 | 13.5
0.4
0.5
2817
22
604
1656 | 14.1
0.4
0.5
2889
23
609
1707 | 14.7
0.5
0.5
2974
23
617
1761 | 1.3
-11.3
-0.5
3.1
4.7
-0.6
6.1 | 1.7
3.8
1.1
0.1
1.1
-2.0
0.7 | 1.7
2.2
1.0
0.2
0.7
-0.7
0.6 | | Private cars and motorcycles Itali Inviation Inland navigation Ingith transport activity (Gtkm) Incks Itali Inland navigation Inland navigation Inland navigation Inland navigation Inland regy demand in transport (ktoe) Invivate cars and motorcycles | 0.6
0.0
8.6
7.6
0.6
0.4
1930
11
816 | 0.0
9.5
8.8
0.4
0.3
2797
15
859 | 9.2
8.7
0.2
0.4
2622
17
770 | 10.1
9.5
0.2
0.4
2691
19
725 | 11.0
10.3
0.3
0.4
2636
20
628 | 11.2
0.3
0.4
2635
20
592 | 12.1
0.3
0.4
2701
21
583 | 13.6
12.8
0.4
0.5
2740
22
591 | 13.5
0.4
0.5
2817
22
604 | 14.1
0.4
0.5
2889
23
609 | 14.7
0.5
0.5
2974
23
617 | 1.3
-11.3
-0.5
3.1
4.7
-0.6 | 1.7
3.8
1.1
0.1
1.1
-2.0 | 1.7
2.2
1.0
0.2
0.7
-0.7 | | Malta: Reference scenario | | | | | | | | SUM | MARY E | NERGY I | BALAN | CE AND | INDIC | ATORS | (A) | |---|--|--|--|---------------------------------|---|---|--|---|---|---|---------------------------------|---|--|--|-----------------------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | '00-'10 | | | | | | | | | | | | | | | | | Aı | nnual % | Change | | | Production (incl.recovery of products) | 0 | 0 | 0 | 4 | 31 | 58 | 91 | 102 | 106 | 117 | 125 | 0.0 | 180.9 | 11.5 | 1.6 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Oil | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | 0.0 | | Natural gas
Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 0 | 0 | 0 | 4 | 31 | 58 | 91 | 102 | 106 | 117 | 125 | 0.0 | 0.0 | 11.5 | 1.6 | | Hydro | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Biomass & Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Wind | 0 | 0 | 0 | 0 | 17 | 20 | 37 | 37 | 35 | 44 | 48 | 0.0 | 0.0 | 7.8 | 1.3 | | Solar and others | 0 | 0 | 0 | 4 | 13 | 38 | 54 | 65 | 71 | 73 | 77 | 0.0 | 0.0 | 15.2 | 1.8 | | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.9 | 1.1 | | Net Imports Solids | 1454
0 | 1626
0 | 2388
0 | 2332
0 | 2018
0 | 1976
0 | 1984
0 | 2035
0 | 2106
0 | 2179
0 | 2227
0 | 5.1
0.0 | -1.7
0.0 | -0.2
-5.1 | 0.6
-2.4 | | Oil | 1454 | 1626 | 2388 | 2317 | 1715 | 1682 | 1703 | 1756 | 1807 | 1872 | 1913 | 5.1 | -3.3 | -0.1 | 0.6 | | - Crude oil and Feedstocks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | - Oil products | 1454 | 1626 | 2388 | 2317 | 1715 | 1682 | 1703 | 1756 | 1807 | 1872 | 1913 | 5.1 | -3.3 | -0.1 | 0.6 | | Natural gas | 0 | 0 | 0 | 4 | 264 | 250 | 239 | 209 | 237 | 248 | 260 | 0.0 | 0.0 | -1.0 | 0.4 | | Electricity | 0 | 0 | 0 | 10 | 16 | 21 | 17 | 40 | 30 | 25 | 19 | 0.0 | 0.0 | 1.1 | 0.6 | | Gross Inland Consumption | 799 | 969 | 911 | 897 | 668 | 659 | 664 | 648 | 675 | 685 | 690 | 1.3 | -3.1 | -0.1 | 0.2 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | -5.1 | -2.4 | | Oil | 799 | 969 | 911 | 880 | 348 | 334 | 327 | 321 | 327 | 329 | 332 | 1.3 | -9.2 | -0.6 | 0.1 | | Natural gas
Nuclear | 0 | 0 | 0 | 1 | 250
0 | 222
0 | 202
0 | 156
0 | 180
0 | 180
0 | 179
0 | 0.0 | 0.0 | -2.1
0.0 | -0.6 | |
Electricity | 0 | 0 | 0 | 10 | 16 | 21 | 17 | 40 | 30 | 25 | 19 | 0.0 | 0.0 | 1.1 | 0.0 | | Renewable energy forms | 0 | 0 | 0 | 6 | 54 | 81 | 116 | 131 | 138 | 151 | 159 | 0.0 | 0.0 | 7.9 | 1.6 | | as % in Gross Inland Consumption | | Ů | | | Ŭ. | · · · | | | .00 | | .00 | 0.0 | 0.0 | | | | Solids | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Oil | 100.0 | 100.0 | 100.0 | 98.2 | 52.1 | 50.8 | 49.3 | 49.5 | 48.4 | 48.1 | 48.2 | | | | | | Natural gas | 0.0 | 0.0 | 0.0 | 0.1 | 37.4 | 33.8 | 30.5 | 24.1 | 26.6 | 26.3 | 26.0 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 0.0 | 0.0 | 0.0 | 0.7 | 8.1 | 12.3 | 17.5 | 20.2 | 20.4 | 22.0 | 23.1 | | | | | | Gross Electricity Generation in GWh _e | 1917 | 2240 | 2113 | 2088 | 2199 | 2116 | 2302 | 2077 | 2320 | 2492 | 2623 | 1.0 | 0.4 | 0.5 | 0.7 | | Self consumption and grid losses | 350 | 282 | 507 | 453 | 489 | 469 | 486 | 480 | 501 | 513 | 522 | 3.8 | -0.4 | 0.0 | 0.4 | | Fuel Inputs to Thermal Power Generation | 465 | 657 | 578 | 540 | 281 | 242 | 214 | 167 | 193 | 192 | 188 | 2.2 | -6.9 | -2.7 | -0.7 | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Oil (including refinery gas) Gas (including derived gases) | 465
0 | 657
0 | 578
0 | 540
0 | 26
247 | 17
218 | 5
198 | 1
151 | 1
173 | 1
172 | 0
168 | 2.2
0.0 | -26.5
0.0 | -14.7
-2.2 | -0.8 | | Biomass & Waste | 0 | 0 | 0 | 0 | 8 | 8 | 11 | 14 | 173 | 172 | 19 | 0.0 | 0.0 | 3.6 | 2.8 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 0 | 0 | 0 | 2 | 16 | 15 | 15 | 15 | 14 | 15 | 15 | 0.0 | 0.0 | -0.8 | 0.0 | | Refineries | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Biofuels and hydrogen production | 0 | 0 | 0 | 2 | 16 | 15 | 15 | 15 | 14 | 14 | 15 | 0.0 | 0.0 | -0.9 | 0.0 | | District heating | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Derived gases, cokeries etc. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 13.5 | 3.0 | | Energy Branch Consumption | 10 | 2 | 10 | 3 | 4 | 3 | 3 | 2 | 3 | 3 | 3 | 0.5 | -9.5 | -3.0 | 0.2 | | Non-Energy Uses | 0 | 20 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 | 0.0 | 0.6 | 0.3 | 0.1 | | Final Energy Demand | 469 | 460 | 451 | 486 | 499 | 509 | 524 | 527 | 542 | 554 | 565 | -0.4 | 1.0 | 0.5 | 0.4 | | by sector | 74 | 50 | | 50 | E4 | | 50 | 50 | | F.4 | | 2.2 | 0.0 | 0.0 | 0.1 | | Industry - energy intensive industries | 71
11 | 59
18 | 51
13 | 50
13 | 51
14 | 51
14 | 52
14 | 53
14 | 53
14 | 54
14 | 53
14 | -3.3
1.6 | 0.0 | 0.2
0.1 | 0.1 | | - other industrial sectors | 60 | 41 | 38 | 38 | 37 | 37 | 38 | 39 | 39 | 40 | 39 | -4.6 | 0.2 | 0.1 | 0.1 | | Residential | 76 | 76 | 64 | 75 | 76 | 76 | 79 | 84 | 90 | 96 | 100 | -1.7 | 1.7 | 0.5 | 1.1 | | Tertiary | 56 | 85 | 65 | 73 | 83 | 91 | 97 | 95 | 97 | 99 | 102 | 1.4 | 2.5 | 1.6 | 0.2 | | Transport | 265 | 239 | 271 | 288 | 290 | 291 | 296 | 296 | 301 | 305 | 310 | 0.2 | 0.7 | 0.2 | 0.2 | | by fuel | | | | | | | | | | | | | | | | | Solids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | -5.1 | -2.4 | | Oil | 334 | 291 | 313 | 330 | 312 | 308 | 311 | 309 | 315 | 317 | 322 | -0.6 | 0.0 | 0.0 | 0.2 | | Gas | 0 | 0 | 0 | 1 | 2 | 5 | 5 | 5 | 6 | 8 | 11 | 0.0 | 0.0 | 6.9 | 4.2 | | Electricity | 135 | 168 | 138 | 150 | 163 | 163 | 173 | 177 | 187 | 195 | 200 | 0.2 | 1.6 | 0.6 | 0.7 | | Heat (from CHP and District Heating) Renewable energy forms | 0 | 0 | 0 | 0
5 | 0
23 | 0
34 | 0
35 | 0
36 | 0
34 | 0
33 | 0
32 | 0.0 | 0.0 | 5.6
4.3 | 3.1
-0.4 | | Other fuels (hydrogen, ethanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 15.2 | 7.8 | | RES in Gross Final Energy Consumption (A) | 0 | 0 | 0 | 5 | 51 | 76 | 111 | 122 | 128 | 138 | 147 | 0.0 | 79.6 | 8.1 | 1.4 | | TOTAL GHG emissions (Mt of CO2 eq.) | 2.8 | 3.3 | 3.1 | 3.0 | 1.9 | 1.8 | 1.7 | 1.6 | 1.6 | 1.6 | 1.7 | 1.3 | -5.0 | -1.1 | -0.1 | | of which ETS sectors (2013 scope) GHG emissions | 2.0 | 2.4 | 2.2 | 2.1 | 1.1 | 1.0 | 0.9 | 0.8 | 0.9 | 0.9 | 0.9 | 1.3 | -7.0 | -1.4 | -0.1 | | of which non ETS sectors GHG emissions | | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | -1.3 | -0.7 | 0.1 | | | | | 2.8 | 2.7 | 1.6 | 1.5 | 1.4 | 1.3 | 1.4 | 1.4 | 1.4 | 1.1 | -5.4 | -1.1 | -0.1 | | CO ₂ Emissions (energy related) | 2.5 | 3.0 | | | | 0.6 | | | 0.4 | 0.4 | 0.4 | 2.2 | -9.8 | -3.2 | -1.0 | | | 2.5
1.5 | 2.1 | 1.9 | 1.7 | 0.7 | 0.6 | 0.5 | 0.4 | 0.4 | 0.4 | 0 | | 0.0 | 0.2 | | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch | 1.5
0.0 | 2.1
0.0 | 1.9
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry | 1.5
0.0
0.1 | 2.1
0.0
0.1 | 1.9
0.0
0.0 | 0.0 | 0.0
0.0 | 0.0 | 0.0
0.0 | 0.0 | 0.0 | 0.0
0.0 | 0.0 | -9.5 | 0.0
-0.4 | 0.0 | 0.2 | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 1.5
0.0
0.1
0.1 | 2.1
0.0
0.1
0.1 | 1.9
0.0
0.0
0.1 | 0.0
0.0
0.1 | 0.0
0.0
0.1 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | -9.5
-2.4 | 0.0
-0.4
-1.0 | 0.0
0.3
-3.8 | 0.2
-1.4 | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 1.5
0.0
0.1
0.1
0.0 | 2.1
0.0
0.1
0.1
0.0 | 1.9
0.0
0.0
0.1
0.0 | 0.0
0.0
0.1
0.0 | 0.0
0.0
0.1
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | -9.5
-2.4
-5.0 | 0.0
-0.4
-1.0
1.5 | 0.0
0.3
-3.8
1.1 | 0.2
-1.4
2.0 | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 1.5
0.0
0.1
0.1
0.0
0.8 | 2.1
0.0
0.1
0.1
0.0
0.7 | 1.9
0.0
0.0
0.1
0.0
0.8 | 0.0
0.0
0.1
0.0
0.9 | 0.0
0.0
0.1
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.9 | 0.0
0.0
0.0
0.0
0.9 | 0.0
0.0
0.0
0.0
0.9 | -9.5
-2.4
-5.0
0.3 | 0.0
-0.4
-1.0
1.5
0.1 | 0.0
0.3
-3.8
1.1
0.3 | 0.0
0.2
-1.4
2.0
0.2 | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO ₂ Emissions (non energy related) | 1.5
0.0
0.1
0.1
0.0
0.8
0.0 | 2.1
0.0
0.1
0.1
0.0
0.7
0.0 | 1.9
0.0
0.0
0.1
0.0
0.8
0.0 | 0.0
0.0
0.1
0.0
0.9 | 0.0
0.0
0.1
0.0
0.8
0.0 | 0.0
0.0
0.0
0.0
0.8
0.0 | 0.0
0.0
0.0
0.0
0.0
0.8
0.0 | 0.0
0.0
0.0
0.0
0.8
0.0 | 0.0
0.0
0.0
0.0
0.9
0.0 | 0.0
0.0
0.0
0.0
0.9
0.0 | 0.0
0.0
0.0
0.0
0.9 | -9.5
-2.4
-5.0
0.3
1.8 | 0.0
-0.4
-1.0
1.5
0.1
-14.9 | 0.0
0.3
-3.8
1.1
0.3
-1.1 | 0.2
-1.4
2.0
0.2
-0.1 | | CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 1.5
0.0
0.1
0.1
0.0
0.8 | 2.1
0.0
0.1
0.1
0.0
0.7 | 1.9
0.0
0.0
0.1
0.0
0.8 | 0.0
0.0
0.1
0.0
0.9 | 0.0
0.0
0.1
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.8 | 0.0
0.0
0.0
0.0
0.9 | 0.0
0.0
0.0
0.0
0.9 | 0.0
0.0
0.0
0.0
0.9 | -9.5
-2.4
-5.0
0.3 | 0.0
-0.4
-1.0
1.5
0.1 | 0.0
0.3
-3.8
1.1
0.3 | 0.2
-1.4
2.0
0.2 | | UMMARY ENERGY BALANCE AND INDICATO | | | | | | | | | | | | /lalta: R | | | | |--|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|-------------|-----------|-------------|-------------|----| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | Aı | nnual % | Change | ! | | ain Energy System Indicators equilation (Million) | 0.380 | 0.403 | 0.414 | 0.413 | 0.415 | 0.418 | 0.417 | 0.413 | 0.408 | 0.402 | 0.397 | 0.9 | 0.0 | 0.0 | | | DP (in 000 M€10) | 5.3 | 5.5 | 6.1 | 6.6 | 7.1 | 7.8 | 8.6 | 9.4 | 10.2 | 10.8 | 11.3 | 1.5 | 1.5 | 1.9 | | | oss Inl. Cons./GDP (toe/M€10) | 151.7 | 175.9 | 148.8 | 135.9 | 93.7 | 84.1 | 77.0 | 68.7 | 66.4 | 63.5 | 61.1 | -0.2 | -4.5 | -1.9 | | | rbon intensity (t of CO ₂ /toe of GIC) | 3.13 | 3.08 | 3.07 | 3.05 | 2.41 | 2.28 | 2.16 | 2.01 | 2.04 | 2.02 | 2.02 | -0.2 | -2.4 | -1.1 | | | ort Dependency % | 100.3 | 100.0 | 100.8 | 99.8 | 98.5 | 97.2 | 95.6 | 95.2 | 95.2 | 94.9 | 94.7 | | | | | | al energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 0.4 | 0.6 | 0.8 | 1.0 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.4 | 1.5 | 7.1 | 2.2 | 2.1 | | | s % of GDP | 7.9 | 10.2 | 13.4 | 15.0 | 14.2 | 14.5 | 14.4 | 13.8 | 13.6 | 13.2 | 13.2 | | | | | | rgy intensity indicators | | | | | | | | | | | | | | | | | ustry (Energy on Value added, index 2000=100) | 100.0 | 116.1 | 100.0 | 92.0 | 89.2 | 84.9 | 79.3 | 75.5 |
72.6 | 70.6 | 69.2 | 0.0 | -1.1 | -1.2 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 91.9 | 72.4 | 77.6 | 71.4 | 64.1 | 60.4 | 57.8 | 57.4 | 57.4 | 56.9 | -3.2 | -0.1 | -1.7 | | | tiary (Energy on Value added, index 2000=100) | 100.0 | 141.9 | 87.2 | 90.5 | 94.7 | 93.9 | 90.6 | 81.1 | 76.3 | 73.3 | 71.2 | -1.4 | 0.8 | -0.4 | | | senger transport (toe/Mpkm) | 47.3 | 38.0 | 38.6 | 37.5 | 34.0 | 30.8 | 28.3 | 26.3 | 25.1 | 24.4 | 23.9 | -2.0 | -1.3 | -1.8 | | | ght transport (toe/Mtkm) | 159.2 | 227.6 | 257.7 | 252.6 | 243.6 | 237.7 | 234.1 | 228.8 | 222.1 | 217.6 | 214.9 | 4.9 | -0.6 | -0.4 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.78 | 0.94 | 0.88 | 0.83 | 0.30 | 0.27 | 0.21 | 0.17 | 0.18 | 0.16 | 0.15 | 1.2 | -10.1 | -3.6 | | | al energy demand (t of CO ₂ /toe) | 2.14 | 1.90 | 2.07 | 2.03 | 1.88 | 1.84 | 1.81 | 1.79 | 1.78 | 1.77 | 1.77 | -0.3 | -0.9 | -0.4 | | | dustry | 1.27 | 0.96 | 0.65 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.64 | 0.64 | 0.63 | -6.4 | -0.5 | 0.1 | | | esidential | 1.02 | 0.80 | 0.95 | 0.90 | 0.73 | 0.56 | 0.47 | 0.38 | 0.33 | 0.30 | 0.28 | -0.7 | -2.7 | -4.3 | | | ertiary
ansport ^(C) | 0.71 | 0.43 | 0.37 | 0.37 | 0.34 | 0.33 | 0.32 | 0.34 | 0.36 | 0.40 | 0.46 | -6.3 | -0.9 | -0.4 | | | | 3.00 | 3.00 | 3.01 | 2.99 | 2.85 | 2.86 | 2.87 | 2.87 | 2.87 | 2.87 | 2.87 | 0.0 | -0.5 | 0.1 | | | icators for renewables | 0.0 | 0.0 | 0.0 | 4.0 | 14.7 | 17.5 | 25.0 | 27.4 | 20.0 | 20.7 | 24.4 | | | | | | re of RES in Gross Final Energy Consumption (%) | 0.0 | 0.0 | 0.0 | 1.3 | 11.7 | 17.5
10.1 | 25.0 | 27.4 | 28.0 | 29.7 | 31.1 | | | | | | S in transport (%) | 0.0 | 0.0 | 0.0 | 0.5 | 10.0 | 10.1 | 10.1 | 10.4 | 10.2 | 10.6 | 11.0 | | | | | | ss Electricity generation by source (in GWh _e) (E) | 1917
0 | 2240
0 | 2115
0 | 2088
0 | 2199
0 | 2116
0 | 2302
0 | 2077
0 | 2320
0 | 2492
0 | 2623 | 1.0 | 0.4 | 0.5 | | | uclear energy
blids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | l (including refinery gas) | 1917 | 2240 | 2113 | 2073 | 125 | 78 | 26 | 6 | 6 | 5 | 0 | 1.0 | -24.6 | -14.6 | -1 | | as (including derived gases) | 0 | 0 | 0 | 0 | 1761 | 1551 | 1403 | 1073 | 1236 | 1258 | 1278 | 0.0 | 0.0 | -2.2 | | | omass-waste | 0 | 0 | 0 | 0 | 34 | 34 | 49 | 65 | 83 | 89 | 89 | 0.0 | 0.0 | 3.8 | | | /dro (pumping excluded) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | ind " | 0 | 0 | 0 | 2 | 203 | 234 | 429 | 429 | 408 | 513 | 560 | 0.0 | 0.0 | 7.8 | | | plar | 0 | 0 | 0 | 13 | 76 | 218 | 394 | 503 | 587 | 628 | 696 | 0.0 | 0.0 | 17.9 | | | eothermal and other renewables | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 513 | 592 | 593 | 737 | 845 | 919 | 1106 | 1161 | 1217 | 1146 | 1240 | 1.5 | 3.6 | 2.7 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | enewable energy | 0 | 0 | 1 | 9 | 134 | 217 | 402 | 455 | 495 | 554 | 601 | 0.0 | 66.3 | 11.6 | | | Hydro (pumping excluded) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Wind
Solar | 0 | 0 | 0 | 1
8 | 86
48 | 99
119 | 191
211 | 191
264 | 191
304 | 225
329 | 240
361 | 0.0 | 0.0
50.0 | 8.3
16.1 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 329
0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 513 | 592 | 592 | 729 | 711 | 701 | 704 | 706 | 722 | 592 | 639 | 1.4 | 1.8 | -0.1 | | | of which cogeneration units | 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Gas fired | 0 | 0 | 0 | 0 | 247 | 247 | 247 | 247 | 260 | 339 | 575 | 0.0 | 0.0 | 0.0 | | | Oil fired | 513 | 592 | 592 | 729 | 460 | 450 | 450 | 450 | 450 | 240 | 51 | 1.4 | -2.5 | -0.2 | | | Biomass-waste fired | 0 | 0 | 0 | 0 | 5 | 5 | 7 | 9 | 12 | 13 | 13 | 0.0 | 0.0 | 3.8 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Load factor of net power capacity (F) (%) | 40.1 | 42.7 | 38.4 | 31.8 | 29.1 | 25.8 | 23.4 | 20.2 | 21.5 | 24.5 | 23.8 | | | | | | ctricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 35.5 | 29.3 | 31.4 | 33.0 | 58.7 | 59.1 | 59.4 | 59.1 | 59.2 | 60.4 | 62.7 | | | | | | f gross electricity from CHP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | f electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | on free gross electricity generation (%) | 0.0 | 0.0 | 0.1
0.0 | 0.7
0.0 | 14.2
0.0 | 23.0
0.0 | 37.9
0.0 | 48.1
0.0 | 46.4
0.0 | 49.3
0.0 | 51.3
0.0 | | | | | | newable energy forms | 0.0 | 0.0 | 0.0 | 0.0 | 14.2 | 23.0 | 37.9 | 48.1 | 46.4 | 49.3 | 51.3 | | | | | | nsport sector | 0.0 | 0.0 | 0.1 | 0.7 | 17.2 | 20.0 | 57.3 | - -0.1 | -0.4 | -3.3 | 31.3 | | | | | | senger transport activity (Gpkm) | 4.8 | 4.8 | 5.4 | 5.9 | 6.6 | 7.2 | 8.0 | 8.5 | 9.1 | 9.5 | 9.9 | 1.2 | 2.1 | 2.0 | | | ublic road transport | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.8 | 0.3 | 0.2 | | | ivate cars and motorcycles | 1.9 | 2.1 | 2.3 | 2.3 | 2.3 | 2.4 | 2.4 | 2.5 | 2.5 | 2.6 | 2.6 | 2.0 | 0.3 | 0.2 | | | ail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | riation | 2.5 | 2.3 | 2.6 | 3.1 | 3.7 | 4.3 | 5.0 | 5.5 | 6.1 | 6.4 | 6.7 | 0.6 | 3.7 | 3.1 | | | and navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ght transport activity (Gtkm) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.0 | 0.9 | 1.0 | | | ucks | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.0 | 0.9 | 1.0 | | | ail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | land navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | rgy demand in transport (ktoe) ^(G) | 265 | 239 | 271 | 288 | 290 | 291 | 296 | 296 | 301 | 305 | 310 | 0.2 | 0.7 | 0.2 | Ī | | ublic road transport | 9 | 9 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 8 | 8 | 0.7 | -0.3 | -0.7 | | | rivate cars and motorcycles | 94 | 86 | 96 | 94 | 85 | 77 | 71 | 69 | 67 | 67 | 67 | 0.2 | -1.2 | -1.8 | | | rucks | 40 | 57 | 64 | 66 | 66 | 68 | 70 | 72 | 72 | 73 | 73 | 4.9 | 0.3 | 0.6 | | | ail | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | | 0.4 | 1.2 | | | viation | 122 | 87 | 102 | 119 | 129 | 137 | 146 | 147 | 153 | 157 | 161 | -1.8 | 2.4 | 1.2 | | | | | | | | | | | SUN | IMARY E | NERGY | BALAN | CE AND | INDIC | CATORS | S (A) | |---|---|---|---|--|---|---
--|---|--|--|---|---|--|---
--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) | 57578 | 62233 | 70173 | 70173 | 68825 | 58087 | 51504 | 54669 | 56471 | 53930 | 48460 | 2.0 | -0.2 | -2.9 | -0.3 | | Solids
Oil | 7
2429 | 8
2341 | 6
1989 | 0
813 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2.0
-2.0 | -100.0
-100.0 | 0.0 | 0.0 | | Natural gas | 52203 | 56276 | 63534 | 63717 | 61130 | 49737 | 42446 | 43638 | 44997 | 41634 | 35079 | 2.0 | -0.4 | -3.6 | -0.9 | | Nuclear | 1013 | 1031 | 1024 | 1023 | 1024 | 1047 | 1249 | 2786 | 2786 | 2661 | 2661 | 0.1 | 0.0 | 2.0 | 3.9 | | Renewable energy sources | 1926 | 2577 | 3621 | 4620 | 6671 | 7303 | 7809 | 8245 | 8689 | 9636 | 10720 | 6.5 | 6.3 | 1.6 | 1.6 | | Hydro | 12 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | -3.0 | 0.0 | 0.0 | 0.0 | | Biomass & Waste | 1831 | 2371 | 3232 | 3475 | 3901 | 3837 | 3977 | 4144 | 4237 | 4448 | 4792 | 5.8 | 1.9 | 0.2 | 0.9 | | Wind
Solar and others | 71
11 | 178
21 | 343
29 | 983
145 | 2342
369 | 2800
608 | 2970
807 | 3092
956 | 3499
901 | 4152
985 | 4926
954 | 17.0
9.9 | 21.2
28.9 | 2.4
8.1 | 2.6
0.8 | | Geothermal | 0 | 0 | 8 | 7 | 49 | 48 | 47 | 45 | 43 | 42 | 40 | 0.0 | 20.9 | -0.6 | -0.8 | | Net Imports | 34732 | 38102 | 30894 | 33853 | 31177 | 39665 | 45859 | 42730 | 41294 | 44942 | 52318 | -1.2 | 0.1 | 3.9 | 0.7 | | Solids | 7998 | 8312 | 9228 | 10584 | 10163 | 9891 | 8432 | 6114 | 5397 | 5121 | 4945 | 1.4 | 1.0 | -1.9 | -2.6 | | Oil | 42398 | 48863 | 45569 | 47655 | 47567 | 46644 | 47152 | 46985 | 46619 | 47319 | 48093 | 0.7 | 0.4 | -0.1 | 0.1 | | - Crude oil and Feedstocks | 61909 | 62185 | 60912 | 58283 | 55558 | 53321 | 51288 | 49276 | 47406 | 45891 | 44497 | -0.2 | -0.9 | -0.8 | -0.7 | | - Oil products | -19512 | -13322 | -15344 | -10628 | -7991 | -6678 | -4136 | -2291 | -788 | 1428 | 3597 | -2.4 | -6.3 | -6.4 | 0.0 | | Natural gas | -17191 | -20941 | -24211 | -25680 | -28301 | -18535 | -11214 | -11875 | -12273 | -9106
470 | -2176 | 3.5 | 1.6 | -8.8 | -7.9 | | Electricity | 1626 | 1573 | 239 | 9 | -81 | -161 | -313 | -364 | -324 | -179 | -191 | -17.5 | 0.0 | 14.4 | -2.4 | | Gross Inland Consumption | 76571
7852 | 82525 | 86924 | 89364 | 84810 | 81704 | 80276 | 79340 | 78759 | 78528 | 78807 | 1.3 | -0.2 | -0.5
1.0 | -0.1 | | Solids
Oil | 7852
29244 | 8195
33520 | 7596
35067 | 10584
33876 | 10163
32664 | 9891
31211 | 8432
30871 | 6114
30176 | 5397
29395 | 5121
29216 | 4945
28927 | -0.3
1.8 | 3.0
-0.7 | -1.9
-0.6 | -2.6
-0.3 | | Natural gas | 35009 | 35334 | 39309 | 37967 | 32539 | 30586 | 30426 | 30513 | 30942 | 30286 | 30098 | 1.2 | -1.9 | -0.7 | -0.3 | | Nuclear | 1013 | 1031 | 1024 | 1023 | 1024 | 1047 | 1249 | 2786 | 2786 | 2661 | 2661 | 0.1 | 0.0 | 2.0 | 3.9 | | Electricity | 1626 | 1573 | 239 | 9 | -81 | -161 | -313 | -364 | -324 | -179 | -191 | -17.5 | 0.0 | 14.4 | -2.4 | | Renewable energy forms | 1827 | 2872 | 3690 | 5904 | 8500 | 9129 | 9611 | 10115 | 10564 | 11423 | 12368 | 7.3 | 8.7 | 1.2 | 1.3 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 10.3 | 9.9 | 8.7 | 11.8 | 12.0 | 12.1 | 10.5 | 7.7 | 6.9 | 6.5 | 6.3 | | | | | | Oil | 38.2 | 40.6 | 40.3 | 37.9 | 38.5 | 38.2 | 38.5 | 38.0 | 37.3 | 37.2 | 36.7 | | | | | | Natural gas
Nuclear | 45.7
1.3 | 42.8
1.2 | 45.2
1.2 | 42.5
1.1 | 38.4
1.2 | 37.4
1.3 | 37.9
1.6 | 38.5
3.5 | 39.3
3.5 | 38.6
3.4 | 38.2
3.4 | | | | | | Renewable energy forms | 2.4 | 3.5 | 4.2 | 6.6 | 10.0 | 11.2 | 12.0 | 3.5
12.7 | 13.4 | 14.5 | 15.7 | | | | | | Gross Electricity Generation in GWh _e | 89615 | 100201 | 118119 | 132991 | 130483 | 131124 | 136192 | 139862 | 144878 | 148270 | 151196 | 2.8 | 1.0 | 0.4 | 0.5 | | Self consumption and grid losses | 7683 | 8519 | 8244 | 10394 | 10514 | 10535 | 10868 | 11301 | 10841 | 10913 | 10952 | 0.7 | 2.5 | 0.3 | 0.0 | | Fuel Inputs to Thermal Power Generation | 17483 | 19476 | 21201 | 23350 | 19991 | 18941 | 18810 | 17680 | 17855 | 17200 | 16726 | 1.9 | -0.6 | -0.6 | -0.6 | | Solids | 4998 | 4958 | 4669 | 7835 | 7455 | 7351 | 6010 | 3884 | 3197 | 3006 | 2948 | -0.7 | 4.8 | -2.1 | -3.5 | | Oil (including refinery gas) | 634 | 553 | 342 | 422 | 485 | 517 | 562 | 593 | 619 | 652 | 685 | -6.0 | 3.6 | 1.5 | 1.0 | | Gas (including derived gases) | 10638 | 11913 | 13730 | 12403 | 9077 | 7972 | 9071 | 9725 | 10473 | 9800 | 9153 | 2.6 | -4.1 | 0.0 | 0.0 | | Biomass & Waste | 1213 | 2052 | 2460 | 2691 | 2974 | 3101 | 3168 | 3479 | 3566 | 3742 | 3939 | 7.3 | 1.9 | 0.6 | 1.1 | | Geothermal heat
Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 87355 | 91889 | 64643 | 65178 | 64076 | 61591 | 60210 | 59774 | 57881 | 56280 | 54749 | -3.0 | -0.1 | -0.6 | -0.5 | | Fuel Input to other conversion processes Refineries | 83133 | 87341 | 59909 | 60132 | 58746 | 56655 | 55232 | 53506 | 51669 | 50303 | 48886 | -3.2 | -0.1 | -0.6 | -0.6 | | Biofuels and hydrogen production | 00100 | 0 | 229 | 548 | 1027 | 1005 | 995 | 990 | 991 | 1027 | 1075 | 0.0 | 16.2 | -0.3 | 0.4 | | District heating | 398 | 436 | 499 | 684 | 589 | 404 | 416 | 398 | 412 | 385 | 366 | 2.3 | 1.7 | -3.4 | -0.6 | | Derived gases, cokeries etc. | 3824 | 4113 | | 3814 | 3714 | 2527 | 3568 | 4880 | 4808 | AFCC | | | | -0.4 | 1.1 | | Energy Branch Consumption | 002. | 4113 | 4007 | 3014 | 3/ 14 | 3527 | 0000 | | | 4566 | 4421 | 0.5 | -0.8 | | | | Lifergy Dranch Consumption | 5386 | 6376 | 4007
5130 | 5278 | 5165 | 4885 | 4722 | 4622 | 4458 | 4336 | 4421
4170 | | -0.8
0.1 | -0.9 | -0.6 | | Non-Energy Uses | | | | | | | | | | | | 0.5 | | -0.9
-0.4 | -0.6
-0.2 | | | 5386 | 6376 | 5130 | 5278 | 5165 | 4885 | 4722 | 4622 | 4458 | 4336 | 4170 | 0.5
-0.5 | 0.1 | | | | Non-Energy Uses Final Energy Demand by sector | 5386
10491
50483 | 6376
13013
52293 | 5130
17579
51879 | 5278
19188
52226 | 5165
18818
50047 | 4885
18033
48683 | 4722
18000
47575 | 4622
17912
46820 | 4458
17395
46878 | 4336
17309
47305 | 4170
17282
47811 | 0.5
-0.5
5.3
0.3 | 0.1
0.7
-0.4 | -0.4
-0.5 | -0.2
0.0 | | Non-Energy Uses Final Energy Demand by sector Industry | 5386
10491
50483
14829 | 6376
13013
52293
15506 | 5130
17579
51879
12206 | 5278
19188
52226
13009 | 5165
18818
50047
12882 | 4885
18033
48683
12495 | 4722
18000
47575
12214 | 4622
17912
46820
11821 | 4458
17395
46878
11790 | 4336
17309
47305
12019 | 4170
17282
47811
12195 | 0.5
-0.5
5.3
0.3 | 0.1
0.7
-0.4 | -0.4
-0.5
-0.5 | -0.2
0.0 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries | 5386
10491
50483
14829
10303 | 6376
13013
52293
15506
10622 | 5130
17579
51879
12206
8224 | 5278
19188
52226
13009
8989 | 5165
18818
50047
12882
8775 | 4885
18033
48683
12495
8282 |
4722
18000
47575
12214
7953 | 4622
17912
46820
11821
7661 | 4458
17395
46878
11790
7590 | 4336
17309
47305
12019
7649 | 4170
17282
47811
12195
7601 | 0.5
-0.5
5.3
0.3
-1.9
-2.2 | 0.1
0.7
-0.4
0.5
0.7 | -0.4
-0.5
-0.5
-1.0 | -0.2
0.0
0.0
-0.2 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors | 5386
10491
50483
14829
10303
4526 | 6376
13013
52293
15506
10622
4884 | 5130
17579
51879
12206
8224
3982 | 5278
19188
52226
13009
8989
4020 | 5165
18818
50047
12882
8775
4107 | 4885
18033
48683
12495
8282
4213 | 4722
18000
47575
12214
7953
4261 | 4622
17912
46820
11821
7661
4160 | 4458
17395
46878
11790
7590
4200 | 4336
17309
47305
12019
7649
4370 | 4170
17282
47811
12195
7601
4594 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3 | 0.1
0.7
-0.4
0.5
0.7
0.3 | -0.4
-0.5
-0.5
-1.0
0.4 | -0.2
0.0
0.0
-0.2
0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries | 5386
10491
50483
14829
10303 | 6376
13013
52293
15506
10622 | 5130
17579
51879
12206
8224 | 5278
19188
52226
13009
8989 | 5165
18818
50047
12882
8775 | 4885
18033
48683
12495
8282 | 4722
18000
47575
12214
7953 | 4622
17912
46820
11821
7661 | 4458
17395
46878
11790
7590 | 4336
17309
47305
12019
7649 | 4170
17282
47811
12195
7601 | 0.5
-0.5
5.3
0.3
-1.9
-2.2 | 0.1
0.7
-0.4
0.5
0.7 | -0.4
-0.5
-0.5
-1.0 | -0.2
0.0
0.0
-0.2 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential | 5386
10491
50483
14829
10303
4526
10299 | 6376
13013
52293
15506
10622
4884
10143 | 5130
17579
51879
12206
8224
3982
11518 | 5278
19188
52226
13009
8989
4020
11174 | 5165
18818
50047
12882
8775
4107
10495 | 4885
18033
48683
12495
8282
4213
10397 | 4722
18000
47575
12214
7953
4261
10385 | 4622
17912
46820
11821
7661
4160
10458 | 4458
17395
46878
11790
7590
4200
10597 | 4336
17309
47305
12019
7649
4370
10818 | 4170
17282
47811
12195
7601
4594
11257 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1 | -0.2
0.0
0.0
-0.2
0.4
0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 5386
10491
50483
14829
10303
4526
10299
11099 | 6376
13013
52293
15506
10622
4884
10143
11494 | 5130
17579
51879
12206
8224
3982
11518
13120 | 5278
19188
52226
13009
8989
4020
11174
12773 | 5165
18818
50047
12882
8775
4107
10495
11768 | 4885
18033
48683
12495
8282
4213
10397
11254 | 4722
18000
47575
12214
7953
4261
10385
10671 | 4622
17912
46820
11821
7661
4160
10458
10418 | 4458
17395
46878
11790
7590
4200
10597
10297 | 4336
17309
47305
12019
7649
4370
10818
10134 | 4170
17282
47811
12195
7601
4594
11257
9821 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1
-1.0 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport | 5386
10491
50483
14829
10303
4526
10299
11099
14256 | 6376
13013
52293
15506
10622
4884
10143
11494
15151 | 5130
17579
51879
12206
8224
3982
11518
13120 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 | 5165
18818
50047
12882
8775
4107
10495
11768
14901 | 4885
18033
48683
12495
8282
4213
10397
11254
14538 | 4722
18000
47575
12214
7953
4261
10385
10671
14305 | 4622
17912
46820
11821
7661
4160
10458
10418
14123 | 4458
17395
46878
11790
7590
4200
10597
10297
14193 | 4336
17309
47305
12019
7649
4370
10818
10134
14334 | 4170
17282
47811
12195
7601
4594
11257
9821
14539 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1
-1.0
-0.4 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
-0.1 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 5386
10491
50483
14829
10303
4526
10299
11099
14256 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515 | 5130
17579
51879
12206
8224
3982
11518
13120
15036 | 5278
19188
52226
13009
8989
4020
11174
12773
15270 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806 | 4885
18033
48683
12495
8282
4213
10397
11254
14538 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046 | 4622
17912
46820
11821
7661
4160
10458
10418
14123 | 4458
17395
46878
11790
7590
4200
10597
10297
14193 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1
-1.0
-0.4
-0.8
-0.5 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 5386
10491
50483
14829
10303
4526
10299
11099
14256 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.6 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1
-1.0
-0.4
-0.8
-0.5
-1.2 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1
-0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045
10045 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.6 0.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.9
-1.5
0.6 | -0.4
-0.5
-0.5
-1.0
0.4
-0.1
-1.0
-0.4
-0.8
-0.5
-1.2
0.3 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1
-0.4
0.6 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other
industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408
2893 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045
10045
2439 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.9
-1.5
0.6
1.6 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1
-0.4
0.6
0.9 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981
445 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045
2439
1626 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.6
1.6
12.4 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1
-0.4
0.6
0.9
0.2 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981
445
0 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045
10045
2439
1626
4 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517
14 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1
-6.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.1
-0.6
1.6
12.4
141.5 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 | -0.2
0.0
0.0
-0.2
0.4
-0.4
-0.1
-0.7
-0.1
-0.4
0.6
0.9
0.2
6.5 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981
445
0 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0 | 5278 19188 52226 13009 8989 4020 11177 12773 15270 1258 15810 21045 10045 2439 1626 4 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517
14 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1
-6.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.9
-1.5
0.6
1.6
12.4
141.5 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
0.1
-0.7
-0.1
-0.4
0.6
0.9
0.2
6.5 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981
445
0 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0 | 5278
19188
52226
13009
8989
4020
11174
12773
15270
1258
15810
21045
10045
2439
1626
4 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517
14
7338 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127 |
0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1
-6.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.1
-0.6
1.6
12.4
141.5 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 | -0.2 0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.1 -0.4 0.6 0.9 0.2 6.5 1.3 -1.3 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
20346
8986
2981
445
0
1231
221.2 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0 | 5278 19188 52226 13009 8989 4020 111773 15270 1258 15810 21045 10045 2439 1626 4 4726 213.5 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517
14 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23
7998
186.3 | 4722
18000
47575
12214
7963
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36
8536 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1
-6.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.9
-1.5
0.6
12.4
141.5 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 | -0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.1 -0.7 -0.1 -0.4 0.6 0.9 0.2 6.5 1.3 -1.3 -2.6 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0 | 6376
13013
52293
15506
10622
4884
10143
11494
15151
1515
18021
20346
8986
2981
445
0
1231
221.2 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0
0
071
212.6
96.6 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 4726 213.5 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 162.4 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23
7998
186.3
90.7 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
363
8536 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.55
130.4 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240
138.6
51.7
86.9
113.4 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9 | 0.5
-0.5
5.3
0.3
-1.9
-2.2
-1.3
1.1
1.7
0.5
-0.5
-0.2
0.6
0.9
-3.1
8.1
-6.9 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.1
-0.6
12.4
141.5
-0.9
-0.1
-1.5
-0.9
-0.1
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 -1.2 | -0.2
0.0
0.0
-0.2
0.4
-0.4
-0.4
-0.7
-0.1
-0.4
0.6
0.9
0.2
5
1.3
-1.3
-2.6
-0.2
-0.2
-0.3
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors CHG emissions of which non ETS sectors CHG emissions CO2 Emissions (nergy related) Power generation/District heating | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 15021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 55.4 | 5130 17579 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 779 0 2071 212.6 96.6 116.0 175.2 57.6 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 213.5 107.5 106.0 180.4 66.3 | 5165
18818
50047
12882
8775
4107
10495
11768
14901
1258
14806
19248
9742
2461
2517
1438
195.1
95.7
99.4
162.4
155.9 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
2372
2719
390.7
95.7
154.5
52.3 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36
176.3
84.9
91.4
146.4
91.4 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
7590
144.1
56.7
87.3
114.9
23.6 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
10240
138.6
51.7
86.9
113.6 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
49.8
87.2
111.9
211.0 | 0.5 -0.5 5.3
0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 -6.9 11.7 -0.3 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.9
-1.1
-0.1
-0.1
-0.5
0.6
1.6
1.6
1.4
141.5
13.5
-0.9
-0.1
1.1.5
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 -1.2 -0.8 | -0.2
0.0
0.0
-0.2
0.4
0.4
-0.4
-0.7
-0.1
-0.4
0.6
0.9
0.2
6.5
1.3
-2.6
-0.2
-0.2
-0.3
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0. | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which non ETS sectors C9013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 55.4 | 5130 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 779 0 2071 212.6 96.6 116.0 175.2 57.6 8.9 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 4 4726 213.5 106.0 180.4 66.3 8.8 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 162.4 55.9 8.5 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23
7998
186.3
90.7
95.7
154.5
52.3
8.0 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
36
8536
176.3
84.9
91.4
146.3 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
88.5
130.4
37.6
7.4 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7
87.3
114.9
23.6
67.1 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240
138.6
51.7
86.9
113.4
22.5
6.9 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9
21.0
6.6 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 -6.9 11.7 -0.3 | 0.1
0.7
-0.4
0.5
0.7
0.3
0.3
0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-1.5
-0.6
-1.5
-0.6
-1.5
-0.6
-1.5
-0.6
-1.5
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
- | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 10.3 -1.5 -1.0 -1.2 -0.8 -1.0 -0.9 | -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 55.4 12.4 | 5130
17579
51879
12206
8224
3982
11518
13120
15036
1270
16158
22378
9189
2106
779
0
2071
212.6
916.0
175.2
57.6
91.6
91.6
91.6
91.6
91.6
91.6 | 5278 19188 52226 13009 8989 4020 111774 12773 15270 1258 15810 21045 10045 2439 4726 213.5 107.5 107.6 180.4 66.3 8.8 24.3 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 14 7338 195.1 95.7 99.4 162.4 55.9 8.5 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23
7988
186.3
90.7
154.5
52.3
8.0
0
22.8 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2329
36
8536
176.3
84.9
49.3
7.7
721.5 |
4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
48
8946
159.9
71.3
130.4
37.6
7.4 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7
37.1
14.9
23.6 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240
138.6
51.7
6.9
113.4
22.5
6.9
18.7 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9
21.0
6.6
6.8 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 -6.9 11.7 -0.3 0.4 1.1 -2.2 -1.5 | 0.1
0.7
-0.4
0.5
0.7
0.3
-0.1
-0.1
-0.1
-0.1
-0.1
1.5
0.6
1.6
1.6
1.2
1.4
1.4
1.5
-0.9
-0.3
-0.6
-0.6
1.5
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0.6
-0 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 -1.2 -0.8 -1.0 -1.2 -0.8 -1.0 -1.2 -0.8 -1.0 -1.0 -1.2 | -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 5386 10491 50483 14829 10303 4526 10299 11099 14256 1330 16482 21011 8408 2893 358 06 684 218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 2981 445 0 1231 221.2 107.0 114.2 178.4 15.4 12.4 29.3 17.9 | 5130 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 2106 779 0 2071 212.6 96.6 116.0 175.2 57.6 8.9 22.9 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 213.5 107.5 106.0 4 66.3 8.8 24.3 18.6 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 55.9 8.5 23.2 217.2 | 4885
18033
48683
12495
8282
4213
10397
11254
14538
1197
14321
18292
9759
2372
2719
23
7998
186.3
90.7
95.5
52.3
8.0
22.8
8.0
22.8
16.1 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2958
3536
44.9
91.4
49.3
7.7
21.5
5
15.4 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4
37.6
7.4 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7
87.3
114.9 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240
138.6
51.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
86.9
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
11141
137.1
49.8
87.2
111.9
21.0
6.6 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 -6.9 11.7 -0.3 | 0.1
0.7
-0.4
0.5
0.7
0.3
0.9
-1.1
-0.1
-0.1
-0.5
1.6
6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1 | -0.4 -0.5 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.8 -0.5 -1.2 0.3 -0.6 1.6 1.0.3 -1.2 -1.0 -1.3 -0.8 -1.1 | -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which pon ETS sectors (2013 scope) GHG emissions of which non ETS sectors (CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 12.4 29.3 17.9 18.2 | 5130 17579 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 779 0 071 212.6 96.6 116.0 175.2 57.6 8.9 22.9 22.6 21.1 | 5278 19188 52226 13009 8989 4020 11174
12773 15270 1258 15810 21045 10045 2439 1626 4726 213.5 106.0 180.4 66.3 8.8 24.3 18.6 18.5 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 162.4 55.9 8.5 23.2 17.2 | 4885 18033 48683 12495 8282 4213 10397 11254 14538 1197 14321 18292 9759 2372 2719 23 7998 186.3 90.7 95.7 154.5 8.0 22.8 16.0 15.0 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2958
36
176.3
84.9
91.4
146.3
7.7
21.5
15.4 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4
67.4
19.1 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7
87.3
114.9
23.6
7.1 | 4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
111269
3044
103
10240
138.6
51.7
86.9
113.4
22.5
6.9
18.7 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9
21.0
6.6
18.7
15.2 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 0.3 1.1.7 -0.3 0.4 1.1 -2.2 -1.5 0.9 1.9 | 0.1 0.7 -0.4 0.5 0.7 0.3 0.9 -0.1 -0.1 -0.1 -0.1 -0.5 1.5 0.6 12.4 141.5 -0.9 -0.1 -1.5 -0.8 -0.9 -0.1 -0.1 -0.2 -0.1 -0.2 -0.3 -0.5 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.5 -0.2 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 1.6 10.3 -1.2 -0.8 -1.0 -1.2 -0.8 -1.1 -1.0 -0.8 -1.2 -1.2 -0.8 -1.1 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.2 -0.8 -1.1 -1.1 -1.2 -0.8 | -0.2
0.0
0.0
0.2
0.4
0.4
-0.4
-0.7
-0.1
-0.4
0.6
0.9
0.2
6.5
1.3
-2.6
-0.2
-0.8
-0.7
-0.1
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 5386
10491
50483
14829
10303
4526
10299
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 55.4 29.3 17.9 18.2 45.1 | 5130 17579 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 6779 0 2071 212.6 96.6 91.6 116.0 175.2 57.6 8.9 22.9 20.6 21.1 44.1 | 5278 19188 52226 13009 8989 4020 111774 12773 15270 1258 15810 21045 10045 2439 1626 4 4726 213.5 107.5 106.0 180.4 66.3 8.8 24.3 18.6 18.5 43.9 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 162.4 55.9 8.5 23.2 17.2 16.2 41.3 | 4885 18033 48683 12495 8282 4213 10397 11254 14538 11197 14321 18292 9759 237 22719 23 7998 186.3 90.7 154.5 52.3 8.0 22.8 16.1 15.0 40.2 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2329
2329
2329
36
8536
176.3
84.9
91.4
146.6
49.3
7.7
21.5
15.4
13.2
39.5 | 4622
17912
46820
11821
7661
4160
10458
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4
37.4
19.4
15.1
12.2
38.9 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
23000
76
9339
144.1
56.7
87.3
114.9
23.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
1 | 4336
17309
47305
12019
7649
4370
10134
1031
1051
13796
15497
111269
3044
103
10240
138.6
51.7
86.9
113.4
22.5
6.9
18.7
14.9
11.1
39.2 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9
21.0
6.6
18.7
15.2
10.8 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 1.6.9 11.7 -0.3 0.4 1.1 -2.2 -1.5 0.9 1.9 0.4 | 0.1
0.7
-0.4
0.5
0.7
0.3
0.3
0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.9
-1.5
0.6
12.4
141.5
-0.9
-0.3
-0.3
-0.9
-0.1
-0.9
-0.1
-0.9
-0.1
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 -1.2 -0.8 -1.0 -1.1 -0.9 -0.8 -1.1 -0.1 -0.4 | -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 2981 445 011231 221.2 107.0 114.2 155.4 12.4 55.4 12.4 29.3 17.9 18.2 45.1 7.9 | 5130 17579 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 6779 0 2071 212.6 96.6 116.0 175.2 57.6 8.9 22.9 20.6 621.1 44.1 7.9 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 4726 213.5 106.0 180.4 66.3 8.8 24.3 18.6 18.5 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 2517 14 7338 195.1 95.7 99.4 162.4 55.9 8.5 23.2 17.2 | 4885 18033 48683 12495 8282 4213 10397 11254 14538 1197 14321 18292 9759 2372 2719 23 7998 186.3 90.7 95.7 154.5 8.0 22.8 16.0 15.0 | 4722
18000
47575
12214
7953
4261
10385
10671
14305
1159
14046
17018
10029
2958
36
176.3
84.9
91.4
146.3
7.7
21.5
15.4 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4
67.4
19.1 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
3000
76
9339
144.1
56.7
314.9
23.6
6
7.1
18.7
14.9
11.6
9
14.9
15.9
16.9
17.9
17.9
18.7
18.7
18.7
18.7
18.7
18.9
18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7 |
4336
17309
47305
12019
7649
4370
10818
10134
14334
1051
13796
15497
11126
2689
3044
103
10240
138.6
51.7
8.6
9.1
13.4
22.5
6.9
113.4
22.5
14.9
14.9
14.9
14.9
14.9
14.9
14.9
14.9 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
82.1
12.0
6.6
6.6
18.7
15.2
10.8
39.6
18.7 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 0.3 1.1.7 -0.3 0.4 1.1 -2.2 -1.5 0.9 1.9 | 0.1 0.7 -0.4 0.5 0.7 0.3 0.9 -0.1 -0.1 -0.1 -0.1 -0.5 1.5 0.6 12.4 141.5 -0.9 -0.1 -1.5 -0.8 -0.9 -0.1 -0.1 -0.2 -0.1 -0.2 -0.3 -0.5 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.5 -0.2 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 1.6 10.3 -1.0 -1.2 -0.8 -1.0 -1.1 -1.0 -1.2 -0.8 -1.0 -1.2 -0.8 -1.0 -1.3 -0.9 -0.8 -1.1 -2.1 | -0.2
0.0
0.0
0.2
0.4
0.4
-0.4
-0.7
-0.1
-0.4
0.6
0.9
0.2
6.5
1.3
-2.6
-0.2
-0.8
-0.7
-0.1
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4 | | Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 5386
10491
50483
14829
10303
4526
10299
11099
14256
1330
16482
21011
8408
2893
358
0
684
218.8 | 6376 13013 52293 15506 10622 4884 10143 11494 15151 1515 18021 20346 8986 2981 445 0 1231 221.2 107.0 114.2 178.4 55.4 29.3 17.9 18.2 45.1 | 5130 17579 17579 51879 12206 8224 3982 11518 13120 15036 1270 16158 22378 9189 2106 6779 0 2071 212.6 96.6 91.6 116.0 175.2 57.6 8.9 22.9 20.6 21.1 44.1 | 5278 19188 52226 13009 8989 4020 11174 12773 15270 1258 15810 21045 10045 2439 1626 4 4726 213.5 107.5 106.0 180.4 66.3 8.8 24.3 18.6 18.5 43.9 7.9 | 5165 18818 50047 12882 8775 4107 10495 11768 14901 1258 14806 19248 9742 2461 7338 195.1 95.7 99.4 162.4 55.9 8.5 23.2 17.2 16.2 41.3 7.9 | 4885 18033 48683 12495 8282 4213 10397 11254 14538 1197 14321 18292 9759 23779 23 7998 186.3 90.7 154.5 52.3 8.0 0 22.8 16.1 15.0 40.2 7.6 | ### 4722 ### 18000 ### 180 | 4622
17912
46820
11821
7661
4160
10458
10418
14123
1079
13729
16175
10239
2490
3059
48
8946
159.9
71.3
88.5
130.4
151.9
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.1
151.2
151.9
151.1 | 4458
17395
46878
11790
7590
4200
10597
10297
14193
1078
13734
15644
10715
2632
23000
76
9339
144.1
56.7
87.3
114.9
23.6
11.6
11.6
11.6
11.6
11.6
11.6
11.6
1 | 4336
17309
47305
12019
7649
4370
10134
1031
1051
13796
15497
111269
3044
103
10240
138.6
51.7
86.9
113.4
22.5
6.9
18.7
14.9
11.1
39.2 | 4170
17282
47811
12195
7601
4594
11257
9821
14539
1004
13872
15633
11356
2770
3049
127
11141
137.1
49.8
87.2
111.9
21.0
6.6
18.7
15.2
10.8 | 0.5 -0.5 5.3 0.3 -1.9 -2.2 -1.3 1.1 1.7 0.5 -0.5 -0.2 0.6 0.9 -3.1 8.1 -6.9 11.7 -0.3 | 0.1
0.7
-0.4
0.5
0.7
0.3
0.9
-0.1
-0.1
-0.1
-0.5
0.6
1.6
1.6
1.6
1.2
1.4
1.4
1.5
-0.9
-0.3
-0.3
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9
-0.9 | -0.4 -0.5 -1.0 0.4 -0.1 -1.0 -0.4 -0.5 -1.2 0.3 -0.6 1.6 10.3 1.5 -1.0 -1.2 -0.8 -1.0 -1.1 -0.9 -0.8 -1.1 -0.1 -0.4 | -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | UMMARY ENERGY BALANCE AND INDICATO | <u> </u> | | | **** | | | | | | | | ands: R | | | | |---|----------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|--------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | | | | | ain Energy System Indicators | | | | | | | | | | | | Ar | nnual % | Change | <i>!</i> | | opulation (Million) | 15.864 | 16.306 | 16.575 | 16.951 | 17.219 | 17.424 | 17.578 | 17.650 | 17.620 | 17.504 | 17.358 | 0.4 | 0.4 | 0.2 | | | OP (in 000 M€10) | 513.6 | 548.4 | 588.4 | 636.8 | 688.1 | 727.5 | 767.2 | 811.6 | 866.0 | 927.4 | 994.4 | 1.4 | 1.6 | 1.1 | | | ross Inl. Cons./GDP (toe/M€10) | 149.1 | 150.5 | 147.7 | 140.3 | 123.3 | 112.3 | 104.6 | 97.8 | 90.9 | 84.7 | 79.3 | -0.1 | -1.8 | -1.6 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.20 | 2.16 | 2.02 | 2.02 | 1.91 | 1.89 | 1.83 | 1.64 | 1.46 | 1.44 | 1.42 | -0.9 | -0.5 | -0.5 | | | port Dependency % | 38.7 | 38.4 | 30.7 | 32.5 | 31.2 | 40.6 | 47.1 | 43.9 | 42.2 | 45.5 | 51.9 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 48.1 | 61.6 | 71.7 |
91.1 | 102.4 | 104.3 | 108.0 | 110.1 | 112.5 | 116.9 | 121.1 | 4.1 | 3.6 | 0.5 | | | as % of GDP | 9.4 | 11.2 | 12.2 | 14.3 | 14.9 | 14.3 | 14.1 | 13.6 | 13.0 | 12.6 | 12.2 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) sidential (Energy on Private Income, index 2000=100) | 100.0 | 100.1 | 75.0 | 74.9 | 69.6 | 64.4 | 59.4 | 54.3 | 51.2 | 49.4 | 47.4 | -2.8 | -0.7 | -1.6 | | | rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 94.1
95.7 | 106.4
99.0 | 96.8
88.5 | 84.7
74.9 | 79.4
67.5 | 74.9
60.6 | 70.7
55.8 | 66.0
51.6 | 61.5
47.2 | 58.0
42.5 | 0.6
-0.1 | -2.3
-2.7 | -1.2
-2.1 | | | ssenger transport (toe/Mpkm) | 51.3 | 50.0 | 49.6 | 47.4 | 42.0 | 38.0 | 35.0 | 33.3 | 32.4 | 32.2 | 32.1 | -0.3 | -1.7 | -1.8 | | | ight transport (toe/Mtkm) | 38.2 | 40.8 | 42.6 | 41.1 | 40.2 | 38.5 | 36.6 | 35.4 | 34.6 | 33.9 | 33.3 | 1.1 | -0.6 | -0.9 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.40 | 0.38 | 0.37 | 0.38 | 0.33 | 0.31 | 0.28 | 0.21 | 0.13 | 0.12 | 0.11 | -0.6 | -1.4 | -1.5 | | | al energy demand (t of CO ₂ /toe) | 2.09 | 2.11 | 2.09 | 2.02 | 1.96 | 1.93 | 1.88 | 1.83 | 1.80 | 1.78 | 1.76 | 0.0 | -0.7 | -0.4 | | | ndustry | 1.80 | 1.89 | 1.87 | 1.87 | 1.80 | 1.82 | 1.76 | 1.64 | 1.59 | 1.56 | 1.53 | 0.4 | -0.4 | -0.2 | | | esidential | 1.84 | 1.77 | 1.79 | 1.66 | 1.64 | 1.55 | 1.48 | 1.44 | 1.41 | 1.38 | 1.35 | -0.2 | -0.9 | -1.0 | | | ertiary | 1.58 | 1.59 | 1.61 | 1.45 | 1.38 | 1.34 | 1.23 | 1.17 | 1.12 | 1.09 | 1.10 | 0.2 | -1.5 | -1.1 | | | ransport (C) | 2.97 | 2.98 | 2.93 | 2.87 | 2.77 | 2.77 | 2.76 | 2.75 | 2.75 | 2.74 | 2.73 | -0.1 | -0.6 | 0.0 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 1.3 | 2.3 | 3.9 | 8.8 | 14.3 | 16.0 | 17.5 | 18.6 | 19.5 | 21.2 | 22.8 | | | | | | S in transport (%) | 0.0 | 0.1 | 2.2 | 5.1 | 10.1 | 10.5 | 10.8 | 11.1 | 11.2 | 11.8 | 12.6 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 89631 | 100219 | 118140 | 132991 | 130483 | 131124 | 136192 | 139862 | 144878 | 148270 | 151196 | 2.8 | 1.0 | 0.4 | | | uclear energy | 3926 | 3997 | 3969 | 3967 | 3971 | 4094 | 4973 | 11527 | 11527 | 11475 | 11475 | 0.1 | 0.0 | 2.3 | | | olids | 24276 | 23500 | 22588 | 38199 | 37703 | 38259 | 32034 | 20315 | 13664 | 12747 | 12487 | -0.7 | 5.3 | -1.6 | | | il (including refinery gas) | 2641 | 2262 | 1253 | 1068 | 1164 | 1307 | 1488 | 2427 | 2514 | 2765 | 2617 | -7.2 | -0.7 | 2.5 | | | as (including derived gases) iomass-waste | 54606
3203 | 61588
6683 | 77566
8606 | 66776
11322 | 46594
12956 | 40193
13582 | 48336
13689 | 53209
15273 | 60491
14765 | 55106
16154 | 49151
16289 | 3.6
10.4 | -5.0
4.2 | 0.4
0.6 | | | ydro (pumping excluded) | 142 | 88 | 105 | 105 | 105 | 106 | 1069 | 106 | 106 | 106 | 10209 | -3.0 | 0.0 | 0.0 | | | /ind | 829 | 2067 | 3993 | 11431 | 27233 | 32563 | 34532 | 35950 | 40683 | 48281 | 57276 | 17.0 | 21.2 | 2.4 | | | olar | 8 | 34 | 60 | 123 | 756 | 1021 | 1034 | 1056 | 1129 | 1197 | 1264 | 22.8 | 28.9 | 3.2 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 440 | 530 | -10.8 | 0.0 | -100.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 20499 | 22491 | 25815 | 32456 | 38110 | 40750 | 40379 | 41945 | 43487 | 44902 | 46633 | 2.3 | 4.0 | 0.6 | | | uclear energy | 485 | 486 | 486 | 486 | 486 | 481 | 586 | 1367 | 1367 | 1367 | 1367 | 0.0 | 0.0 | 1.9 | | | enewable energy | 496 | 1307 | 2394 | 4788 | 10450 | 12856 | 13434 | 13956 | 15573 | 18250 | 21088 | 17.0 | 15.9 | 2.5 | | | Hydro (pumping excluded) | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 0.0 | 0.1 | 0.0 | | | Wind | 446 | 1219 | 2269 | 4619 | 9624 | 11793 | 12359 | 12862 | 14403 | 16866 | 19605 | 17.7 | 15.5 | 2.5 | | | Solar | 13
0 | 51
0 | 88
0 | 131
0 | 788
0 | 1025
0 | 1037
0 | 1057
0 | 1132
0 | 1202
144 | 1272
173 | 21.1
0.0 | 24.5
0.0 | 2.8
0.0 | | | Other renewables (tidal etc.) hermal power | 19518 | 20698 | 22935 | 27182 | 27175 | 27413 | 26359 | 26622 | 26547 | 25286 | 24178 | 1.6 | 1.7 | -0.3 | | | of which cogeneration units | 7372 | 10754 | 10394 | 9993 | 10042 | 9206 | 8955 | 9969 | 12032 | 12635 | 12928 | 3.5 | -0.3 | -1.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 227 | 227 | 227 | 585 | 2775 | 2376 | 2459 | 0.0 | 0.0 | 0.0 | | | Solids fired | 4200 | 4195 | 4183 | 5191 | 6014 | 6014 | 5615 | 5348 | 3471 | 3471 | 3471 | 0.0 | 3.7 | -0.7 | | | Gas fired | 13645 | 14706 | 16896 | 19707 | 18390 | 18307 | 17650 | 18208 | 19642 | 18427 | 16925 | 2.2 | 0.9 | -0.4 | | | Oil fired | 688 | 674 | 655 | 515 | 692 | 981 | 978 | 963 | 899 | 1025 | 1400 | -0.5 | 0.6 | 3.5 | | | Biomass-waste fired | 985 | 1123 | 1201 | 1769 | 2078 | 2111 | 2117 | 2104 | 2535 | 2363 | 2382 | 2.0 | 5.6 | 0.2 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 47.9 | 48.8 | 50.6 | 44.9 | 37.3 | 35.1 | 36.9 | 36.5 | 36.7 | 36.4 | 35.8 | | | | | | ctricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 41.7 | 41.5 | 44.6 | 43.2 | 42.3 | 42.4 | 43.7 | 44.4 | 44.0 | 43.4 | 41.4 | | | | | | of gross electricity from CHP | 37.6 | 29.4 | 33.2 | 33.0 | 34.1 | 33.4 | 32.3 | 36.7 | 46.7 | 44.6 | 40.0 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.3 | 1.7 | 3.8 | 3.6 | 3.5 | 3.4 | | | | | | bon free gross electricity generation (%) | 9.0 | 12.8 | 14.2 | 20.3 | 34.5 | 39.2 | 39.9 | 45.7 | 47.1 | 52.4 | 57.5 | | | | | | uclear
enewable energy forms | 4.4
4.7 | 4.0
8.9 | 3.4
10.8 | 3.0
17.3 | 3.0
31.5 | 3.1
36.1 | 3.7
36.2 | 8.2
37.5 | 8.0
39.1 | 7.7
44.6 | 7.6
49.9 | | | | | | insport sector | 4.7 | 0.5 | 10.0 | 17.3 | 31.3 | 30.1 | 30.2 | 37.3 | 33.1 | 44.0 | 43.3 | | | | | | risport sector seenger transport activity (Gpkm) | 184.4 | 194.8 | 197.7 | 204.2 | 211.0 | 220.1 | 229.5 | 236.7 | 244.1 | 249.8 | 255.5 | 0.7 | 0.7 | 0.8 | | | ublic road transport | 11.2 | 11.8 | 12.1 | 12.7 | 13.3 | 13.7 | 14.1 | 14.7 | 15.2 | 15.7 | 16.1 | 0.8 | 0.9 | 0.6 | | | rivate cars and motorcycles | 143.3 | 151.5 | 154.0 | 157.1 | 160.0 | 164.7 | 169.2 | 172.2 | 175.1 | 177.6 | 179.9 | 0.7 | 0.4 | 0.6 | | | ail | 16.1 | 16.7 | 17.0 | 18.1 | 19.3 | 20.6 | 22.1 | 23.8 | 25.6 | 26.6 | 27.5 | 0.5 | 1.3 | 1.4 | | | viation | 13.0 | 14.2 | 13.9 | 15.7 | 17.7 | 20.3 | 23.3 | 25.2 | 27.3 | 29.1 | 31.1 | 0.7 | 2.5 | 2.8 | | | aland navigation | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | -0.5 | 0.9 | 1.2 | | | ight transport activity (Gtkm) | 125.5 | 132.4 | 122.6 | 135.8 | 150.6 | 160.7 | 171.5 | 176.4 | 181.4 | 186.0 | 190.5 | -0.2 | 2.1 | 1.3 | | | rucks | 79.6 | 84.2 | 76.3 | 85.8 | 96.3 | 101.8 | 107.6 | 110.6 | 113.7 | 116.4 | 119.2 | -0.4 | 2.4 | 1.1 | | | ail | 4.5 | 5.9 | 5.9 | 6.6 | 7.4 | 8.1 | 8.9 | 9.1 | 9.4 | 9.7 | 9.9 | 2.7 | 2.2 | 1.9 | | | nland navigation | 41.4 | 42.4 | 40.3 | 43.5 | 46.9 | 50.8 | 55.0 | 56.7 | 58.4 | 59.9 | 61.4 | -0.3 | 1.5 | 1.6 | | | ergy demand in transport (ktoe) (G) | 14255 | 15151 | 15036 | 15269 | 14900 | 14537 | 14304 | 14121 | 14192 | 14332 | 14537 | 0.5 | -0.1 | -0.4 | Ī | | bublic road transport | 244 | 250 | 257 | 263 | 264 | 261 | 259 | 263 | 268 | 271 | 276 | 0.6 | 0.3 | -0.2 | | | rivate cars and motorcycles | 5741 | 5720 | 6036 | 5707 | 4973 | 4506 | 4226 | 4150 | 4086 | 4053 | 4046 | 0.5 | -1.9 | -1.6 | | | rucks | 4380 | 5091 | 4941 | 5284 | 5728 | 5840 | 5917 | 5883 | 5910 | 5936 | 5983 | 1.2 | 1.5 | 0.3 | | | Rail | 183 | 171 | 182 | 192 | 203 | 216 | 224 | 224 | 221 | 217 | 213 | -0.1 | 1.1 | 1.0 | | | Aviation | 3382 | 3712 | 3463 | 3653 | 3550 | 3518 | 3466 | 3386 | 3487 | 3631 | 3792 | 0.2 | 0.2 | -0.2 | | | nland navigation | 326 | 206 | 158 | 170 | 182 | 196 | 210 | 215 | 220 | 224 | 227 | -7.0 | 1.4 | 1.5 | | | Poland: Reference scenario | | | | | | | | SUN | IMARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|---|--|--|--|--
--|--|---|--|---|---|--|---|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 79969
71299 | 78943
68857 | 67824 55381 | 67942 53720 | 75877 55964 | 81247 50502 | 77845
37771 | 80276
37252 | 83391
36490 | 84597
36803 | 82764
34603 | -1.6
-2.5 | 1.1
0.1 | 0.3
-3.9 | 0.3
-0.4 | | Oil | 1096 | 1181 | 1172 | 1016 | 990 | 907 | 839 | 616 | 326 | 21 | 0 | 0.7 | -1.7 | -1.6 | -100.0 | | Natural gas | 3317 | 3887 | 3695 | 3613 | 7477 | 13245 | 13018 | 12170 | 12851 | 13270 | 13242 | 1.1 | 7.3 | 5.7 | 0.1 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 2985 | 11158 | 14133 | 16958 | 16958 | 16958 | 0.0 | 0.0 | 0.0 | 2.1 | | Renewable energy sources | 4257 | 5019 | 7576 | 9592 | 11447 | 13609 | 15060 | 16105 | 16766 | 17545 | 17962 | 5.9 | 4.2 | 2.8 | 0.9 | | Hydro
Biomass & Waste | 181
4073 | 189
4806 | 251
7166 | 298
8855 | 335
9844 | 331
11574 | 414
12655 | 434
13372 | 454
13841 | 469
14474 | 491
14754 | 3.3
5.8 | 2.9
3.2 | 2.1
2.5 | 0.9 | | Wind | 0 | 12 | 143 | 371 | 1116 | 1375 | 1469 | 1610 | 1694 | 1750 | 1867 | 78.7 | 22.8 | 2.8 | 1.2 | | Solar and others | 0 | 0 | 2 | 27 | 64 | 165 | 239 | 351 | 387 | 417 | 408 | 0.0 | 38.8 | 14.2 | 2.7 | | Geothermal | 3 | 11 | 13 | 41 | 89 | 164 | 282 | 338 | 390 | 436 | 442 | 16.3 | 20.8 | 12.2 | 2.3 | | Net Imports | 9585 | 16437 | 32114 | 41586 | 37817 | 35889 | 39891 | 39100 | 37442 | 37879 | 40050 | 12.9 | 1.6 | 0.5 | 0.0 | | Solids | -16353 | -13039 | -2814 | 2342 | 249 | 2986 | 5207 | 2403 | 865 | 631 | 2204 | -16.1 | 0.0 | 35.5 | -4.2 | | Oil - Crude oil and Feedstocks | 19879
18450 | 21971
18412 | 25735
23567 | 27473
24827 | 27848
25090 | 27412
24615 | 27288
24460 | 27205
24343 | 27045
24134 | 27457
24501 | 27206
24259 | 2.6
2.5 | 0.8 | -0.2
-0.3 | 0.0 | | - Oil products | 1429 | 3559 | 2168 | 2646 | 2758 | 2797 | 2828 | 2862 | 2910 | 2956 | 2947 | 4.3 | 2.4 | 0.3 | 0.0 | | Natural gas | 6607 | 8531 | 8874 | 11495 | 7929 | 4522 | 5979 | 7792 | 7643 | 7872 | 8653 | 3.0 | -1.1 | -2.8 | 1.9 | | Electricity | -548 | -962 | -116 | -386 | -273 | -251 | -223 | -179 | -30 | -83 | -53 | -14.3 | 8.9 | -2.0 | -6.9 | | Gross Inland Consumption | 89818 | 93076 | 101704 | 109270 | 113399 | 116816 | 117402 | 119024 | 120465 | 122094 | 122419 | 1.3 | 1.1 | 0.3 | 0.2 | | Solids | 56291 | 54612 | 54608 | 56062 | 56214 | 53488 | 42978 | 39655 | 37355 | 37433 | 36806 | -0.3 | 0.3 | -2.6 | -0.8 | | Oil | 19862 | 22233 | 26400 | 28234 | 28548 | 28009 | 27806 | 27490 | 27032 | 27151 | 26875 | 2.9 | 0.8 | -0.3 | -0.2 | | Natural gas
Nuclear | 9964
0 | 12237
0 | 12807
0 | 15107
0 | 15400
0 | 17756
2985 | 18984
11158 | 19941
14133 | 20465
16958 | 21087
16958 | 21831
16958 | 2.5
0.0 | 1.9
0.0 | 2.1
0.0 | 0.7
2.1 | | Electricity | -548 | -962 | -116 | -386 | -273 | -251 | -223 | -179 | -30 | -83 | -53 | -14.3 | 8.9 | -2.0 | -6.9 | | Renewable energy forms | 4250 | 4956 | 8006 | 10254 | 13510 | 14828 | 16699 | 17984 | 18685 | 19547 | 20002 | 6.5 | 5.4 | 2.1 | 0.9 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 62.7 | 58.7 | 53.7 | 51.3 | 49.6 | 45.8 | 36.6 | 33.3 | 31.0 | 30.7 | 30.1 | | | | | | Oil | 22.1 | 23.9 | 26.0 | 25.8 | 25.2 | 24.0 | 23.7 | 23.1 | 22.4 | 22.2 | 22.0 | | | | | | Natural gas | 11.1 | 13.1 | 12.6 | 13.8 | 13.6 | 15.2 | 16.2 | 16.8 | 17.0 | 17.3 | 17.8 | | | | | | Nuclear Renewable energy forms | 0.0
4.7 | 0.0
5.3 | 0.0
7.9 | 0.0
9.4 | 0.0
11.9 | 2.6
12.7 | 9.5
14.2 | 11.9
15.1 | 14.1
15.5 | 13.9
16.0 | 13.9
16.3 | | | | | | Gross Electricity Generation in GWh _a | 143148 | 155331 | 157061 | 180512 | 204760 | 214708 | 219831 | 233340 | 246030 | 267113 | 280114 | 0.9 | 2.7 | 0.7 | 1.2 | | Self consumption and grid losses | 27978 | 28523 | 26896 | 28573 | 32148 | 33577 | 33624 | 40220 | 44356 | 50666 | 59524 | -0.4 | 1.8 | 0.5 | 2.9 | | Fuel Inputs to Thermal Power Generation | 36485 | 38634 | 38214 | 39565 | 41078 | 39999 | 31975 | 29516 | 28239 | 30586 | 30565 | 0.5 | 0.7 | -2.5 | -0.2 | | Solids | 35108 | 36212 | 34213 | 36062 | 36890 | 35363 | 26656 | 23155 | 22043 | 23359 | 23548 | -0.3 | 0.8 | -3.2 | -0.6 | | Oil (including refinery gas) | 245 | 184 | 171 | 184 | 137 | 74 | 55 | 111 | 111 | 171 | 90 | -3.5 | -2.2 | -8.8 | 2.6 | | Gas (including derived gases) | 975 | 1692 | 2065 | 1091 | 1720 | 2062 | 2314 | 2562 | 2759 | 3174 | 2911 | 7.8 | -1.8 | 3.0 | 1.2 | | Biomass & Waste | 158
0 | 546
0 | 1766
0 | 2228
0 | 2331 | 2500
0 | 2951 | 3689
0 | 3326
0 | 3882
0 | 4016
0 | 27.3 | 2.8 | 2.4 | 1.6 | | Geothermal heat
Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 33708 | 31669 | 39240 | 41185 | 42962 | 45713 | 53102 | 55790 | 57359 | 56748 | 56486 | 1.5 | 0.9 | 2.1 | 0.3 | | Refineries | 19825 | 19521 | 24892 | 26295 | 26581 | 26012 | 25798 | 25459 | 24943 | 25005 | 24718 | 2.3 | 0.7 | -0.3 | -0.2 | | Biofuels and hydrogen production | 0 | 54 | 886 | 1136 | 1702 | 1767 | 1790 | 1805 | 1748 | 1744 | 1775 | 0.0 | 6.7 | 0.5 | 0.0 | | District heating | 4179 | 3465 | 3712 | 4315 | 4277 | 4923 | 5139 | 5314 | 5088 | 5008 | 5514 | -1.2 | 1.4 | 1.9 | 0.4 | | Derived gases, cokeries etc. | 9705 | 8629 | 9750 | 9439 | 10402 | 13011 | 20376 | 23212 | 25581 | 24992 | 24479 | 0.0 | 0.6 | 7.0 | 0.9 | | Energy Branch Consumption | 6664 | 6111 | 6618 | 6949 | 7538 | 7621 | 7191 | 7551 | 7721 | 8074 | 8632 | -0.1 | 1.3 | -0.5 | 0.9 | | Non-Energy Uses | 4357 | 4545 | 4775 | 5477 | 6045 | 6225 | 6375 | 6524 | 6624 | 6641 | | | | 0.5 | 0.2 | | Final Energy Demand by sector | | | | | | | | | | | 6583 | 0.9 | 2.4 | | | | | 55586 | 58199 | 66319 | 72977 | 75857 | 77244 | 78116 | 79620 | 80624 | 81433 | 81474 | 0.9
1.8 | 2.4
1.4 | 0.3 | 0.2 | | * | | | | | | | | | | | 81474 | 1.8 | 1.4 | | | | Industry | 18984
13512 | 58199
16593
11400 | 66319
15384
10540 | 72977
18521
12573 | 75857 20014 13575 | 77244
20943
13932 | 78116 21599 14312 | 79620 22477 14933 | 22863
15068 | 81433
23409
15533 | | | | 0.3
0.8
0.5 | 0.4 | | * | 18984 | 16593 | 15384 | 18521 | 20014 | 20943 | 21599 | 22477 | 22863 | 23409 | 81474
23578 | 1.8
-2.1 | 1.4
2.7 | 0.8 | 0.4 | | Industry - energy intensive industries - other industrial sectors Residential | 18984
13512
5472
17191 | 16593
11400
5193
18343 | 15384
10540
4844
21009 | 18521
12573
5948
21792 | 20014
13575
6439
21788 | 20943
13932
7011
22506 | 21599
14312
7286
22694 | 22477
14933
7544
23329 | 22863
15068
7795
23618 | 23409
15533
7876
23660 | 23578
15588
7990
23530 | -2.1
-2.5
-1.2
2.0 | 1.4
2.7
2.6
2.9
0.4 | 0.8
0.5
1.2
0.4 | 0.4
0.4
0.5
0.2 | | Industry - energy intensive industries - other industrial
sectors Residential Tertiary | 18984
13512
5472
17191
9623 | 16593
11400
5193
18343
10825 | 15384
10540
4844
21009
12336 | 18521
12573
5948
21792
13133 | 20014
13575
6439
21788
13723 | 20943
13932
7011
22506
13466 | 21599
14312
7286
22694
13239 | 22477
14933
7544
23329
13124 | 22863
15068
7795
23618
13137 | 23409
15533
7876
23660
13315 | 23578
15588
7990
23530
13200 | 1.8
-2.1
-2.5
-1.2
2.0
2.5 | 2.7
2.6
2.9
0.4
1.1 | 0.8
0.5
1.2
0.4
-0.4 | 0.4
0.4
0.5
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport | 18984
13512
5472
17191 | 16593
11400
5193
18343 | 15384
10540
4844
21009 | 18521
12573
5948
21792 | 20014
13575
6439
21788 | 20943
13932
7011
22506 | 21599
14312
7286
22694 | 22477
14933
7544
23329 | 22863
15068
7795
23618 | 23409
15533
7876
23660 | 23578
15588
7990
23530 | -2.1
-2.5
-1.2
2.0 | 1.4
2.7
2.6
2.9
0.4 | 0.8
0.5
1.2
0.4 | 0.4
0.4
0.5
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 18984
13512
5472
17191
9623
9789 | 16593
11400
5193
18343
10825
12439 | 15384
10540
4844
21009
12336
17589 | 18521
12573
5948
21792
13133
19531 | 20014
13575
6439
21788
13723
20332 | 20943
13932
7011
22506
13466
20329 | 21599
14312
7286
22694
13239
20584 | 22477
14933
7544
23329
13124
20690 | 22863
15068
7795
23618
13137
21006 | 23409
15533
7876
23660
13315
21049 | 81474
23578
15588
7990
23530
13200
21165 | 1.8
-2.1
-2.5
-1.2
2.0
2.5
6.0 | 2.7
2.6
2.9
0.4
1.1
1.5 | 0.8
0.5
1.2
0.4
-0.4 | 0.4
0.4
0.5
0.2
0.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 18984
13512
5472
17191
9623
9789 | 16593
11400
5193
18343
10825
12439 | 15384
10540
4844
21009
12336
17589 | 18521
12573
5948
21792
13133
19531 | 20014
13575
6439
21788
13723
20332 | 20943
13932
7011
22506
13466
20329 | 21599
14312
7286
22694
13239
20584 | 22477
14933
7544
23329
13124
20690 | 22863
15068
7795
23618
13137
21006 | 23409
15533
7876
23660
13315
21049 | 81474
23578
15588
7990
23530
13200
21165 | 1.8
-2.1
-2.5
-1.2
2.0
2.5
6.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5 | 0.8
0.5
1.2
0.4
-0.4
0.1 | 0.4
0.4
0.5
0.2
0.0
0.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 18984
13512
5472
17191
9623
9789 | 16593
11400
5193
18343
10825
12439 | 15384
10540
4844
21009
12336
17589 | 18521
12573
5948
21792
13133
19531 | 20014
13575
6439
21788
13723
20332 | 20943
13932
7011
22506
13466
20329 | 21599
14312
7286
22694
13239
20584 | 22477
14933
7544
23329
13124
20690 | 22863
15068
7795
23618
13137
21006 | 23409
15533
7876
23660
13315
21049 | 81474
23578
15588
7990
23530
13200
21165 | 1.8
-2.1
-2.5
-1.2
2.0
2.5
6.0 | 2.7
2.6
2.9
0.4
1.1
1.5 | 0.8
0.5
1.2
0.4
-0.4 | 0.4
0.4
0.5
0.2
0.0
0.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 18984
13512
5472
17191
9623
9789
13466
15341 | 16593
11400
5193
18343
10825
12439 | 15384
10540
4844
21009
12336
17589
13393
20488 | 18521
12573
5948
21792
13133
19531
13142
22711 | 20014
13575
6439
21788
13723
20332
12752
22744 | 20943
13932
7011
22506
13466
20329
11697
22352 | 21599
14312
7286
22694
13239
20584
10232
22129 | 22477
14933
7544
23329
13124
20690 | 22863
15068
7795
23618
13137
21006 | 23409
15533
7876
23660
13315
21049
9475
21457 | 81474
23578
15588
7990
23530
13200
21165
8870
21397 | 1.8 -2.1 -2.5 -1.2 2.0 2.5 6.0 -0.1 2.9 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5 | 0.8
0.5
1.2
0.4
-0.4
0.1 | 0.4
0.4
0.5
0.2
0.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685 | 21599
14312
7286
22694
13239
20584
10232
22129
12402
15076
7864 | 22477
14933
7544
23329
13124
20690
10482
21797
13001
15717
8058 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266 | 1.8 -2.1 -2.5 -1.2 2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0 | 0.4
0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369 | 21599
14312
7286
22694
13239
20584
10232
22129
12402
15076
7864
10409 | 22477
14933
7544
23329
13124
20690
10482
21797
13001
15717
8058
10558 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908 | 1.8 -2.1 -2.5 -1.2 2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7 | 0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
7062
7076
0 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1 | 21599
14312
7286
22694
13239
20584
10232
22129
12402
15076
7864
10409
3 | 22477
14933
7544
23329
13124
20690
10482
21797
13001
15717
8058
10558
6 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22 | 1.8 -2.1 -2.5 -1.2 -2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5
53.6 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7
1.4 | 0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) |
18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
4062
0 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
7062
7076
0 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1 | 21599
14312
7286
22694
13239
20584
10232
22129
12402
15076
7864
10409
3 | 22477
14933
7544
23329
13124
20690
10482
21797
13001
15717
8058
10558
6 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17 | 23578
15588
7990
23530
21165
8870
21397
13784
18228
8266
10908
22 | 1.8 -2.1 -2.5 -1.2 -2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 5.5 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5
53.6 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7
1.4
24.0 | 0.4
0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
10.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22
17772 | 1.8 -2.1 -2.5 -1.2 -2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5
53.6
6.6 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7
1.4
24.0
2.1 | 0.4
0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
10.1
0.9 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
0
6418
400.8
209.7 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0 | 20014
13575
6439
21788
13723
20332
12752
22744
1033
7365
9029
0
12125
425.4
233.4 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315
448.6
229.7 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22
17772
260.4
85.5 | 1.8 -2.1 -2.5 -1.2 -2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 5.5 | 1.4 2.7 2.6 2.9 0.4 1.1 1.5 -0.5 1.1 0.9 3.0 0.6 4.5 53.6 6.6 0.6 1.1 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7
1.4
24.0
2.1
-1.3
-2.0 | 0.4
0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
10.1
0.9
-1.8 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380 | 23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22
17772 | 1.8 -2.1 -2.5 -1.2 -2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 5.5 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5
53.6
6.6 | 0.8
0.5
1.2
0.4
-0.4
0.1
-2.2
-0.3
1.8
1.0
0.7
1.4
24.0
2.1 | 0.4
0.4
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
0.2
10.1
0.9
-1.8
-3.9
-0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
4162
0
4254
391.7
221.9
169.7 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
5796
0
6418
400.8
209.7
191.1 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0
8517
422.8
230.0
192.8 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
9369
1
13315
448.6
229.7
188.9 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 157.6 157.6 180.7 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0
139.2
178.8 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1
114.9 | 81474
23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22
17772
260.4
85.5
174.9 | 1.8 -2.1 -2.5 -1.2 2.0 2.5 6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 5.5 | 1.4 2.7 2.6 2.9 0.4 1.1 1.5 -0.5 1.1 0.9 3.0 0.6 4.5 53.6 6.6 0.6 1.1 0.0 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 2.1 -1.3 -2.0 -0.6 | 0.4 0.4 0.5 0.2 0.0 0.1 -0.7 -0.2 0.5 1.0 0.2 10.1 -1.8 -3.9 -0.2 -2.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which non ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 |
16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
313.4
163.7
8.4 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
7062
7076
0
0
192.8
230.0
192.8
331.4
169.6
9.5 | 20014
13575
6439
21788
13723
20332
12752
22744
1033
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315
418.6
229.7
188.9
322.8
165.4 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 6 16004 338.3 157.6 180.7 247.1 95.4 | 22863 15068 7795 23618 13137 21006 10104 21420 13118 16603 8327 11040 11 16700 318.0 139.2 178.8 226.5 78.3 9.0 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1
114.9
176.2
217.0
71.7
8.6 | 81474
23578
15588
7990
23530
13200
21165
8870
21397
13784
18228
8266
10908
22
17772
260.4
85.5
174.9
187.4
44.2
7.9 | 1.8 -2.1 -2.5 -1.2 2.0 2.5 -6.0 -0.1 2.9 2.3 1.8 0.1 4.1 0.0 5.5 0.4 -0.1 -1.9 | 2.7 2.6 2.9 0.4 1.1 1.5 -0.5 1.1 0.9 3.0 0.6 6.6 0.6 1.1 0.0 0.5 0.4 2.5 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 2.1 -1.3 -2.0 -0.6 -1.6 -2.7 -0.7 | 0.44
0.45
0.22
0.00
0.11
-0.77
-0.25
10.11
0.99
-1.88
-0.22
-2.00
-5.22
-1.22 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which FTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1
7.7
7 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
313.4
163.7
8.4 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315
418.6
229.7
188.9
322.8
165.4
10.8 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 157.6 180.7 247.1 95.4 9.6 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0
139.2
178.8
226.5
78.3
9.0
0 | 23409
15533
7876
23660
13315
21049
9475
21457
17813
8496
11017
17
17380
291.1
114.9
176.2
217.0
71.7
8.6 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 22 17772 260.4 85.5 174.9 187.4 44.2 7.9 37.9 | 1.8 -2.1 -2.5 -1.2 -2.0 -2.5 -6.0 -0.1 -2.9 -2.3 -1.8 -0.1 -0.0 -5.5 -0.4 -0.1 -1.9 -5.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
4.5
53.6
6.6
0.6
1.1
0.0
0.5
0.4
2.5
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 2.1 -1.3 -2.0 -0.6 -1.6 -2.7 -0.7 | 0.44
0.45
0.22
0.00
0.1
-0.7
-0.2
0.2
10.1
-1.8
-3.9
-0.2
-2.0
-5.2
-2.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
366.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1
7.7
37.7
37.7 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
163.7
8.4
31.4
39.0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8 | 20014
13575
6439
21788
13723
20332
12752
22774
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8
39.7
35.2 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315
418.6
229.7
18.9
322.8
165.4
10.8
42.1
133.0 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 28.7 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 157.6 180.7 247.1 95.4 9.6 42.9 29.7 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0
139.2
178.3
9.0
40.0
29.5 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1
114.9
176.2
217.0
71.7
8.6
38.4
29.2 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 22 17772 260.4 85.5 174.9 187.4 44.2 7.9 37.9 28.9 | 1.8 -2.1 -2.5 -1.2 -2.0 -2.5 -6.0 -0.1 -2.9 -1.8 -0.1 -1.0 -0.4 -0.1 -1.9 -5.0 -5.0 -5.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
6.6
4.5
53.6
6.6
0.6
1.1
0.0
0.5
0.4
4.5
1.1
0.0
0.4
4.5
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
1.0
0.6
0.6
1.0
0.6
1.0
0.6
1.0
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 2.1 -1.3 -2.0 -0.6 -2.7 -0.7 0.5 -2.0 | 0.44
0.5
0.2
0.0
0.1
-0.7
-0.2
0.5
1.0
0.2
10.1
-3.9
-0.2
-2.0
-5.2
-0.5
0.2 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (HG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1
7.7
31.0
20.6 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
313.4
163.7
8.4
31.9 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
7062
7076
0
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8
39.7
35.2 | 20943 13932 7011 22506 13466 20329 11697 22352 11691 14450 7685 9369 1 13315 418.6 229.7 188.9 322.8 10.8 42.1 33.0 17.0 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 28.7 15.4 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004
338.3 157.6 180.7 247.1 95.4 9.6 42.9 29.7 14.5 | 22863 15068 7795 23618 13137 21006 10104 21420 13118 16603 8327 11040 11 16700 318.0 139.2 178.8 226.5 78.3 9.0 40.0 29.5 13.6 | 23409 15533 7876 23660 13315 21049 9475 21457 13157 17813 8496 11017 17 17380 291.1 114.9 176.2 217.0 8.6 38.4 29.2 13.0 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 22 17772 260.4 85.5 174.9 187.4 44.2 7.9 37.9 28.9 12.3 | 1.8 -2.1 -2.5 -1.2 -2.0 -0.1 -2.9 -2.3 1.8 -0.1 -0.0 -0.4 -0.1 -1.9 -5.0 -0.6 -0.1 -1.9 -1.0 -0.1 -1.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
0.6
4.5
53.6
6.6
6.6
6.6
0.5
1.1
0.0
0.5
2.4
4.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 -1.3 -2.0 -0.6 -2.7 -0.7 0.5 -2.2 -2.2 | 0.44
0.45
0.20
0.00
0.11
-0.7
-0.2
0.2
0.2
10.1
0.9
-1.8
-0.2
-2.0
-5.2
-1.2
-0.5
-1.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which eTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.7
37.7
31.0
20.6
35.5 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
313.4
163.7
8.4
31.4
39.0
21.9
49.0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8
36.7
20.8 | 20014
13675
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8
39.7
35.2
19.3
54.8 | 20943
13932
7011
22506
13466
20329
11697
22352
11691
14450
7685
9369
1
13315
418.6
229.7
188.9
322.8
165.4
10.8
42.1
33.0
17.0
54.5 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 28.7 15.4 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 157.6 180.7 247.1 95.4 42.9 29.7 14.5 555.1 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0
139.0
178.8
226.5
78.3
9.0
40.0
29.5
13.6
656.1 | 23409
15533
7876
23660
13315
21049
9475
21457
13157
17813
8496
11017
17
17380
291.1
114.9
176.2
217.0
71.7
8.6
38.4
29.2
13.0
56.0 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 22 17772 260.4 85.5 174.9 187.4 44.2 7.9 37.9 28.9 12.3 56.1 | 1.8 -2.1 -2.5 -1.2 -2.0 -0.1 -2.9 -2.3 1.8 -0.1 -0.0 -5.5 -0.4 -0.1 -1.9 -5.0 3.6 1.8 5.9 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
0.6
4.5
53.6
6.6
6.6
0.5
1.1
0.0
0.5
2.4
-1.0
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | 0.8 0.5 1.2 0.4 -0.4 0.1 1.2 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 2.1 -1.3 -2.6 -1.6 -2.7 0.5 -2.0 0.0 | 0.44
0.45
0.22
0.00
0.11
-0.7
-0.2
0.2
10.1
0.9
-1.8
-3.9
-0.2
-2.0
-5.2
-1.2
-0.5
1.0 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (HG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1
7.7
31.0
20.6 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
313.4
163.7
8.4
31.9 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
7062
7076
0
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8
39.7
35.2 | 20943 13932 7011 22506 13466 20329 11697 22352 11691 14450 7685 9369 1 13315 418.6 229.7 188.9 322.8 10.8 42.1 33.0 17.0 | 21599 14312 7286 22694 13239 20584 10232 22129 12402 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 28.7 15.4 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 6 16004 338.3 157.6 180.7 247.1 95.4 9.6 42.9 29.7 14.5 | 22863 15068 7795 23618 13137 21006 10104 21420 13118 16603 8327 11040 11 16700 318.0 139.2 178.8 226.5 78.3 9.0 40.0 29.5 13.6 | 23409 15533 7876 23660 13315 21049 9475 21457 13157 17813 8496 11017 17 17380 291.1 114.9 176.2 217.0 8.6 38.4 29.2 13.0 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 22 17772 260.4 85.5 174.9 187.4 44.2 7.9 37.9 28.9 12.3 | 1.8 -2.1 -2.5 -1.2 -2.0 -0.1 -2.9 -2.3 1.8 -0.1 -0.0 -0.4 -0.1 -1.9 -5.0 -0.6 -0.1 -1.9 -1.0 -0.1 -1.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
0.6
4.5
53.6
6.6
6.6
6.6
0.5
1.1
0.0
0.5
2.4
4.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 24.0 -1.3 -2.0 -0.6 -2.7 -0.7 -0.5 -2.2 -2.2 | 0.44 0.5 0.2 0.0 0.1 -0.7 -0.2 0.5 1.0 0.2 10.1 -1.8 -3.9 -0.2 -2.0 -5.2 -0.5 0.1 | | Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Brach Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 18984
13512
5472
17191
9623
9789
13466
15341
7520
8482
6886
3890
0
3764
386.5 | 16593
11400
5193
18343
10825
12439
11474
17711
8733
9064
7056
4162
0
4254
391.7
221.9
169.7
301.6
169.1
7.7
37.7
31.0
20.6
35.5
18.8 | 15384
10540
4844
21009
12336
17589
13393
20488
9485
10188
6968
5796
0
6418
400.8
209.7
191.1
1313.4
163.7
8.4
31.4
39.0
21.9
949.0 | 18521
12573
5948
21792
13133
19531
13142
22711
11187
11798
7062
7076
0
8517
422.8
230.0
192.8
331.4
169.6
9.5
40.8
36.7
20.8
54.1
26.0 | 20014
13575
6439
21788
13723
20332
12752
22744
10330
13637
7365
9029
0
12125
425.4
233.4
191.9
329.8
170.1
10.8
39.7
35.2
19.3
54.8
28.3 | 20943 13932 7011 22506 13466 20329 11697 22352 11691 14450 7685 9369 1 13315 418.6 229.7 188.9 322.8 165.4 10.8 42.1 33.0 17.0 54.5 54.5 29.1 | 21599 14312 7286 22694 13239 20584 10232 22129 15076 7864 10409 3 14958 371.3 189.9 181.5 280.4 129.5 10.1 41.9 28.7 15.4 55.0 26.1 | 22477 14933 7544 23329 13124 20690 10482 21797 13001 15717 8058 10558 16504 338.3 157.6 180.7 247.1 95.4 9.6 42.9 29.7 14.5 55.1 27.1 | 22863
15068
7795
23618
13137
21006
10104
21420
13118
16603
8327
11040
11
16700
318.0
139.2
178.8
226.5
78.3
9.0
40.0
29.5
13.6
56.1
27.1 | 23409
15533
7876
23660
13315
21049
9475
21457
17813
8496
11017
17
17380
291.1
114.9
176.2
217.0
71.7
8.8
8.4
29.2
13.0
56.0
9.0 | 81474 23578 15588 7990 23530 13200 21165 8870 21397 13784 18228 8266 10908 822 17772 260.4 85.5 174.9 187.4 44.2 7.9 28.9 12.3 56.1 8.1 | 1.8 -2.1 -2.5 -1.2 -2.0 -2.5 -6.0 -0.1 -2.9 -3.1 -8 -0.1 -0.0 -5.5 -6.0 -0.1 -1.9 -5.0 -6.0 -0.1 -1.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 | 1.4
2.7
2.6
2.9
0.4
1.1
1.5
-0.5
1.1
0.9
3.0
0.6
6.6
0.6
1.1
0.0
0.5
0.4
2.5
0.4
2.5
0.4
1.1
0.9
1.1
1.0
0.0
1.1
1.0
0.0
1.0
1.0
1.0
1.0 | 0.8 0.5 1.2 0.4 -0.4 0.1 -2.2 -0.3 1.8 1.0 0.7 1.4 2.1 -1.3 -2.0 0.6 -1.6 -2.7 -0.7 0.5 -2.0 -2.0 -0.8 | 0.44
0.44
0.55
0.22
0.00
0.1
-0.7
-0.2
0.2
10.1
0.9
-1.8
-3.9
-0.2
-2.0
-0.5
0.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1 | | JMMARY ENERGY BALANCE AND INDICAT | ORS (B) | | | | | | | | | | Po | land: R | eferen | ce sce | na |
---|----------------|--------------------|----------------|----------------|---------------|----------------|----------------|---------------|---------------|-----------------|-----------------|--------------|----------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 | '30 | | | | | | | | | | | | | | Ar | nnual % | Change | } | | ain Energy System Indicators | | | | | | | | | | | | | | | | | pulation (Million) | 38.654 | 38.174 | 38.167 | 38.369 | 38.395 | 38.121 | 37.565 | 36.857 | 36.112 | 35.343 | 34.543 | -0.1 | 0.1 | -0.2 | | | P (in 000 M€10) | 241.9
371.3 | 281.6
330.5 | 354.6
286.8 | 417.0
262.0 | 474.3 | 520.2
224.6 | 564.2
208.1 | 606.6 | 646.1 | 676.0
180.6 | 697.2
175.6 | 3.9
-2.5 | 3.0
-1.8 | 1.7 | | | oss Inl. Cons./GDP (toe/M€10) rbon intensity (t of CO₂/toe of GIC) | 3.36 | 3.24 | 3.08 | 3.03 | 239.1
2.91 | 2.76 | 2.39 | 196.2
2.08 | 186.4
1.88 | 1.78 | 1.53 | -2.5
-0.9 | -0.6 | -1.4
-2.0 | | | ort Dependency % | 10.6 | 17.6 | 31.5 | 38.0 | 33.3 | 30.6 | 33.9 | 32.8 | 31.0 | 30.9 | 32.6 | -0.5 | -0.0 | -2.0 | | | al energy-rel. and other mitigation costs ^(B) (in 000 M€10) | | | | | | | | | | | | 7.4 | 0.7 | 0.0 | | | | 36.6 | 49.7 | 74.7 | 94.2 | 107.5 | 119.8 | 131.4 | 137.8 | 143.8 | 151.3 | 156.2 | 7.4 | 3.7 | 2.0 | | | s % of GDP | 15.1 | 17.7 | 21.1 | 22.6 | 22.7 | 23.0 | 23.3 | 22.7 | 22.3 | 22.4 | 22.4 | | | | | | ergy intensity indicators | 400.0 | 04.0 | 00.0 | 04.7 | 00.0 | 00.5 | 00.0 | 07.4 | 05.0 | 05.5 | 05.0 | 0.7 | | 4.0 | | | ustry (Energy on Value added, index 2000=100)
sidential (Energy on Private Income, index 2000=100) | 100.0 | 61.3 | 36.0 | 34.7 | 32.2 | 30.5 | 28.6 | 27.4 | 25.9 | 25.5 | 25.0 | -9.7 | -1.1 | -1.2 | | | tiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 92.5
100.8 | 86.4 | 75.0
90.8 | 65.1 | 60.8 | 56.1 | 53.4 | 50.5 | 48.2 | 46.4 | -1.4 | -2.8 | -1.5 | | | ssenger transport (toe/Mpkm) | 31.8 | 29.2 | 99.2
27.1 | 26.5 | 83.5
24.5 | 74.6
22.0 | 67.5
20.3 | 62.1
19.4 | 58.3
18.8 | 56.4
18.4 | 54.2
18.1 | -0.1
-1.6 | -1.7
-1.0 | -2.1
-1.9 | | | ight transport (toe/Mtkm) | 21.8 | 28.8 | 29.7 | 29.1 | 28.3 | 27.0 | 25.8 | 24.9 | 24.2 | 23.7 | 23.3 | 3.1 | -0.5 | -0.9 | | | | 21.0 | 20.0 | 23.1 | 23.1 | 20.5 | 27.0 | 20.0 | 24.3 | 24.2 | 20.1 | 20.0 | J. I | -0.5 | -0.5 | | | bon Intensity indicators | 0.70 | 0.68 | 0.65 | 0.00 | 0.50 | 0.50 | 0.40 | 0.00 | 0.22 | 0.19 | 0.11 | 0.0 | 4.5 | 2.2 | | | ctricity and Steam production (t of CO ₂ /MWh) | | | | 0.62 | 0.56 | 0.52 | | 0.28 | | | | -0.8 | -1.5 | -3.3 | | | al energy demand (t of CO ₂ /toe) | 2.26 | 2.14 | 2.13 | 2.09 | 1.96 | 1.90 | 1.80 | 1.79 | 1.73 | 1.68 | 1.66 | -0.6 | -0.8 | -0.8 | | | dustry
esidential | 2.76
1.59 | 2.27
1.69 | 2.04
1.86 | 2.20
1.68 | 1.99
1.61 | 2.01
1.47 | 1.94
1.26 | 1.91
1.27 | 1.75
1.25 | 1.64
1.24 | 1.61
1.23 | -3.0
1.5 | -0.3
-1.4 | -0.2
-2.4 | | | ertiary | 1.91 | 1.90 | 1.78 | 1.59 | 1.40 | 1.26 | 1.16 | 1.10 | 1.03 | 0.97 | 0.94 | -0.7 | -2.3 | -1.9 | | | ransport (C) | 2.82 | 2.85 | 2.79 | 2.77 | 2.69 | 2.68 | 2.67 | 2.67 | 2.67 | 2.66 | 2.65 | -0.7 | -0.3 | -0.1 | | | | 2.02 | 2.00 | 2.13 | 2.11 | 2.03 | 2.00 | 2.01 | 2.01 | 2.01 | 2.00 | 2.00 | -0.1 | -0.5 | -0.1 | - | | icators for renewables
are of RES in Gross Final Energy Consumption (D) (%) | 6.4 | 6.9 | 9.2 | 11.3 | 15.4 | 16.6 | 18.5 | 19.3 | 19.8 | 20.3 | 20.5 | | | | | | | 0.0 | 0.4 | 6.0 | 7.0 | 15.4 | 10.6 | 18.5 | 19.3 | 19.8 | 10.7 | 10.9 | | | | | | S in transport (%) | | | | | | | | | | | | ~ ~ | ~- | | | | ss Electricity generation by source (in GWh _e) ^(E) | 143174 | 155359
0 | 157089 | 180512 | 204760 | 214708 | 219831 | 233340 | 246030 | 267113 | 280114 | 0.9 | 2.7 0.0 | 0.7 | | | uclear energy | 135888 | | - | 0
155422 | 0
165453 | 12732 | 48565 | 61641 | 74059 | 74059
123189 | 74059
135679 | 0.0 | | 0.0 | | | l (including refinent gas) | 135888 | 142160
2757 | 136592
2892 | 155422
860 | | 156315
385 | 117936
301 | 109855
649 | 109047
605 | 123189 | 135679 | 0.1 | 1.9
-13.6 | -3.3
-7.7 | | | I (including refinery gas)
as (including derived gases) | 1916
2707 | 6357 | 2892
6473 | 7066 | 673
10960 | 385
13171 | 16261 | 18027 | 19550 | 22486 | 20322 | 4.2
9.1 | -13.6
5.4 | 4.0 | | | omass-waste | 552 | 1749 | 6548 | 9380 | 10759 | 11888 | 14302 | 18395 | 16397 | 19119 | 20605 | 28.1 | 5.4 | 2.9 | | | rdro (pumping excluded) | 2106 | 2201 | 2920 | 3459 | 3893 | 3855 | 4812 | 5051 | 5279 | 5453 | 5707 | 3.3 | 2.9 | 2.1 | | | ind | 5 | 135 | 1664 | 4319 | 12972 | 15987 | 17084 | 18717 | 19697 | 20344 | 21711 | 78.7 | 22.8 | 2.8 | | | olar | 0 | 0 | 0 | 6 | 49 | 377 | 571 | 1005 | 1396 | 1452 | 1521 | 0.0 | 0.0 | 27.9 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | ther fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 27648 | 28929 | 31034 | 34872 | 40239 | 44393 | 48758 | 50886 | 53700 | 57083 | 58084 | 1.2 | 2.6 | 1.9 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 1671 | 6315 | 8000 | 9600 | 9600 | 9600 | 0.0 | 0.0 | 0.0 | | | enewable energy | 813 | 1015 | 2199 | 3582 | 7827 | 9946 | 10839 | 11880 | 12681 | 13036 | 13657 | 10.5 | 13.5 | 3.3 | | | Hydro (pumping excluded) | 809 | 932 | 1019 | 1104 | 1261 | 1265 | 1467 | 1515 | 1554 | 1619 | 1681 | 2.3 | 2.2 | 1.5 | | | Wind | 4 | 83 | 1180 | 2472 | 6515 | 8331 | 8843 | 9385 | 9742 | 9972 | 10460 | 76.6 | 18.6 | 3.1 | | | Solar | 0 | 0 | 0 | 6 | 51 | 350 | 530 | 980 | 1386 | 1445 | 1516 | 0.0 | 0.0 | 26.5 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | nermal power | 26835 | 27914 | 28835 | 31290 | 32412 | 32775 | 31603 | 31006 | 31419 | 34447 | 34827 | 0.7 | 1.2 | -0.3 | | | of which cogeneration units | 9354 | 9826 | 8116 | 8316 | 9333 | 9008 | 9804 | 9980 | 10971 | 12677 | 11836 | -1.4 | 1.4 | 0.5 | | | of which CCS units | 0 | 0 | 0 | 0 | 229 | 229 | 229 | 2948 | 4628 | 6621 | 10994 | 0.0 | 0.0 | 0.0 | | | Solids fired | 24918 | 25406 | 26327 | 26719 | 24936 | 22842 | 20417 | 18689 | 18961 | 20913 | 22092 | 0.6 | -0.5 | -2.0 | | | Gas fired | 787 | 1329 | 1331 | 2823 | 5702 | 8281 | 9643 | 10191 | 10277 | 11168 | 10115 | 5.4 | 15.7 | 5.4 | | | Oil fired | 496 | 498 | 494 | 446 | 480 | 358 | 242 | 379 | 367 | 355 | 277 | 0.0 | -0.3 | -6.6 | | | Biomass-waste fired | 633 | 680 | 683 | 1302 | 1294 | 1294 | 1301 | 1748 | 1813 | 2011 | 2342 | 0.8 | 6.6 | 0.1 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | . Load factor of net power capacity (F) (%) | 53.8 | 56.0 | 52.3 | 54.3 | 53.5 | 51.1 | 48.0 | 47.8 | 47.5 | 48.0 | 48.2 | | | | | | ctricity indicators | | | | | | | | | | | | | | | | | ciency of gross thermal power generation (%) | 33.2 | 34.1 | 34.3 | 37.5 | 39.3 | 39.1 | 40.0 | 42.8 | 44.3 | 46.6 | 49.8 | | | | | | f gross electricity from CHP | 16.1 | 16.8 | 17.6 | 21.0 | 25.1 | 23.3 | 23.4 | 25.8 | 26.7 | 28.7 | 24.9 | | | | | | f electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.8 | 1.1 | 12.8 | 18.6 | 24.5 | 38.6 | | | | | | bon free gross electricity generation (%) | 1.9 | 2.6 | 7.1 | 9.5 | 13.5 | 20.9 | 38.8 | 44.9 | 47.5 | 45.1 | 44.1 | | | | | | ıclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.9 | 22.1 | 26.4 | 30.1 | 27.7 | 26.4 | | | | | | newable energy forms | 1.9 | 2.6 | 7.1 | 9.5 | 13.5 | 15.0 | 16.7 | 18.5 | 17.4 | 17.4 | 17.7 | | | | | | nsport sector | | | | | | | | | | | | | | | | | senger transport activity (Gpkm) | 215.3 | 256.4 | 354.5 | 387.6 | 423.9 | 456.8 | 492.2 | 516.8 | 542.5 | 557.5 | 572.7 | 5.1 | 1.8 | 1.5 | | | ublic road transport | 31.7 | 29.3 | 21.6 | 21.8 | 21.9 | 22.7 | 23.5 | 24.1 | 24.7 | 25.1 | 25.5 | -3.8 | 0.1 | 0.7 | | | ivate cars and motorcycles | 153.6 | 201.2 | 303.3 | 331.6 | 362.2 | 386.0 | 410.7 | 428.9 | 447.7 | 458.0 | 468.4 | 7.0 | 1.8 | 1.3 | | | ail | 27.0 | 20.9 | 21.0 | 23.9 | 27.2 | 33.0 | 40.1 | 43.4 | 46.9 | 48.5 | 50.1 | -2.5 | 2.6 | 4.0 | | | viation | 2.8 | 4.8 | 8.4 | 10.2 | 12.4 | 14.8 | 17.6 | 20.1 | 22.9 | 25.6 | 28.5 | 11.7 | 4.0 | 3.6 | | | land navigation | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | -1.5 | 1.7 | 1.4 | | | ght transport activity (Gtkm) | 130.3 | 162.2 | 259.7 | 307.2 | 340.5 | 367.8 | 397.1 | 414.1 | 431.8 | 439.9 | 448.2 | 7.1 | 2.7 | 1.6 | | | rucks | 75.0 | 111.8 | 210.8 | 254.1 | 281.4 | 301.5 | 322.7 | 336.1 | 350.2 | 356.2 | 362.4 | 10.9 | 2.9 | 1.4 | | | ail | 54.0 | 50.0 | 48.7 | 52.9 | 58.8 | 66.0 | 74.0 | 77.6 | 81.2 | 83.3 | 85.4 | -1.0 | 1.9 | 2.3 | | | land navigation | 1.2 | 0.4 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | -16.8 | 2.9 | 3.1 | | | rgy demand in transport (ktoe) (G) | 9700 | 12164 | 17337 | 19219 | 20017 | 19997 | 20242 | 20343 | 20660 | 20698 | 20811 | 6.0 | 1.4 | 0.1 | | | ublic road transport | 417 | 378 | 292 | 295 | 296 | 300 | 303 | 305 | 309 | 309 | 310 | -3.5 | 0.2 | 0.2 | | | rivate cars and motorcycles | 6093 | 6739 | 8783 | 9339 | 9341 | 8959 | 8821 | 8789 | 8862 | 8876 | 8937 | 3.7 | 0.6 | -0.6 | | | rucks | 2369 | 4254 | 7397 | 8601 | 9277 | 9544 | 9834 | 9877 | 10001 | 9958 | 9964 | 12.1 | 2.3 | 0.6 | | | ail | 540 | 468 | 355 | 382 | 413 | 445 | 486 | 499 | 518 | 524 | 530 | -4.1 | 1.5 | 1.7 | | | viation | 274 | 319 | 508 | 600 | 688 | 747 | 795 | 871 | 967 | 1027 | 1067 | 6.4 | 3.1 | 1.5 | | | land navigation | 6 | 5 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | -10.5 | 1.9 | 1.4 | | | Portugal: Reference scenario | | | | | | | | SUM | MARY E | NERGY |
BALAN | CE AND | INDIC | ATORS | S (A) | |---|--|---|---|--|--|---|---|--|--|--|--|--|---|--|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 | '20-'30 ' | '30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 3891 | 3615
0 | 5629 | 6062
0 | 6798
0 | 7669
0 | 8427
0 | 9188
0 | 9425
0 | 9600
0 | 9767
0 | 3.8
989.0 | 1.9 -100.0 | 2.2
0.0 | 0.7
0.0 | | Oil | 0 | 0 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 174.1 | 0.0 | 0.0 | 0.0 | | Natural gas | 45 | 0 | 0 | 0 | 228 | 247 | 160 | 186 | 223 | 179 | 171 | 0.0 | 0.0 | -3.5 | 0.3 | | Nuclear | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Renewable energy sources | 3846 | 3615 | 5581 | 6014 | 6521 | 7374 | 8219 | 8954 | 9154 | 9373 | 9549 | 3.8 | 1.6 | 2.3 | 0.8 | | Hydro | 974 | 407 | 1388 | 950 | 968 | 986 | 1023 | 1085 | 1118 | 1110 | 1145 | 3.6 | -3.5 | 0.6 | 0.6 | | Biomass & Waste
Wind | 2770
14 | 2967
152 | 3137
790 | 3513
1107 | 3645
1181 | 3770
1462 | 3939
1840 | 4017
2022 | 4066
2043 | 4065
2065 | 4004
2087 | 1.3
49.2 | 1.5
4.1 | 0.8
4.5 | 0.1 | | Solar and others | 18 | 23 | 76 | 247 | 520 | 953 | 1216 | 1362 | 1444 | 1650 | 1829 | 15.3 | 21.1 | 8.9 | 2.1 | | Geothermal | 70 | 66 | 190 | 197 | 207 | 203 | 202 | 467 | 484 | 483 | 483 | 10.5 | 0.9 | -0.3 | 4.5 | | Net Imports | 21880 | 24768 | 18734 | 18330 | 17390 | 15490 | 14486 | 14285 | 14083 | 14083 | 14039 | -1.5 | -0.7 | -1.8 | -0.2 | | Solids | 3914 | 3225 | 1629 | 1657 | 1157 | 136 | 71 | 29 | 28 | 27 | 26 | -8.4 | -3.4 | -24.4 | -4.9 | | Oil | 15847 | 17063 | 12583 | 12050 | 11461 | 10934 | 10838 | 10943 | 10966 | 11073 | 11199 | -2.3 | -0.9 | -0.6 | 0.2 | | Crude oil and Feedstocks Oil products | 12230
3618 | 13716
3347 | 11900
684 | 11448
602 | 10895
566 | 10391
543 | 10270
568 | 10316
627 | 10308
658 | 10366
707 | 10443
756 | -0.3
-15.3 | -0.9
-1.9 | -0.6
0.0 | 0.1
1.4 | | Natural gas | 2039 | 3893 | 4505 | 3940 | 4078 | 3561 | 2647 | 2360 | 2085 | 1928 | 1700 | 8.2 | -1.0 | -4.2 | -2.2 | | Electricity | 80 | 587 | 226 | 545 | 385 | 445 | 448 | 411 | 428 | 450 | 476 | 10.9 | 5.5 | 1.5 | 0.3 | | Gross Inland Consumption | 25107 | 27402 | 24296 | 23815 | 23620 | 22604 | 22370 | 22916 | 22951 | 23105 | 23220 | -0.3 | -0.3 | -0.5 | 0.2 | | Solids | 3805 | 3349 | 1657 | 1657 | 1157 | 136 | 71 | 29 | 28 | 27 | 26 | -8.0 | -3.5 | -24.4 | -4.9 | | Oil | 15297 | 16101 | 12303 | 11523 | 10951 | 10445 | 10365 | 10468 | 10495 | 10587 | 10713 | -2.2 | -1.2 | -0.5 | 0.2 | | Natural gas | 2078 | 3751 | 4489 | 3937 | 4297 | 3789 | 2784 | 2513 | 2270 | 2062 | 1818 | 8.0 | -0.4 | -4.2 | -2.1 | | Nuclear
Electricity | 0
80 | 0
587 | 0
226 | 0
545 | 0
385 | 0
445 | 0
448 | 0
411 | 0
428 | 0
450 | 0
476 | 0.0
10.9 | 0.0
5.5 | 0.0
1.5 | 0.0 | | Renewable energy forms | 3846 | 3615 | 5622 | 6153 | 6831 | 7789 | 8702 | 9495 | 9730 | 9978 | 10187 | 3.9 | 2.0 | 2.5 | 0.8 | | as % in Gross Inland Consumption | 30.0 | 20.0 | | 2.00 | 230. | | 5.02 | 2.00 | 2,00 | 23.0 | | 0.0 | | | 0.0 | | Solids | 15.2 | 12.2 | 6.8 | 7.0 | 4.9 | 0.6 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | Oil | 60.9 | 58.8 | 50.6 | 48.4 | 46.4 | 46.2 | 46.3 | 45.7 | 45.7 | 45.8 | 46.1 | | | | | | Natural gas | 8.3 | 13.7 | 18.5 | 16.5 | 18.2 | 16.8 | 12.4 | 11.0 | 9.9 | 8.9 | 7.8 | | | | | | Nuclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Renewable energy forms | 15.3 | 13.2 | 23.1 | 25.8 | 28.9 | 34.5 | 38.9 | 41.4 | 42.4 | 43.2 | 43.9 | | | | | | Gross Electricity Generation in GWh _e Self consumption and grid losses | 43364
5435 | 46180
6125 | 53682 5891 | 50169 5695 | 53684
5729 | 53746 5568 | 57243
6148 | 61595
6734 | 63139 6775 | 65273 6960 | 66565 7054 | 2.2
0.8 | 0.0
-0.3 | 0.6
0.7 | 0.8
0.7 | | Fuel Inputs to Thermal Power Generation | 6520 | 7913 | 5783 | 5331 | 5322 | 3800 | 3062 | 3354 | 3259 | 3198 | 3031 | -1.2 | -0.8 | -5.4 | -0.1 | | Solids | 3198 | 3319 | 1597 | 1627 | 1128 | 107 | 42 | 0 | 0 | 0 | 0 | -6.7 | -3.4 | | -100.0 | | Oil (including refinery gas) | 1682 | 1793 | 570 | 334 | 208 | 48 | 50 | 0 | 0 | 1 | 0 | -10.3 | -9.6 | -13.2 | -22.4 | | Gas (including derived gases) | 1215 | 2309 | 2775 | 2367 | 2809 | 2301 | 1400 | 1152 | 925 | 760 | 522 | 8.6 | 0.1 | -6.7 | -4.8 | | Biomass & Waste | 356 | 428 | 662 | 813 | 979 | 1145 | 1371 | 1737 | 1852 | 1955 | 2027 | 6.4 | 4.0 | 3.4 | 2.0 | | Geothermal heat Hydrogen - Methanol | 69
0 | 65
0 | 180
0 | 188
0 | 199
0 | 199
0 | 199
0 | 465
0 | 482
0 | 482
0 | 482
0 | 10.1
0.0 | 1.0 | 0.0 | 4.5
0.0 | | Fuel Input to other conversion processes | 12916 | 13875 | 12377 | 11926 | 11539 | 11043 | 10935 | 10990 | 10969 | 11020 | 11104 | -0.4 | -0.7 | -0.5 | 0.0 | | Refineries | 12468 | 13875 | 12078 | 11537 | 10983 | 10478 | 10357 | 10404 | 10303 | 10452 | 10529 | -0.3 | -0.9 | -0.6 | 0.1 | | Biofuels and hydrogen production | 0 | 0 | 300 | 389 | 556 | 565 | 577 | 585 | 574 | 566 | 574 | 0.0 | 6.4 | 0.4 | 0.0 | | District heating | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Derived gases, cokeries etc. | 449 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0.0 | 0.0 | 11.7 | 2.2 | | Energy Branch Consumption | 1028 | 1235 | 1242 | 1176 | 1122 | 1067 | 1079 | 1150 | 1146 | 1157 | 1164 | 1.9 | -1.0 | -0.4 | 0.4 | | Non-Energy Uses | 2334 | 2505 | 1741 | 1665 | 1724 | 1676 | 1625 | 1610 | 1586 | 1608 | 1686 | -2.9 | -0.1 | -0.6 | 0.2 | | Final Energy Demand | 17745 | 18958 | 18081 | 17920 | 17794 | 17751 | | 18280 | 18468 | | | | | 0.1 | 0.2 | | by sector Industry | | | | | | | 17995 | 10200 | | 18643 | 18731 | 0.2 | -0.2 | | 0.2 | | - energy intensive industries | | 5868 | 5300 | 5/12 | 5537 | | | | | | | 0.2 | | | | | - other industrial sectors | 6293
4156 | 5868
3967 | 5390
3572 | 5412
3574 | 5537
3744 | 5537 | 5535 | 5575 | 5577 | 5568 | 5587 | 0.2
-1.5 | 0.3 | 0.0 | 0.0 | | otrici illuotilai octitio | 6293
4156
2137 | 5868
3967
1901 | 5390
3572
1818 | 5412
3574
1838 | 5537
3744
1793 | | | | | | | 0.2 | | | | | Residential | 4156 | 3967 | 3572 | 3574 | 3744 | 5537
3772 | 5535
3781 | 5575
3814 | 5577
3796 | 5568
3754 | 5587
3728 | 0.2
-1.5
-1.5 | 0.3
0.5 | 0.0
0.1 | 0.0
-0.1 | | Residential
Tertiary | 4156
2137
2804
2106 | 3967
1901
3224
2759 | 3572
1818
2982
2413 | 3574
1838
2915
2321 | 3744
1793
2806
2346 | 5537
3772
1765
2848
2281 | 5535
3781
1754
2972
2316 | 5575
3814
1761
3079
2383 | 5577
3796
1781
3105
2370 | 5568
3754
1814
3121
2411 | 5587
3728
1859
3104
2378 | -1.5
-1.5
-1.6
0.6
1.4 | 0.3
0.5
-0.1
-0.6
-0.3 | 0.0
0.1
-0.2
0.6
-0.1 | 0.0
-0.1
0.3
0.2
0.1 | | Residential
Tertiary
Transport | 4156
2137
2804 | 3967
1901
3224 | 3572
1818
2982 | 3574
1838
2915 | 3744
1793
2806 | 5537
3772
1765
2848 | 5535
3781
1754
2972 | 5575
3814
1761
3079 | 5577
3796
1781
3105 | 5568
3754
1814
3121 | 5587
3728
1859
3104 | -1.5
-1.5
-1.6
0.6 | 0.3
0.5
-0.1
-0.6 | 0.0
0.1
-0.2
0.6 | 0.0
-0.1
0.3
0.2 | | Residential Tertiary Transport by fuel | 4156
2137
2804
2106
6542 | 3967
1901
3224
2759
7107 | 3572
1818
2982
2413
7296 | 3574
1838
2915
2321
7271 | 3744
1793
2806
2346
7106 | 5537
3772
1765
2848
2281
7086 | 5535
3781
1754
2972
2316
7171 | 5575
3814
1761
3079
2383
7244 | 5577
3796
1781
3105
2370
7416 | 5568
3754
1814
3121
2411
7542 | 5587
3728
1859
3104
2378
7662 | -1.5
-1.5
-1.6
0.6
1.4
1.1 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3 | 0.0
0.1
-0.2
0.6
-0.1 | 0.0
-0.1
0.3
0.2
0.1
0.3 | | Residential Tertiary Transport by fuel Solids | 4156
2137
2804
2106
6542 | 3967
1901
3224
2759
7107 | 3572
1818
2982
2413
7296 | 3574
1838
2915
2321
7271 | 3744
1793
2806
2346
7106 | 5537
3772
1765
2848
2281
7086 | 5535
3781
1754
2972
2316
7171 | 5575
3814
1761
3079
2383
7244 | 5577
3796
1781
3105
2370
7416 | 5568
3754
1814
3121
2411
7542 | 5587
3728
1859
3104
2378
7662 | 0.2
-1.5
-1.5
-1.6
0.6
1.4
1.1 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3 | 0.0
0.1
-0.2
0.6
-0.1
0.1 | 0.0
-0.1
0.3
0.2
0.1
0.3 | | Residential Tertiary Transport by fuel Solids Oil | 4156
2137
2804
2106
6542
466
10539 | 3967
1901
3224
2759
7107
16
10762 | 3572
1818
2982
2413
7296
50
9238 | 3574
1838
2915
2321
7271
29
8753 | 3744
1793
2806
2346
7106 | 5537
3772
1765
2848
2281
7086 | 5535
3781
1754
2972
2316
7171 | 5575
3814
1761
3079
2383
7244 | 5577
3796
1781
3105
2370
7416 | 5568
3754
1814
3121
2411
7542
27
8347 | 5587
3728
1859
3104
2378
7662
26
8390 | 0.2
-1.5
-1.5
-1.6
0.6
1.4
1.1 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3 | 0.0
0.1
-0.2
0.6
-0.1
0.1 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6 | | Residential Tertiary Transport by fuel Solids | 4156
2137
2804
2106
6542 | 3967
1901
3224
2759
7107 | 3572
1818
2982
2413
7296 | 3574
1838
2915
2321
7271 | 3744
1793
2806
2346
7106 | 5537
3772
1765
2848
2281
7086 | 5535
3781
1754
2972
2316
7171 | 5575
3814
1761
3079
2383
7244 | 5577
3796
1781
3105
2370
7416 | 5568
3754
1814
3121
2411
7542 | 5587
3728
1859
3104
2378
7662 | 0.2
-1.5
-1.5
-1.6
0.6
1.4
1.1 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3 | 0.0
0.1
-0.2
0.6
-0.1
0.1 | 0.0
-0.1
0.3
0.2
0.1
0.3 | | Residential Tertiary Transport by fuel Solids Oil Gas | 4156
2137
2804
2106
6542
466
10539
873 | 3967
1901
3224
2759
7107
16
10762
1307 | 3572
1818
2982
2413
7296
50
9238
1581 | 3574
1838
2915
2321
7271
29
8753
1439 | 3744
1793
2806
2346
7106
29
8298
1354 | 5537
3772
1765
2848
2281
7086
29
8066
1339 | 5535
3781
1754
2972
2316
7171
29
8044
1242 | 5575
3814
1761
3079
2383
7244
29
8244
1203 | 5577
3796
1781
3105
2370
7416
28
8295
1188 | 5568
3754
1814
3121
2411
7542
27
8347
1158 | 5587
3728
1859
3104
2378
7662
26
8390
1154 | -1.5
-1.5
-1.6
0.6
1.4
1.1 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-5.3
-1.1 | 0.0
0.1
-0.2
0.6
-0.1
0.1 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257 | 5575
3814
1761
3079
2383
7244
29
8244
1203
5084
702
3015 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779 | 0.2 -1.5 -1.6 -1.6 0.6 1.4 1.1 -20.0 -1.3 6.1 2.7 9.7 0.6 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-5.3
-1.1
-1.5
0.4
4.5
1.9 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1 | 5575
3814
1761
3079
2383
7244
29
8244
1203
5084
702
3015
2 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
-8.8 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1 |
5575
3814
1761
3079
2383
7244
29
8244
1203
5084
702
3015
2 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
-8.8 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8
12.6 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7 | 5575
3814
1761
3079
2383
7244
29
8244
1203
5084
702
3015
2
7979
52.7 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
-8.8 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6
3.1 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8
12.6
0.4 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
-8.8 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6
3.1 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9
2.4
-1.9
-4.4 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8
12.6
0.4 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
24.9 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
37.4 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7 | -1.5
-1.5
-1.6
-0.6
-1.4
-1.1
-20.0
-1.3
-6.1
2.7
-0.6
-8.8
-2.4 | 0.3 0.5 -0.1 -0.6 -0.3 -0.3 -5.3 -1.1 -1.5 0.4 4.5 1.9 47.6 3.1 -1.4 -1.2 -1.5 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9
2.4
-1.9 | 0.0 -0.1 0.3 0.2 0.1 0.3 -0.6 0.2 -0.4 0.7 1.5 -0.8 12.6 0.4 -0.1 -0.7 0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
-8.8 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6
3.1 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9
2.4
-1.9
-4.4 | 0.0
-0.1
0.3
0.2
0.1
0.3
-0.6
0.2
-0.4
0.7
1.5
-0.8
12.6
0.4 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (C913 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0
48.2
64.4 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
33.6 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 33.2 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
37.4
32.8 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5 |
5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7
37.4
32.0 | -1.5
-1.5
-1.6
0.6
1.4
1.1
-20.0
-1.3
6.1
2.7
9.7
0.6
8.8
2.4
-1.4 | 0.3
0.5
-0.1
-0.6
-0.3
-0.3
-1.1
-1.5
0.4
4.5
1.9
47.6
3.1
-1.4
-1.2
-1.5
-1.4 | 0.0
0.1
-0.2
0.6
-0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9
2.4
-1.9
-4.4
-0.5
-2.5 | 0.0 -0.1 0.3 0.2 0.1 0.3 -0.6 0.2 -0.4 0.7 1.5 -0.8 12.6 0.4 -0.1 -0.7 0.1 -0.2 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
6.1 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4
46.2
13.3
2.5
5.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1
11.9
2.3
5.0 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3
6.0
2.2
2.4,7 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
33.6
3.6
2.1
4.5 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 33.2 2.7 2.1 5.1 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
6
8086
52.1
14.8
37.4
32.8
2.2
2.1
4.8 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
1.8
2.1 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7
37.4
32.0
1.2
2.1 | -1.5
-1.5
-1.6
-1.6
-1.4
-20.0
-1.3
-6.1
2.7
9.7
-0.6
-8.8
-1.4
-1.9
-3.7
-3.3
-6.0 | 0.3 0.5 -0.1 -0.6 -0.3 -0.3 -1.1 -1.5 -0.4 -4.5 -1.2 -1.5 -1.2 -1.5 -1.2 -1.5 -1.2 -1.5 -1.2 -1.1 -1.2 -1.2 | 0.0 0.1 -0.2 0.6 -0.1 0.0 -0.3 -0.9 0.7 1.8 0.4 19.9 2.4 -1.9 -4.4 -0.5 -2.5 -11.2 -0.9 -1.0 | 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2
60.4
21.7
2.5
11.4
2.0 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4
2.3 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
2.6 | 3574 1838 2915 2321 7271 29 8753 1439 4325 418 2955 0 5654 66.5 26.1 40.4 46.2 13.3 2.5 5.1 2.3 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
34.1
11.9
2.3
5.0
2.1 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3
6.0
2.2
4.7 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
3.6
2.1
4.5 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 33.2 2.7 2.1 1.9 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
37.4
32.8
2.2
2.1 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5
1.8
2.1
4.7 | 5587 3728 1859 3104 2378 7662 26 8390 1154 5536 833 2779 13 8293 51.2 13.7 37.4 32.0 1.2 2.1 4.7 1.5 | -1.5 -1.6 -1.6 -1.6 -1.4 -1.1 -20.0 -1.3 -1.1 -2.7 -2.7 -2.8 -1.4 -1.4 -1.9 -3.7 -3.7 -3.7 -3.7 -3.0 -3.5 -6.0 -3.5 | 0.3 0.5 0.5 0.1 1-0.6 0.3 1-1.1 1-1.5 1.9 47.6 3.1 1-1.4 1-2.2 1-1.1 1-1.8 | 0.0
0.1
-0.2
0.6
-0.1
0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
19.9
-1.9
-4.4
-0.5
-11.2
-0.9
-1.0
-0.7 | 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2
60.4
21.7
2.5
11.4
2.0
3.2 | 3967
1901
3224
2759
7107
16
10762
1307
3983
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4
2.3
4.2 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
2.6
6.1
2.6 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4
46.2
13.3
2.5
5.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1
11.9
2.3
5.0
2.1 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3
6.0
2.2
4.7
1.6 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
33.6
2.1
4.5
2.0 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 33.2 2.7 2.1 5.1 1.9 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
6
8086
52.1
14.8
37.4
32.8
2.2
2.1
4.8
1.8 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5
1.8
2.1
4.7 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13.7
37.4
32.0
1.2
2.1
4.7
1.5
5 | -1.5
-1.5
-1.6
-1.6
-1.4
-1.1
-20.0
-1.3
-1.3
-1.3
-1.4
-1.4
-1.9
-3.7
-3.7
-3.7
-3.3
-6.0
-2.5
-2.6 | 0.3 0.5 -0.1 -0.6 -0.3 -0.3 -1.1 -1.5 -0.4 -1.2 -1.5 -1.4 -1.2 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 | 0.0 0.1 -0.2 0.6 -0.1 0.1 0.0 -0.3 -0.9 0.7 1.8 0.4 19.9 -4.4 -0.5 -11.2 -0.9 -1.0 -0.7 -2.7 | 0.0 0 -0.1 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport |
4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2
60.4
21.7
2.5
11.4
2.0
3.2
19.6 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4
2.3
4.2
2.3 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
2.6
6.1
2.6
6.1
2.5
21.1 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4
46.2
13.3
2.5
5.1
2.3
2.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1
11.9
2.3
5.0
2.1 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3
6.0
2.2
4.7
2.1
1.6
6 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
33.6
2.1
4.5
2.0 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 2.7 15.1 1.9 1.4 20.1 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
2.2
2.1
4.8
1.3
20.6 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5
1.8
2.1
4.7
1.7 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7
37.4
32.0
1.2
2.1
1.5 | -1.5
-1.5
-1.6
-1.6
-1.4
-20.0
-1.3
-1.1
-20.0
-1.3
-1.4
-1.4
-1.4
-1.9
-1.4
-1.9
-1.3
-1.0
-1.3
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6 | 0.3 0.5 -0.1 -0.6 -0.3 -0.3 -1.1 -1.5 -0.4 -1.2 -1.5 -1.4 -1.2 -1.1 -1.8 -1.4 -1.2 -1.1 -1.8 -1.4 -1.4 -1.2 -1.1 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 | 0.0 0.1 -0.2 0.6 -0.1 0.0 -0.3 -0.9 0.7 1.8 0.4 19.9 2.4 -1.9 -4.4 -0.5 -2.5 -11.2 -0.9 -1.0 -0.7 -2.7 -0.0 | 0.0 -0.1 0.3 0.2 0.1 0.3 -0.6 0.2 -0.4 1.5 -0.8 12.6 -0.1 -0.7 0.1 -0.2 -0.1 -0.2 -0.1 -0.2 -0.3 -0.1 0.2 -0.3 -0.1 0.2 -0.3 -0.1 0.2 -0.3 -0.3 -0.1 0.2 -0.3 -0.3 -0.3 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2
40.4
21.7
2.5
5
11.4
2.0
3.2
19.6
6.2 | 3967
1901
3224
2759
7107
16
10762
1307
3983
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4
2.3
4.2
21.4
6.5 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
2.6
6.1
2.6
2.5
21.1 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4
46.2
13.3
2.5
5.1
2.3
2.1
20.8 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1
11.9
2.3
5.0
2.1
1.9
9 | 5537
3772
1765
2848
2281
7086
1339
4545
550
3221
6840
56.6
18.8
37.7
36.3
6.0
2.2
4.7
2.1
1.6
19.7 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
3.6
2.1
4.5
2.0
1.5
19.9 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 37.4 33.2 2.7 2.1 1.9 1.4 20.1 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
37.4
32.8
2.2
2.1
4.8
1.8
1.3
20.6
3.8 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5
1.8
2.1
4.7
1.7 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7
37.4
32.0
1.2
2.1
4.7
1.5
1.2
21.2
21.2
21.2
21.2 | -1.5
-1.5
-1.6
-1.6
-1.4
-20.0
-1.3
-6.1
2.7
9.7
-6.8
-8.8
-1.4
-1.9
-3.7
0.6
-8.8
-1.4
-1.9
-3.7
0.6
-8.8
-1.4 | 0.3 0.5 0.5 0.1 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 | 0.0
0.1
-0.2
0.6
-0.1
0.0
-0.3
-0.9
0.7
1.8
0.4
1.9
-4.4
-0.5
-2.5
-11.2
-0.9
-0.7
-0.7
-2.7
0.0
-0.7 | 0.0 0.0 -0.1 0.3 0.2 0.1 0.3 -0.6 0.2 -0.4 0.7 1.5 -0.8 12.6 0.4 -0.1 -0.2 -5.3 -0.8 0.2 -1.3 -0.8 -0.9 | | Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 4156
2137
2804
2106
6542
466
10539
873
3299
134
2434
0
3538
84.2
60.4
21.7
2.5
11.4
2.0
3.2
19.6 | 3967
1901
3224
2759
7107
16
10762
1307
3983
328
2563
0
3860
89.2
41.0
48.2
64.4
24.9
3.1
8.4
2.3
4.2
2.3 | 3572
1818
2982
2413
7296
50
9238
1581
4290
338
2584
0
4475
72.9
28.0
44.9
49.8
14.9
2.6
6.1
2.6
6.1
2.5
21.1 | 3574
1838
2915
2321
7271
29
8753
1439
4325
418
2955
0
5654
66.5
26.1
40.4
46.2
13.3
2.5
5.1
2.3
2.1 | 3744
1793
2806
2346
7106
29
8298
1354
4466
523
3123
0
6056
63.6
24.8
38.7
43.1
11.9
2.3
5.0
2.1 | 5537
3772
1765
2848
2281
7086
29
8066
1339
4545
550
3221
1
6840
56.6
18.8
37.7
36.3
6.0
2.2
4.7
2.1
1.6
6 | 5535
3781
1754
2972
2316
7171
29
8044
1242
4799
623
3257
1
7661
52.7
15.8
36.8
33.6
2.1
4.5
2.0
1.9 | 5575 3814 1761 3079 2383 7244 29 8244 1203 5084 702 3015 2 7979 52.7 15.2 2.7 15.1 1.9 1.4 20.1 | 5577
3796
1781
3105
2370
7416
28
8295
1188
5227
748
2976
6
8086
52.1
14.8
2.2
2.1
4.8
1.3
20.6 | 5568
3754
1814
3121
2411
7542
27
8347
1158
5412
791
2899
9
8248
51.9
14.4
37.5
32.5
1.8
2.1
4.7
1.7 | 5587
3728
1859
3104
2378
7662
26
8390
1154
5536
833
2779
13
8293
51.2
13.7
37.4
32.0
1.2
2.1
1.5 | -1.5
-1.5
-1.6
-1.6
-1.4
-20.0
-1.3
-1.1
-20.0
-1.3
-1.4
-1.4
-1.4
-1.9
-1.4
-1.9
-1.3
-1.0
-1.3
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6
-1.6 | 0.3 0.5 -0.1 -0.6 -0.3 -0.3 -1.1 -1.5 -0.4 -1.2 -1.5 -1.4 -1.2 -1.1 -1.8 -1.4 -1.2 -1.1 -1.8 -1.4 -1.4 -1.2 -1.1 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 | 0.0 0.1 -0.2 0.6 -0.1 0.0 -0.3 -0.9 0.7 1.8 0.4 19.9 2.4 -1.9 -4.4 -0.5 -2.5 -11.2 -0.9 -1.0 -0.7 -2.7 -0.0 | 0.0 -0.1 0.3 0.2 0.1 0.3 -0.6 0.2 -0.4 1.5 -0.8 12.6 -0.1 -0.7 0.1 -0.2 -0.1 -0.2 -0.1 -0.2 -0.3 -0.1 0.2 -0.3 -0.1 0.2 -0.3 -0.1 0.2 -0.3 -0.3 -0.1 0.2 -0.3 -0.3 -0.3 | | UMMARY ENERGY BALANCE AND INDICAT | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | | tugal: Re | | | | |--|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2000 | | | Zu- 3u
Change | | | ain Energy System Indicators | | | | | | | | | | | | | | Onlange | · | | opulation (Million) | 10.195 | 10.529 | 10.638 | 10.689 | 10.728 | 10.760 | 10.780 | 10.786 | 10.767 | 10.707 | 10.598 | 0.4 | 0.1 | 0.0 | | | DP (in 000 M€10) | 162.1 | 168.9 | 172.7 | 171.6 | 182.0 |
198.9 | 219.4 | 238.3 | 255.6 | 272.1 | 287.9 | 0.6 | 0.5 | 1.9 | | | oss Inl. Cons./GDP (toe/M€10) | 154.9 | 162.2 | 140.7 | 138.8 | 129.8 | 113.7 | 101.9 | 96.2 | 89.8 | 84.9 | 80.7 | -1.0 | -0.8 | -2.4 | | | urbon intensity (t of CO ₂ /toe of GIC) | 2.41 | 2.35 | 2.05 | 1.94 | 1.82 | 1.61 | 1.50 | 1.45 | 1.43 | 1.41 | 1.38 | -1.6 | -1.2 | -1.9 | | | port Dependency % | 84.9 | 88.5 | 75.4 | 75.1 | 71.9 | 66.9 | 63.2 | 60.9 | 59.9 | 59.5 | 59.0 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 18.1 | 24.4 | 27.5 | 32.5 | 35.6 | 38.6 | 40.5 | 42.2 | 44.4 | 46.2 | 47.9 | 4.3 | 2.6 | 1.3 | | | s % of GDP | 11.2 | 14.4 | 16.0 | 18.9 | 19.6 | 19.4 | 18.5 | 17.7 | 17.4 | 17.0 | 16.6 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | lustry (Energy on Value added, index 2000=100)
sidential (Energy on Private Income, index 2000=100) | 100.0 | 95.0 | 92.3 | 93.3 | 90.5 | 86.8 | 83.1 | 79.7 | 76.4 | 73.4 | 70.6 | -0.8 | -0.2
-1.2 | -0.9 | | | rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 107.6
120.8 | 94.3
97.9 | 92.9
94.5 | 84.0
90.0 | 77.8
79.3 | 73.3
72.2 | 69.8
67.9 | 65.5
62.5 | 61.8
59.3 | 58.1
55.1 | -0.6
-0.2 | -1.2
-0.8 | -1.4
-2.2 | | | ssenger transport (toe/Mpkm) | 36.6 | 36.0 | 38.0 | 36.4 | 33.8 | 30.3 | 27.8 | 26.4 | 25.6 | 25.2 | 24.7 | 0.4 | -1.2 | -2.2 | | | ight transport (toe/Mtkm) | 60.7 | 55.8 | 63.7 | 62.3 | 60.6 | 57.9 | 55.6 | 53.9 | 52.5 | 51.3 | 50.3 | 0.5 | -0.5 | -0.8 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.48 | 0.50 | 0.25 | 0.23 | 0.19 | 0.10 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 | -6.3 | -2.6 | -11.9 | | | al energy demand (t of CO ₂ /toe) | 2.04 | 1.92 | 1.79 | 1.70 | 1.62 | 1.58 | 1.55 | 1.55 | 1.54 | 1.53 | 1.53 | -1.3 | -1.0 | -0.5 | | | dustry | 1.81 | 1.44 | 1.14 | 0.95 | 0.90 | 0.84 | 0.81 | 0.91 | 0.86 | 0.85 | 0.84 | -4.5 | -2.4 | -1.0 | | | esidential | 0.71 | 0.72 | 0.86 | 0.79 | 0.76 | 0.73 | 0.67 | 0.62 | 0.58 | 0.54 | 0.50 | 1.8 | -1.2 | -1.2 | | | ertiary | 1.52 | 1.54 | 1.02 | 0.92 | 0.82 | 0.71 | 0.63 | 0.57 | 0.56 | 0.53 | 0.52 | -3.9 | -2.2 | -2.6 | | | ransport (C) | 3.00 | 3.01 | 2.90 | 2.86 | 2.79 | 2.78 | 2.78 | 2.77 | 2.77 | 2.77 | 2.77 | -0.4 | -0.4 | 0.0 | | | icators for renewables | | | | | | | | | | | | | | | П | | are of RES in Gross Final Energy Consumption (D) (%) | 19.3 | 19.7 | 23.9 | 30.7 | 33.3 | 37.8 | 41.7 | 42.7 | 43.0 | 43.7 | 43.8 | | | | | | S in transport (%) | 0.2 | 0.2 | 5.1 | 6.8 | 10.1 | 10.7 | 11.2 | 11.8 | 12.0 | 12.3 | 12.7 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 43372 | 46188 | 53691 | 50169 | 53684 | 53746 | 57243 | 61595 | 63139 | 65273 | 66565 | 2.2 | 0.0 | 0.6 | | | uclear energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | olids | 14595 | 15226 | 7100 | 7438 | 5155 | 516 | 201 | 0 | 0 | 0 | 0 | -7.0 | -3.2 | -27.7 | - | | il (including refinery gas) | 8421 | 8791 | 3011 | 1676 | 383 | 123 | 97 | 0 | 0 | 6 | 2 | -9.8 | -18.6 | -12.8 | | | sas (including derived gases) | 7231 | 13606 | 14900 | 11795 | 14267 | 10583 | 6295 | 5129 | 4293 | 3332 | 1947 | 7.5 | -0.4 | -7.9 | | | iomass-waste | 1553 | 1987 | 2943 | 3505 | 4225 | 4843 | 5387 | 6493 | 7178 | 7646 | 7326 | 6.6 | 3.7 | 2.5 | | | ydro (pumping excluded) | 11323 | 4731 | 16147 | 11049 | 11257 | 11462 | 11898 | 12622 | 12998 | 12908 | 13318 | 3.6 | -3.5 | 0.6 | | | /ind | 168 | 1773 | 9182 | 12876 | 13736 | 17000 | 21390 | 23511 | 23753 | 24015 | 24266 | 49.2 | 4.1 | 4.5 | | | olar | 1 | 3 | 211 | 1610 | 3800 | 8245 | 10905 | 12345 | 13150 | 15372 | 17526 | 70.8 | 33.5 | 11.1 | | | eothermal and other renewables | 80 | 71 | 197 | 219 | 862 | 974 | 1070 | 1495 | 1768 | 1995 | 2181 | 9.4 | 15.9 | 2.2 | | | other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e
luclear energy | 10363
0 | 13013
0 | 18001
0 | 20146
0 | 21767
0 | 24361
0 | 26417
0 | 27469
0 | 28214
0 | 29757
0 | 31308
0 | 5.7
0.0 | 1.9
0.0 | 2.0
0.0 | | | denewable energy | 3984 | 5446 | 8041 | 11034 | 12817 | 16140 | 19111 | 20793 | 21595 | 22832 | 24038 | 7.3 | 4.8 | 4.1 | | | Hydro (pumping excluded) | 3883 | 4422 | 4043 | 4584 | 4589 | 4628 | 4738 | 4946 | 5122 | 5336 | 5613 | 0.4 | 1.3 | 0.3 | | | Wind | 100 | 1021 | 3864 | 5398 | 5689 | 6802 | 8324 | 9043 | 9148 | 9260 | 9370 | 44.1 | 3.9 | 3.9 | | | Solar | 1 | 2 | 134 | 1051 | 2212 | 4325 | 5613 | 6309 | 6698 | 7491 | 8214 | 63.2 | 32.4 | 9.8 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 327 | 385 | 435 | 495 | 626 | 745 | 841 | 0.0 | 0.0 | 2.9 | | | hermal power | 6379 | 7568 | 9960 | 9113 | 8950 | 8221 | 7307 | 6676 | 6620 | 6925 | 7270 | 4.6 | -1.1 | -2.0 | | | of which cogeneration units | 1676 | 1874 | 1764 | 1327 | 1551 | 1430 | 1537 | 1656 | 1683 | 1921 | 1951 | 0.5 | -1.3 | -0.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1885 | 1895 | 1800 | 1800 | 1800 | 1421 | 568 | 0 | 0 | 0 | 0 | -0.5 | 0.0 | -10.9 | - | | Gas fired | 1796 | 2626 | 4864 | 4864 | 4768 | 4750 | 4746 | 4883 | 4597 | 4640 | 4771 | 10.5 | -0.2 | 0.0 | | | Oil fired | 2374 | 2667 | 2813 | 1823 | 1750 | 1277 | 996 | 515 | 486 | 434 | 556 | 1.7 | -4.6 | -5.5 | | | Biomass-waste fired | 310 | 366 | 458 | 601 | 606 | 746 | 970 | 1217 | 1473 | 1787 | 1880 | 4.0 | 2.8 | 4.8 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 14 | 14 | 25 | 25 | 26 | 26 | 26 | 62 | 64 | 64 | 64 | 6.0 | 0.5 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 46.1 | 39.1 | 33.2 | 27.7 | 27.5 | 24.8 | 24.4 | 25.2 | 25.2 | 24.7 | 23.9 | | | | _ | | ctricity indicators ciency of gross thermal power generation (%) | 42.0 | 43.1 | 41.9 | 39.7 | 39.2 | 36.9 | 34.3 | 31.2 | 31.8 | 31.0 | 27.9 | | | | | | of gross electricity from CHP | 10.0 | 11.6 | 11.8 | 12.5 | 11.2 | 11.4 | 12.3 | 11.2 | 11.4 | 12.0 | 10.8 | | | | | | of gross electricity from CHP of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | bon free gross electricity generation (%) | 30.3 | 18.5 | 53.4 | 58.3 | 63.1 | 79.1 | 88.5 | 91.7 | 93.2 | 94.9 | 97.1 | | | | | | uclear | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | enewable energy forms | 30.3 | 18.5 | 53.4 | 58.3 | 63.1 | 79.1 | 88.5 | 91.7 | 93.2 | 94.9 | 97.1 | | | | | | Insport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 104.8 | 120.0 | 119.7 | 122.7 | 125.8 | 137.6 | 150.4 | 159.3 | 168.7 | 175.9 | 183.2 | 1.3 | 0.5 | 1.8 | | | ublic road transport | 11.8 | 11.1 | 10.6 | 10.7 | 10.7 | 11.7 | 12.9 | 13.5 | 14.2 | 14.8 | 15.4 | -1.1 | 0.1 | 1.8 | | | rivate cars and motorcycles | 72.5 | 87.0 | 85.5 | 85.9 | 86.1 | 92.8 | 100.0 | 104.4 | 108.9 | 111.7 | 114.6 | 1.7 | 0.1 | 1.5 | | | ail | 4.6 | 4.7 | 5.2 | 5.5 | 5.9 | 7.0 | 8.4 | 9.2 | 10.1 | 10.7 | 11.3 | 1.4 | 1.1 | 3.7 | | | viation | 15.7 | 17.0 | 18.1 | 20.3 | 22.8 | 25.7 | 28.8 | 31.8 | 35.1 | 38.2 | 41.6 | 1.5 | 2.3 | 2.4 | | | land navigation | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.1 | 1.7 | | | ight transport activity (Gtkm) | 44.6 | 49.9 | 43.1 | 45.0 | 47.1 | 50.3 | 53.8 | 56.3 | 58.9 | 60.6 | 62.4 | -0.3 | 0.9 | 1.4 | | | rucks | 38.9 | 42.6 | 35.4 | 36.9 | 38.5 | 41.0 | 43.8 | 45.7 | 47.8 | 49.2 | 50.6 | -0.9 | 0.9 | 1.3 | | | ail | 2.2 | 2.4 | 2.3 | 2.5 | 2.7 | 3.0 | 3.4 | 3.5 | 3.7 | 3.8 | 4.0 | 0.6 | 1.6 | 2.2 | | | nland navigation | 3.5 | 4.9 | 5.4 | 5.6 | 5.8 | 6.3 | 6.7 | 7.0 | 7.4 | 7.6 | 7.8 | 4.4 | 0.8 | 1.4 | | | ergy demand in transport (ktoe) (G) | 6542 | 7107 | 7296 | 7270 | 7105 | 7085 | 7170 | 7243 | 7415 | 7541 | 7661 | 1.1 | -0.3 | 0.1 | Ī | | ublic road transport | 207 | 193 | 194 | 189 | 184 | 194 | 204 | 209 | 215 | 220 | 226 | -0.7 | -0.5 | 1.0 | | | rivate cars and motorcycles | 2767 | 3183 | 3283 | 3100 | 2827 | 2693 | 2647 | 2611 | 2623 | 2630 | 2659 | 1.7 | -1.5 | -0.7 | | | rucks | 2645 | 2733 | 2677 | 2736 | 2779 | 2841 | 2914 | 2951 | 3005 | 3022 | 3052 | 0.1 | 0.4 | 0.5 | | | Rail | 88 | 66 | 57 | 54 | 56 | 61 | 66 | 67 | 69 | 69 | 69 | -4.2 | -0.2 | 1.6 | | | | 790 | 914 | 1040 | 1145 | 1212 | 1246 | 1285 | 1349 | 1445 | 1542 | 1596 | 2.8 | 1.5 | 0.6 | | | viation | 790 | 914 | 1040 | | | | | | | | .000 | | | | | | Romania: Reference scenario | | | | | | | | SUM | IMARY E | ENERGY | BALAN | CE AND | INDIC | ATORS | (A) | |--|---------------------|----------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|--------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 28551 5603 | 28239
5793 | 27741 5904 | 29416 5549 | 30423
5056 | 30583
4234 | 30650
3695 | 31516
3094 | 32210
4645 | 32614
5083 | 31215 5205 | -0.3
0.5 | 0.9
-1.5 | 0.1
-3.1 | 0.1
1.7 | | Oil | 6441 | 6242 | 4513 | 5417 | 5491 | 5336 | 5316 | 5143 | 5000 | 4768 | 4530 | -3.5 | 2.0 | -0.3 | -0.8 | | Natural gas | 10968 | 9701 | 8619 | 7561 | 8484 | 9104 | 8778 | 9046 | 8454 | 8821 | 7648 | -2.4 | -0.2 | 0.3 | -0.7 | | Nuclear | 1407 | 1433 | 2998 | 3003 | 3016 | 3016 | 3703 | 4676 | 4676 | 4676 |
4676 | 7.9 | 0.1 | 2.1 | 1.2 | | Renewable energy sources Hydro | 4131
1271 | 5070
1737 | 5708
1679 | 7886
1907 | 8376
1883 | 8892
1921 | 9157
1928 | 9557
1953 | 9434
1999 | 9266
2067 | 9156
2165 | 3.3
2.8 | 3.9
1.2 | 0.9
0.2 | 0.0 | | Biomass & Waste | 2854 | 3314 | 3980 | 5535 | 5839 | 5786 | 5908 | 6238 | 6046 | 5669 | 5321 | 3.4 | 3.9 | 0.1 | -0.5 | | Wind | 0 | 0 | 26 | 225 | 227 | 582 | 673 | 674 | 674 | 802 | 820 | 0.0 | 24.0 | 11.5 | 1.0 | | Solar and others | 0 | 0 | 0 | 98 | 272 | 438 | 488 | 516 | 553 | 569 | 692 | 0.0 | 120.7 | 6.0 | 1.8 | | Geothermal Net Imports | 7
8109 | 18
10875 | 23
7736 | 121
6872 | 156
6639 | 164
6287 | 160
6460 | 175
6323 | 163
6417 | 160
6505 | 157
7727 | 13.1
-0.5 | 21.1
-1.5 | 0.3
-0.3 | -0.1
0.9 | | Solids | 1920 | 2936 | 1234 | 2077 | 1978 | 1976 | 1990 | 1752 | 1711 | 1545 | 1470 | -0.5
-4.3 | 4.8 | 0.1 | -1.5 | | Oil | 3537 | 3998 | 4748 | 3982 | 4198 | 4307 | 4290 | 4419 | 4811 | 4943 | 5171 | 3.0 | -1.2 | 0.2 | 0.9 | | - Crude oil and Feedstocks | 4869 | 8885 | 6161 | 5245 | 5180 | 5081 | 4880 | 4832 | 5012 | 4986 | 5043 | 2.4 | -1.7 | -0.6 | 0.2 | | - Oil products | -1331
2712 | -4888
4100 | -1413
1816 | -1264
2062 | -982
1730 | -774
1412 | -591 | -414
1703 | -201
1604 | -43 | 128
2744 | 0.6 | -3.6
-0.5 | -5.0
-0.5 | 0.0 | | Natural gas Electricity | -60 | 4190
-250 | -196 | -302 | 1730
-350 | 1412
-576 | 1646
-721 | -819 | 1604
-1049 | 1675
-1096 | -1199 | -3.9
12.6 | 6.0 | -0.5
7.5 | 2.6
2.6 | | Gross Inland Consumption | 36832 | 39346 | 35708 | 36265 | 37034 | 36839 | 37076 | 37803 | 38589 | 39079 | 38900 | -0.3 | 0.4 | 0.0 | 0.2 | | Solids | 7493 | 8784 | 7009 | 7625 | 7035 | 6210 | 5685 | 4846 | 6356 | 6628 | 6675 | -0.7 | 0.0 | -2.1 | 0.8 | | Oil | 10175 | 10411 | 9247 | 9376 | 9661 | 9612 | 9572 | 9526 | 9775 | 9672 | 9661 | -1.0 | 0.4 | -0.1 | 0.0 | | Natural gas
Nuclear | 13680
1407 | 13942
1433 | 10788
2998 | 9624
3003 | 10214
3016 | 10516
3016 | 10423
3703 | 10748
4676 | 10057
4676 | 10494
4676 | 10390
4676 | -2.3
7.9 | -0.5
0.1 | 0.2
2.1 | 0.0 | | Electricity | -60 | -250 | -196 | -302 | -350 | -576 | -721 | -819 | -1049 | -1096 | -1199 | 12.6 | 6.0 | 7.5 | 2.6 | | Renewable energy forms | 4137 | 5026 | 5862 | 6939 | 7458 | 8060 | 8413 | 8825 | 8774 | 8705 | 8697 | 3.5 | 2.4 | 1.2 | 0.2 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 20.3
27.6 | 22.3 | 19.6 | 21.0 | 19.0 | 16.9 | 15.3 | 12.8
25.2 | 16.5 | 17.0 | 17.2 | | | | | | Oil
Natural gas | 27.6
37.1 | 26.5
35.4 | 25.9
30.2 | 25.9
26.5 | 26.1
27.6 | 26.1
28.5 | 25.8
28.1 | 25.2 | 25.3
26.1 | 24.8
26.9 | 24.8
26.7 | | | | | | Nuclear | 3.8 | 3.6 | 8.4 | 8.3 | 8.1 | 8.2 | 10.0 | 12.4 | 12.1 | 12.0 | 12.0 | | | | | | Renewable energy forms | 11.2 | 12.8 | 16.4 | 19.1 | 20.1 | 21.9 | 22.7 | 23.3 | 22.7 | 22.3 | 22.4 | | | | | | Gross Electricity Generation in GWh _e | 51925 | 59402 | 60248 | 67256 | 70780 | 75073 | 78447 | 82936 | 91284 | 97194 | 100169 | 1.5 | 1.6 | 1.0 | 1.2 | | Self consumption and grid losses | 9936 | 9987 | 12112 | 10955 | 10776 | 10877 | 10739 | 11103 | 13946 | 14422 | 14719 | 2.0 | -1.2 | 0.0 | 1.6 | | Fuel Inputs to Thermal Power Generation Solids | 10788 5462 | 10372
6127 | 8676
5928 | 7459
5647 | 7790
5145 | 7385
4399 | 7160
3913 | 7182
3247 | 8133
4803 | 8981
5158 | 8955 5300 | -2.2
0.8 | -1.1
-1.4 | -0.8
-2.7 | 1.1
1.5 | | Oil (including refinery gas) | 1736 | 800 | 328 | 510 | 584 | 630 | 671 | 543 | 663 | 546 | 543 | -15.4 | 5.9 | 1.4 | -1.1 | | Gas (including derived gases) | 3579 | 3437 | 2399 | 1033 | 1623 | 1626 | 1709 | 1926 | 1253 | 1929 | 1828 | -3.9 | -3.8 | 0.5 | 0.3 | | Biomass & Waste | 11 | 9 | 21 | 254 | 424 | 715 | 851 | 1451 | 1399 | 1333 | 1269 | 6.2 | 35.1 | 7.2 | 2.0 | | Geothermal heat
Hydrogen - Methanol | 0 | 0 | 1 | 15
0 0.0 | 33.5
0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 16426 | 19709 | 15376 | 18211 | 19069 | 18580 | 19010 | 19491 | 19234 | 18672 | 18117 | -0.7 | 2.2 | 0.0 | -0.2 | | Refineries | 11401 | 15264 | 11350 | 14006 | 14607 | 14268 | 14162 | 13799 | 13562 | 13094 | 12616 | 0.0 | 2.6 | -0.3 | -0.6 | | Biofuels and hydrogen production | 0 | 1 | 115 | 144 | 492 | 466 | 451 | 453 | 454 | 435 | 412 | 80.7 | 15.6 | -0.9 | -0.5 | | District heating | 1737 | 824 | 689 | 675 | 595 | 492 | 399 | 336 | 286 | 222 | 185 | -8.8 | -1.5 | -3.9 | -3.8 | | Derived gases, cokeries etc. Energy Branch Consumption | 3287
3676 | 3621
4105 | 3221
2888 | 3386
2966 | 3376
3043 | 3355
3030 | 3998
3002 | 4903
2979 | 4933
3202 | 4921
3235 | 4904
3157 | -0.2
-2.4 | 0.5
0.5 | 1.7
-0.1 | 1.0
0.3 | | Non-Energy Uses | 1883 | 2437 | 1724 | 1606 | 1634 | 1675 | 1736 | 1738 | 1716 | 1700 | 1690 | -0.9 | -0.5 | 0.6 | -0.1 | | Final Energy Demand | 22725 | 24958 | 22474 | 25222 | 26050 | 26250 | 26383 | 26666 | 27056 | 27270 | 27269 | -0.1 | 1.5 | 0.1 | 0.2 | | by sector | | | | | | | | | | | | | | | | | Industry | 9293 | 10228 | 6881 | 8489 | 8701 | 8755 | 8833 | 8631 | 8566 | 8563 | 8362 | -3.0 | 2.4 | 0.2 | -0.3 | | energy intensive industries other industrial sectors | 6328
2966 | 7430
2798 | 4763
2117 | 6019
2470 | 6064
2637 | 6104
2651 | 6182
2652 | 5992
2640 | 5894
2673 | 5964
2598 | 5790
2572 | -2.8
-3.3 | 2.4 | 0.2
0.1 | -0.3
-0.2 | | Residential | 8408 | 7990 | 8102 | 8558 | 8575 | 8710 | 8667 | 8995 | 9210 | 9369 | 9515 | -0.4 | 0.6 | 0.1 | 0.5 | | Tertiary | 1602 | 2463 | 2487 | 2692 | 2728 | 2623 | 2536 | 2528 | 2528 | 2520 | 2458 | 4.5 | 0.9 | -0.7 | -0.2 | | Transport | 3421 | 4277 | 5004 | 5483 | 6045 | 6162 | 6348 | 6512 | 6751 | 6818 | 6935 | 3.9 | 1.9 | 0.5 | 0.4 | | by fuel | 4047 | 4007 | 000 | 4504 | 4504 | 4.450 | 4407 | 4005 | 4000 | 4040 | 4407 | | 4.0 | 0.0 | 4.0 | | Solids
Oil | 1047
5478 | 1607
6876 | 939
6067 | 1564
6633 | 1501
6871 | 1450
6894 | 1467
6941 | 1365
7077 | 1286
7247 | 1213
7241 | 1137
7293 | -1.1
1.0 | 4.8
1.3 | -0.2
0.1 | -1.3
0.2 | | Gas | 6910 | 7754 | 6189 | 6550 | 6548 | 6843 | 6813 | 6930 | 6876 | 6873 | 6940 | -1.1 | 0.6 | 0.1 | 0.2 | | Electricity | 2918 | 3341 | 3553 | 4138 | 4403 | 4544 | 4707 | 4968 | 5191 | 5602 | 5738 | 2.0 | 2.2 | 0.7 | 1.0 | | Heat (from CHP and District Heating) | 3570 | 2135 | 1650 | 1898 | 1973 | 1946 | 1981 | 2009 | 2012 | 2144 | 2131 | -7.4 | 1.8 | 0.0 | 0.4 | | Renewable energy forms Other fuels (hydrogen, ethanol) | 2802
0 | 3244
0 | 4077
0 | 4439
0 | 4754
0 | 4572
1 | 4473
2 | 4315
2 | 4441
3 | 4194
4 | 4027
5 | 3.8
-2.4 | 1.5
64.1 | -0.6
13.8 | -0.5
5.3 | | RES in Gross Final Energy Consumption (A) | 4090 | 4601 | 5601 | 6644 | 7322 | 7887 | 8184 | 8462 | 8555 | 8430 | 8449 | 3.2 | 2.7 | 1.1 | 0.2 | | TOTAL GHG emissions (Mt of CO2 eq.) | 137.8 | 147.7 | 120.8 | 126.7 | 126.2 | 123.3 | 117.8 | 113.9 | 110.9 | 101.4 | 99.7 | -1.3 | 0.4 | -0.7 | -0.8 | | of which ETS sectors (2013 scope) GHG emissions | | 76.7 | 56.6 | 60.1 | 58.8 | 55.8 | 51.1 | 46.9 | 44.0 | 34.9 | 33.3 | | 0.4 | -1.4 | -2.1 | | of which non ETS sectors GHG emissions | | 71.0 | 64.2 | 66.6 | 67.4 | 67.6 | 66.7 | 66.9 | 66.9 | 66.5 | 66.5 | | 0.5 | -0.1 | 0.0 | | CO ₂ Emissions (energy related) | 88.7 | 96.5 | 77.0 | 80.1 | 79.8 | 76.7 | 73.7 | 70.0 | 67.4 | 65.8 | 64.6 | -1.4 | 0.4 | -0.8 | -0.7 | | Power generation/District heating Energy Branch | 42.0
6.8 | 39.2
7.7 | 33.5
5.2 | 29.4
5.6 | 28.6
5.8 | 25.2
5.6 | 22.8
5.4 | 19.9
5.2 | 17.9
5.0 | 16.9
4.8 | 16.1
4.5 | -2.2
-2.5 | -1.6
1.0 | -2.2
-0.8 | -1.7
-0.8 | | Industry | 21.6 | 25.7 | 14.4 | 19.7 | 19.1 | 18.9 | 18.2 | 16.7 | 15.5 | 14.9 | 14.4 | -4.0 | 2.9 | -0.5 | -1.2 | | Residential | 6.6 | 7.3 | 5.8 | 6.1 | 6.5 | 7.1 | 7.2 | 7.6 | 7.9 | 8.0 | 8.2 | -1.2 | 1.1 | 1.1 | 0.6 | | Tertiary | 1.9 | 4.2 | 3.6 | 3.5 | 3.4 | 3.2 | 2.9 | 2.9 | 2.9 | 2.8 | 2.8 | 6.8 | -0.5 | -1.5 | -0.3 | | Transport | 9.8 | 12.4 | 14.5 | 15.8 | 16.4 | 16.8 | 17.2 | 17.6 | 18.2 | 18.4 | 18.7 | 4.0 | 1.3 | 0.5 | 0.4 | | CO ₂ Emissions (non energy related) Non-CO ₂ GHG emissions | 9.1
40.1 | 10.6
40.5 | 8.6
35.2 | 10.1
36.4 | 11.1
35.2 | 11.6
35.1 | 9.6
34.5 | 9.4
34.5 | 9.1
34.4 | 1.2
34.4 | 0.9
34.3 | -0.5
-1.3 | 2.6
0.0 | -1.5
-0.2 | -11.2
0.0 | | TOTAL GHG emissions Index (1990=100) | 54.2 | 58.1 | 47.5 | 49.8 | 49.6 | 48.5 | 46.3 | 44.8 | 43.6 | 39.9 | 39.3 | 1.0 | 5.0 | J.L | 0.0 | | Source: PRIMES | | | | | | | | | | | | | | | _ | | JMMARY ENERGY BALANCE AND INDICATO | <u> </u> | | | | | | | | | | | ania: R | | | | |---|---------------------|------------------|------------------|------------------|---------------------|------------------|------------------|------------------|---------------|---------------|-------------------|-------------------|-------------------|-------------------|-------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | in Farman States In History | | | | | | | | | | | | Aı | nnual % | Change | !
 | | nin Energy System Indicators pulation (Million) | 22.455 | 21.659 | 21.462 | 21.261 | 21.006 | 20.664 | 20.251 | 19.857 | 19.437 | 18.986 | 18.483 | -0.5 | -0.2 | -0.4 | | | DP (in 000 M€10) | 83.1 | 109.7 | 124.1 | 141.6
 157.3 | 167.6 | 178.7 | 190.2 | 201.4 | 209.4 | 216.0 | 4.1 | 2.4 | 1.3 | | | oss Inl. Cons./GDP (toe/M€10) | 443.5 | 358.8 | 287.8 | 256.1 | 235.5 | 219.8 | 207.5 | 198.7 | 191.6 | 186.6 | 180.1 | -4.2 | -2.0 | -1.3 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.41 | 2.45 | 2.16 | 2.21 | 2.15 | 2.08 | 1.99 | 1.85 | 1.75 | 1.68 | 1.66 | -1.1 | 0.0 | -0.8 | | | port Dependency % | 22.0 | 27.6 | 21.7 | 18.9 | 17.9 | 17.1 | 17.4 | 16.7 | 16.6 | 16.6 | 19.8 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 12.3 | 20.6 | 23.4 | 30.4 | 35.5 | 38.8 | 42.1 | 44.7 | 47.5 | 50.2 | 51.7 | 6.6 | 4.3 | 1.7 | | | s % of GDP | 14.8 | 18.8 | 18.8 | 21.5 | 22.6 | 23.2 | 23.6 | 23.5 | 23.6 | 24.0 | 23.9 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 83.7 | 48.9 | 50.8 | 45.5 | 42.8 | 40.4 | 37.1 | 35.3 | 34.7 | 33.7 | -6.9 | -0.7 | -1.2 | | | sidential (Energy on Private Income, index 2000=100) rtiary (Energy on Value added, index 2000=100) | 100.0
100.0 | 59.2
117.6 | 48.8
110.3 | 44.1
103.6 | 39.1
94.4 | 37.0
84.9 | 34.3
76.9 | 33.2
71.6 | 32.0
66.8 | 31.3
63.5 | 30.8
59.6 | -6.9
1.0 | -2.2
-1.5 | -1.3
-2.0 | | | ssenger transport (toe/Mpkm) | 26.8 | 23.5 | 22.7 | 21.7 | 19.9 | 18.0 | 16.7 | 15.8 | 15.3 | 15.0 | 14.9 | -1.7 | -1.3 | -1.7 | | | eight transport (toe/Mtkm) | 30.8 | 26.5 | 54.7 | 48.9 | 45.8 | 42.1 | 38.8 | 37.2 | 35.7 | 34.5 | 33.5 | 5.9 | -1.8 | -1.6 | | | bon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.41 | 0.42 | 0.39 | 0.30 | 0.28 | 0.23 | 0.20 | 0.17 | 0.14 | 0.13 | 0.12 | -0.6 | -3.3 | -3.0 | | | all energy demand (t of CO ₂ /toe) | 1.76 | 1.99 | 1.70 | 1.79 | 1.74 | 1.75 | 1.73 | 1.69 | 1.64 | 1.62 | 1.61 | -0.3 | 0.2 | -0.1 | | | ndustry | 2.33 | 2.51 | 2.09 | 2.32 | 2.20 | 2.16 | 2.06 | 1.94 | 1.81 | 1.74 | 1.72 | -1.1 | 0.5 | -0.7 | | | Residential | 0.78 | 0.92 | 0.72 | 0.71 | 0.76 | 0.81 | 0.83 | 0.85 | 0.86 | 0.85 | 0.86 | -0.8 | 0.5 | 1.0 | | | ertiary | 1.16 | 1.72 | 1.44 | 1.30 | 1.25 | 1.20 | 1.16 | 1.15 | 1.13 | 1.13 | 1.13 | 2.2 | -1.4 | -0.8 | | | ransport (C) | 2.87 | 2.90 | 2.89 | 2.88 | 2.71 | 2.72 | 2.72 | 2.71 | 2.70 | 2.69 | 2.70 | 0.1 | -0.6 | 0.0 | | | licators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 16.7 | 17.2 | 23.0 | 24.9 | 26.6 | 28.4 | 29.4 | 30.0 | 29.7 | 29.0 | 29.0 | | | | | | S in transport (%) | 1.1 | 0.9 | 3.2 | 3.9 | 10.2 | 10.3 | 10.3 | 10.5 | 10.6 | 10.5 | 10.5 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 51934 | 59413 | 60259 | 67256 | 70780 | 75073 | 78447 | 82936 | 91284 | 97194 | 100169 | 1.5 | 1.6 | 1.0 | | | uclear energy | 5456 | 5555 | 11623 | 11880 | 11880 | 11880 | 14875 | 19024 | 19024 | 19024 | 19024 | 7.9 | 0.2 | 2.3 | | | olids | 18926 | 21916 | 20681 | 20259 | 18416 | 15585 | 13713 | 11139 | 22075 | 23013 | 24126 | 0.9 | -1.2 | -2.9 | | | il (including refinery gas) | 3399 | 1894 | 692 | 2371 | 2313 | 2150 | 2010 | 2647 | 3131 | 3017 | 3281 | -14.7 | 12.8 | -1.4 | | | as (including derived gases) | 9375 | 9834 | 7323 | 6568 | 10934 | 10961 | 11524 | 11779 | 7509 | 11427 | 9996 | -2.4 | 4.1 | 0.5 | | | iomass-waste | 0 | 7 | 111 | 1101 | 1857 | 3272 | 3933 | 5590 | 6198 | 5022 | 5229 | 0.0 | 32.5 | 7.8 | | | ydro (pumping excluded)
/ind | 14778
0 | 20207
0 | 19523
306 | 22175
2621 | 21896
2634 | 22341
6773 | 22413
7831 | 22713
7835 | 23242
7837 | 24037
9323 | 25169
9539 | 2.8
0.0 | 1.2
24.0 | 0.2
11.5 | | | olar | 0 | 0 | 0 | 262 | 832 | 2093 | 2130 | 2191 | 2253 | 2314 | 3788 | 0.0 | 174.0 | 9.9 | | | eothermal and other renewables | 0 | 0 | 0 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 0.0 | 0.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Generation Capacity in MW _e | 19999 | 18357 | 19665 | 19557 | 20243 | 20996 | 20893 | 22199 | 23921 | 25706 | 27492 | -0.2 | 0.3 | 0.3 | | | luclear energy | 667 | 663 | 1357 | 1368 | 1374 | 1374 | 1718 | 2194 | 2194 | 2194 | 2194 | 7.4 | 0.1 | 2.3 | | | enewable energy | 6154 | 6162 | 6737 | 8848 | 9425 | 12615 | 13172 | 13270 | 13438 | 14310 | 15831 | 0.9 | 3.4 | 3.4 | | | Hydro (pumping excluded) | 6154 | 6160 | 6275 | 7068 | 7175 | 7244 | 7268 | 7314 | 7432 | 7604 | 7836 | 0.2 | 1.3 | 0.1 | | | Wind | 0 | 2 | 462 | 1566 | 1572 | 3540 | 4043 | 4045 | 4046 | 4695 | 4783 | 0.0 | 13.0 | 9.9 | | | Solar | 0 | 0 | 0 | 214 | 679 | 1830 | 1860 | 1910 | 1960 | 2010 | 3213 | 0.0 | 164.9 | 10.6 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 13177 | 11532 | 11571 | 9341 | 9444 | 7007 | 6003 | 6735 | 8289 | 9202 | 9466 | -1.3 | -2.0 | -4.4 | | | of which cogeneration units of which CCS units | 3431
0 | 2995
0 | 3136
0 | 2976
0 | 3326
0 | 3119
0 | 3220
0 | 3545
29 | 3941
1088 | 4428
1552 | 4451
1704 | -0.9
0.0 | 0.6 | -0.3
0.0 | | | Solids fired | 7284 | 6615 | 6471 | 5737 | 5714 | 4552 | 3465 | 3068 | 4523 | 4796 | 4968 | -1.2 | -1.2 | -4.9 | | | Gas fired | 3910 | 3478 | 3704 | 2812 | 2924 | 1701 | 1726 | 2771 | 2815 | 3395 | 3432 | -0.5 | -2.3 | -5.1 | | | Oil fired | 1776 | 1232 | 1188 | 583 | 597 | 552 | 518 | 602 | 589 | 605 | 597 | -3.9 | -6.6 | -1.4 | | | Biomass-waste fired | 208 | 208 | 206 | 207 | 207 | 200 | 292 | 292 | 359 | 404 | 469 | -0.1 | 0.0 | 3.5 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0.0 | 0.0 | 0.0 | | | Load factor of net power capacity (F) (%) | 27.8 | 34.5 | 32.0 | 37.4 | 38.2 | 39.0 | 41.1 | 40.8 | 40.5 | 40.0 | 38.5 | | | | | | ctricity indicators | | | | | | | | | | | | | | | Ī | | ciency of gross thermal power generation (%) | 25.3 | 27.9 | 28.5 | 35.0 | 37.0 | 37.2 | 37.5 | 37.3 | 41.2 | 40.7 | 41.0 | | | | | | of gross electricity from CHP | 32.3 | 26.2 | 10.8 | 22.3 | 24.1 | 24.0 | 23.5 | 24.3 | 26.1 | 23.4 | 23.2 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 12.4 | 16.7 | 17.6 | | | | | | bon free gross electricity generation (%) | 39.0 | 43.4 | 52.4 | 56.6 | 55.3 | 61.8 | 65.3 | 69.2 | 64.2 | 61.5 | 62.7 | | | | | | uclear | 10.5 | 9.3 | 19.3 | 17.7 | 16.8 | 15.8 | 19.0 | 22.9 | 20.8 | 19.6 | 19.0 | | | | | | enewable energy forms | 28.5 | 34.0 | 33.1 | 38.9 | 38.5 | 46.0 | 46.3 | 46.2 | 43.3 | 41.9 | 43.7 | | | | | | nsport sector | | | | | | | | | | | | | | | | | senger transport activity (Gpkm) | 84.9 | 92.7 | 109.5 | 120.6 | 132.9 | 147.9 | 164.7 | 180.2 | 197.3 | 206.8 | 216.7 | 2.6 | 2.0 | 2.2 | | | ublic road transport | 12.0 | 11.8 | 12.0 | 12.8 | 13.6 | 14.5 | 15.4 | 16.2 | 17.1 | 17.9 | 18.8 | 0.0 | 1.3 | 1.2 | | | rivate cars and motorcycles | 53.6 | 63.4 | 78.3 | 85.0 | 91.8 | 101.1 | 111.1 | 120.4 | 130.3 | 134.8 | 139.2 | 3.9 | 1.6 | 1.9 | | | ail | 17.6 | 14.6 | 12.6 | 14.4 | 16.4 | 18.4 | 20.7 | 23.1 | 25.9 | 27.4 | 29.0 | -3.3 | 2.7 | 2.4 | | | viation
land navigation | 1.7
0.0 | 3.0
0.0 | 6.6
0.0 | 8.5
0.0 | 11.1
0.0 | 13.9 | 17.5
0.0 | 20.4 | 23.9
0.0 | 26.7
0.0 | 29.6 | 14.7
-3.1 | 5.3
1.7 | 4.7
1.9 | | | ight transport activity (Gtkm) | | | | | | 0.0 | | | | | 0.0 | | | | | | ight transport activity (Gtkm) rucks | 33.3
14.3 | 75.7 51.5 | 45.2 25.9 | 57.4 34.9 | 73.0
46.7 | 81.4 52.3 | 90.9 58.5 | 96.3 61.9 | 102.1
65.6 | 105.1
67.3 | 108.0 69.0 | 3.1
6.1 | 4.9
6.1 | 2.2
2.3 | | | ail | 16.4 | 16.6 | 12.4 | 34.9
14.6 | 46.7
17.3 | 52.3
19.3 | 21.6 | 23.0 | 24.4 | 25.4 | 26.3 | -2.7 | 3.4 | 2.3 | | | all
alland navigation | 2.6 | 7.6 | 6.9 | 7.9 | 9.0 | 9.8 | 10.8 | 11.4 | 12.1 | 12.4 | 12.7 | 10.1 | 2.6 | 1.8 | | | ergy demand in transport (ktoe) (G) | 3298 | 4188 | 4953 | 5424 | 5980 | 6092 | 6272 | 6433 | 6668 | 6731 | 6846 | 4.2 | 1.9 | 0.5 | | | ublic road transport | 142 | 137 | 137 | 145 | 152 | 156 | 161 | 166 | 171 | 177 | 183 | -0.4 | 1.0 | 0.6 | | | rivate cars and motorcycles | 1898 | 1881 | 2018 | 2059 | 1992 | 1934 | 1952 | 2009 | 2096 | 2120 | 2161 | 0.6 | -0.1 | -0.2 | | | rucks | 661 | 1842 | 2245 | 2553 | 3060 | 3136 | 3221 | 3274 | 3338 | 3325 | 3336 | 13.0 | 3.1 | 0.5 | | | tail | 355 | 158 | 221 | 253 | 282 | 305 | 325 | 338 | 346 | 341 | 334 | -4.6 | 2.5 | 1.4 | viation | 128 | 128 | 272 | 346 | 418 | 479 | 524 | 552 | 619 | 670 | 733 | 7.8 | 4.4 | 2.3 | | | Slovakia: Reference scenario | | | | | | | | SUM | IMARY E | NERGY | BALAN | CE AND | INDIC | CATORS | S (A) | |---|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | '10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 6385
1018 | 6684
637 | 6319
613 | 7386
613 | 8109
487 | 8310
437 | 9143
421 | 9871
486 | 9636
76 | 9876
395 | 9392
546 | -0.1
-4.9 | 2.5
-2.3 | 1.2
-1.4 | 0.1
1.3 | | Oil | 161 | 383 | 366 | 314 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.5 | -100.0 | 0.0 | 0.0 | | Natural gas | 133 | 126 | 88 | 81 | 84 | 86 | 82 | 81 | 78 | 28 | 22 | -4.0 | -0.5 | -0.2 | -6.4 | | Nuclear
 4255 | 4626 | 3819 | 4932 | 5751 | 6017 | 6677 | 7293 | 7299 | 7299 | 6648 | -1.1 | 4.2 | 1.5 | 0.0 | | Renewable energy sources Hydro | 818
397 | 912
399 | 1432
452 | 1447
515 | 1787
497 | 1769
527 | 1963
528 | 2012
543 | 2183
559 | 2154
566 | 2175
614 | 5.8
1.3 | 2.2
1.0 | 0.9
0.6 | 0.5 | | Biomass & Waste | 421 | 505 | 972 | 860 | 1165 | 1077 | 1215 | 1220 | 1351 | 1302 | 1236 | 8.7 | 1.8 | 0.4 | 0.1 | | Wind | 0 | 1 | 1 | 8 | 20 | 32 | 76 | 94 | 112 | 121 | 125 | 0.0 | 44.3 | 14.2 | 2.5 | | Solar and others Geothermal | 0 | 0 | 0
8 | 59
4 | 99
6 | 129
5 | 139
4 | 150
4 | 157
4 | 161
4 | 197
4 | 0.0 | 114.6
-3.1 | 3.4
-3.0 | 1.8
-0.7 | | Net Imports | 11680 | 12492 | 11314 | 11164 | 11403 | 11678 | 11366 | 10930 | 10999 | 10843 | 10697 | -0.3 | 0.1 | 0.0 | -0.7 | | Solids | 3432 | 3739 | 2951 | 2849 | 2857 | 2933 | 2730 | 2495 | 2403 | 2334 | 2249 | -1.5 | -0.3 | -0.5 | -1.0 | | Oil | 2773 | 3337 | 3283 | 3006 | 3406 | 3449 | 3534 | 3532 | 3503 | 3451 | 3380 | 1.7 | 0.4 | 0.4 | -0.2 | | - Crude oil and Feedstocks | 5406 | 5488 | 5412 | 5031 | 5257 | 5129 | 5036 | 4877 | 4696 | 4496 | 4282 | 0.0 | -0.3 | -0.4 | -0.8 | | - Oil products
Natural gas | -2634
5707 | -2150
5735 | -2128
5003 | -2024
5021 | -1851
4863 | -1681
5025 | -1502
4791 | -1345
4721 | -1193
4755 | -1046
4672 | -903
4579 | -2.1
-1.3 | -1.4
-0.3 | -2.1
-0.1 | -2.5
-0.2 | | Electricity | -232 | -281 | 90 | 13 | -154 | -201 | -272 | -464 | -460 | -474 | -453 | 0.0 | 0.0 | 5.8 | 2.6 | | Gross Inland Consumption | 17977 | 19094 | 17922 | 18550 | 19513 | 19988 | 20509 | 20801 | 20635 | 20720 | 20089 | 0.0 | 0.9 | 0.5 | -0.1 | | Solids | 4278 | 4230 | 3897 | 3462 | 3345 | 3370 | 3151 | 2981 | 2479 | 2729 | 2796 | -0.9 | -1.5 | -0.6 | -0.6 | | Oil
Natural gas | 3090
5776 | 3775
5884 | 3689
5006 | 3320
5101 | 3406
4947 | 3449
5111 | 3534
4874 | 3532
4801 | 3503
4833 | 3451
4700 | 3380
4601 | 1.8
-1.4 | -0.8
-0.1 | 0.4
-0.1 | -0.2
-0.3 | | Nuclear | 4255 | 4626 | 3819 | 4932 | 5751 | 6017 | 6677 | 7293 | 7299 | 7299 | 6648 | -1.4 | 4.2 | 1.5 | 0.0 | | Electricity | -232 | -281 | 90 | 13 | -154 | -201 | -272 | -464 | -460 | -474 | -453 | 0.0 | 0.0 | 5.8 | 2.6 | | Renewable energy forms | 810 | 859 | 1421 | 1723 | 2219 | 2242 | 2546 | 2658 | 2982 | 3015 | 3116 | 5.8 | 4.6 | 1.4 | 1.0 | | as % in Gross Inland Consumption Solids | 23.8 | 22.2 | 21.7 | 18.7 | 17.1 | 16.9 | 15.4 | 14.3 | 12.0 | 13.2 | 13.9 | | | | | | Oil | 17.2 | 19.8 | 20.6 | 17.9 | 17.1 | 17.3 | 17.2 | 17.0 | 17.0 | 16.7 | 16.8 | | | | | | Natural gas | 32.1 | 30.8 | 27.9 | 27.5 | 25.4 | 25.6 | 23.8 | 23.1 | 23.4 | 22.7 | 22.9 | | | | | | Nuclear | 23.7 | 24.2 | 21.3 | 26.6 | 29.5 | 30.1 | 32.6 | 35.1 | 35.4 | 35.2 | 33.1 | | | | | | Renewable energy forms | 4.5 | 4.5 | 7.9 | 9.3 | 11.4 | 11.2 | 12.4 | 12.8 | 14.4 | 14.6 | 15.5 | | | | | | Gross Electricity Generation in GWh _e Self consumption and grid losses | 30792
5209 | 31346 | 27442 | 30831 | 35461 | 37920 | 41060
3307 | 44674
3512 | 45285 | 47401 | 47707 | -1.1 | 2.6 | 1.5 | 0.8 | | Fuel Inputs to Thermal Power Generation | 2656 | 3905
2664 | 3427
2555 | 2518
1739 | 2817
1766 | 3057
1759 | 1809 | 3512
1773 | 3623
1541 | 4142
1889 | 4451
2076 | -4.1
-0.4 | -1.9
-3.6 | 1.6
0.2 | 1.5
0.7 | | Solids | 1619 | 1677 | 1205 | 1070 | 958 | 994 | 851 | 736 | 282 | 607 | 755 | -2.9 | -2.3 | -1.2 | -0.6 | | Oil (including refinery gas) | 31 | 100 | 293 | 1 | 8 | 8 | 10 | 9 | 6 | 3 | 1 | 25.3 | -30.2 | 2.2 | -10.6 | | Gas (including derived gases) | 1002 | 847 | 793 | 399 | 385 | 455 | 455 | 446 | 441 | 448 | 418 | -2.3 | -7.0 | 1.7 | -0.4 | | Biomass & Waste Geothermal heat | 4 | 40
0 | 264
0 | 270
0 | 415
0 | 302
0 | 493
0 | 582
0 | 813
0 | 831
0 | 902 | 51.0
0.0 | 4.6
0.0 | 1.7
0.0 | 3.1
0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 12851 | 14320 | 12733 | 13409 | 14226 | 14369 | 14781 | 15146 | 15026 | 14683 | 13639 | -0.1 | 1.1 | 0.4 | -0.4 | | Refineries | 5638 | 6458 | 6119 | 5625 | 5547 | 5418 | 5330 | 5168 | 4971 | 4761 | 4530 | 0.8 | -1.0 | -0.4 | -0.8 | | Biofuels and hydrogen production | 0
674 | 10
718 | 164
497 | 204
668 | 227
660 | 245
682 | 262
661 | 267
658 | 273
776 | 278
688 | 286
581 | 0.0
-3.0 | 3.3
2.9 | 1.5
0.0 | 0.4
-0.6 | | District heating Derived gases, cokeries etc. | 6539 | 7134 | 5952 | 6912 | 7793 | 8025 | 8529 | 9054 | 9006 | 8955 | 8242 | -0.9 | 2.9 | 0.0 | -0.0 | | Energy Branch Consumption | 784 | 1492 | 974 | 816 | 833 | 826 | 811 | 796 | 776 | 794 | 802 | 2.2 | -1.5 | -0.3 | -0.1 | | Non-Energy Uses | 1633 | 1524 | 1041 | 1037 | 1102 | 1145 | 1176 | 1187 | 1152 | 1114 | 1082 | -4.4 | 0.6 | 0.7 | -0.4 | | Final Energy Demand | 10553 | 11075 | 11593 | 12221 | 12636 | 12963 | 13033 | 13041 | 13031 | 13017 | 12903 | 0.9 | 0.9 | 0.3 | -0.1 | | by sector | | | | | | = | | ==== | | = | | | | | | | Industry - energy intensive industries | 4101
3236 | 4229
3404 | 4352
3628 | 4642
3738 | 4974
4000 | 5138
4070 | 5258
4126 | 5250
4085 | 5197
4014 | 5196
4011 | 5078
3908 | 0.6
1.2 | 1.3 | 0.6
0.3 | -0.2
-0.3 | | - other industrial sectors | 865 | 826 | 724 | 904 | 974 | 1068 | 1131 | 1165 | 1183 | 1185 | 1169 | -1.8 | 3.0 | 1.5 | 0.2 | | Residential | 2586 | 2540 | 2307 | 2450 | 2461 | 2567 | 2518 | 2552 | 2589 | 2590 | 2600 | -1.1 | 0.6 | 0.2 | 0.2 | | Tentiary | 2407 | 1916 | 2278 | 2355 | 2357 | 2376 | 2282 | 2248 | 2218 | 2212 | 2195 | -0.5 | 0.3 | -0.3 | -0.2 | | Transport by fuel | 1459 | 2389 | 2655 | 2775 | 2844 | 2882 | 2976 | 2990 | 3028 | 3020 | 3030 | 6.2 | 0.7 | 0.5 | 0.1 | | Solids | 1476 | 1300 | 1637 | 1531 | 1538 | 1574 | 1608 | 1626 | 1610 | 1560 | 1506 | 1.0 | -0.6 | 0.4 | -0.3 | | Oil | 1707 | 2165 | 2297 | 2337 | 2371 | 2380 | 2473 | 2509 | 2537 | 2523 | 2496 | 3.0 | 0.3 | 0.4 | 0.0 | | Gas | 4537 | 4346 | 4109 | 4279 | 4137 | 4255 | 3976 | 3879 | 3845 | 3766 | 3755 | -1.0 | 0.1 | -0.4 | -0.3 | | Electricity Heat (from CHP and District Heating) | 1893
619 | 1965
951 | 2074
851 | 2368
928 | 2574
923 | 2719
940 | 2896
930 | 2996
928 | 3048
909 | 3167
898 | 3186
889 | 0.9
3.2 | 2.2
0.8 | 1.2
0.1 | 0.5
-0.2 | | Renewable energy forms | 320 | 348 | 624 | 776 | 1092 | 1094 | 1149 | 1101 | 1081 | 1099 | 1066 | 6.9 | 5.8 | 0.5 | -0.4 | | Other fuels (hydrogen, ethanol) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 4 | 0.0 | 0.0 | 14.4 | 7.7 | | RES in Gross Final Energy Consumption (A) | 379 | 723 | 1139 | 1509 | 1937 | 2001 | 2271 | 2380 | 2664 | 2700 | 2776 | 11.6 | 5.5 | 1.6 | 1.0 | | TOTAL GHG emissions (Mt of CO2 eq.) | 49.4 | 53.6 | 50.4 | 47.5 | 46.3 | 47.1 | 44.7 | 43.3 | 41.0 | 37.9 | 37.0 | 0.2 | -0.8 | -0.4 | -0.9 | | of which ETS sectors (2013 scope) GHG emissions
of which non ETS sectors GHG emissions | | 29.6
24.1 | 25.6
24.7 | 24.3
23.1 | 23.5
22.9 | 24.0
23.0 | 22.1
22.5 | 21.0
22.3 | 18.7
22.3 | 15.8
22.0 | 15.1
21.9 | | -0.9
-0.8 | -0.6
-0.1 | -1.9
-0.1 | | CO ₂ Emissions (energy related) | 37.6 | 40.5 | 38.6 | 35.9 | 35.1 | 25.0
35.6 | 33.8 | 32.6 | 30.5 | 30.0 | 29.3 | 0.3 | -0.8
- 0.9 | -0.1
- 0.4 | -0.1
- 0.7 | | Power generation/District heating | 11.1 | 11.2 | 9.2 | 6.8 | 6.2 | 6.4 | 5.8 | 5.2 | 3.4 | 3.5 | 3.2 | -1.8 | -3.9 | -0.7 | -2.9 | | Energy Branch | 3.1 | 5.2 | 2.5 | 2.1 | 2.1 | 2.0 | 1.7 | 1.5 | 1.4 | 1.4 | 1.3 | -2.3 | -1.8 | -2.1 | -1.2 | | Industry Residential | 10.7
4.1 | 11.1
3.6 | 12.8
3.4 | 13.1
3.4 | 13.5
3.2 | 13.7
3.4 | 13.1
3.2 | 12.8
3.2 | 12.5
3.3 | 12.2
3.2 | 11.8
3.2 | 1.8
-2.0 | 0.5
-0.7 | -0.3
0.2 | -0.5
0.0 | | Residential
Tertiary | 4.1
4.5 | 3.6
2.7 | 3.4 | 3.4 | 3.2
2.7 | 3.4
2.6 | 3.2
2.2 | 3.2
2.1 | 2.0 | 3.2
1.9 | 1.8 | -2.0
-2.1 | -0.7
-2.9 | -1.9 | -1.0 | | Transport | 4.1 | 6.6 | 7.1 | 7.4 | 7.5 | 7.6 | 7.8 | 7.8 | 7.9 | 7.8 | 7.8 | 5.7 | 0.5 | 0.3 | 0.0 | | CO ₂ Emissions (non energy related) | 3.8 | 4.4 | 3.6 | 4.6 | 4.7 | 4.9 | 4.4 | 4.2 | 4.2 | 1.4 | 1.3 | -0.7 | 2.8 | -0.6 | -6.0 | | Non-CO ₂ GHG emissions | 8.0 | 8.7 | 8.1 | 7.0 | 6.5 | 6.5 | 6.5 | 6.4 | 6.4 | 6.4 | 6.4 | 0.2 | -2.3 | 0.0 | 0.0 | | TOTAL GHG emissions Index (1990=100) | 68.7 | 74.7 | 70.1 | 66.1 | 64.5 | 65.5 | 62.2 | 60.2 | 57.1 | 52.7 | 51.5 | | | | | | Source: PRIMES | | | | | | | | | | | | | | | | | SUMMARY ENERGY BALANCE AND INDICATO | . , | | | | | | | | | | | vakia: R | | | | |---|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------|---------------------|---------------------|--------------------|-------------------|-------------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | | | | | | | | | | | | | Aı | nnual % (| Change |) | | lain Energy System Indicators opulation (Million) | 5.399 | 5.385 | 5.425 | 5.511 | 5.576 | 5.600 | 5.580 | 5.528 | 5.467 | 5.403 | 5.326 | 0.0 | 0.3 | 0.0 | -(| | DP (in 000 M€10) | 41.3 | 52.4 | 65.7 | 74.4 | 83.9 | 95.5 | 105.8 | 113.2 | 119.0 | 123.6 | 127.4 | 4.8 | 2.5 | 2.3 | - | | ross Inl. Cons./GDP (toe/M€10) | 435.6 | 364.2 | 272.6 | 249.3 | 232.5 | 209.2 | 193.9 | 183.7 | 173.3 | 167.6 | 157.6 | -4.6 | -1.6 | -1.8 | | | arbon intensity (t of CO ₂ /toe of GIC) | 2.09 | 2.12 | 2.16 | 1.93 | 1.80 | 1.78 | 1.65 | 1.57 |
1.48 | 1.45 | 1.46 | 0.3 | -1.8 | -0.9 | | | port Dependency % | 65.0 | 65.4 | 63.1 | 60.2 | 58.4 | 58.4 | 55.4 | 52.5 | 53.3 | 52.3 | 53.2 | | | | | | otal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 7.3 | 9.3 | 13.0 | 16.0 | 18.2 | 20.0 | 21.6 | 22.1 | 22.9 | 23.6 | 23.4 | 5.9 | 3.4 | 1.8 | | | as % of GDP | 17.7 | 17.8 | 19.8 | 21.5 | 21.6 | 21.0 | 20.5 | 19.5 | 19.3 | 19.1 | 18.4 | | | | | | nergy intensity indicators | | | | | | | | | | | | | | | | | dustry (Energy on Value added, index 2000=100) | 100.0 | 58.3 | 38.4 | 36.8 | 34.9 | 31.4 | 28.8 | 26.7 | 25.3 | 24.7 | 24.2 | -9.1 | -1.0 | -1.9 | | | esidential (Energy on Private Income, index 2000=100) | 100.0 | 77.8 | 59.2 | 55.2 | 48.8 | 44.4 | 39.0 | 36.8 | 35.3 | 33.9 | 32.9 | -5.1 | -1.9 | -2.2 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 71.2 | 75.3 | 67.2 | 59.3 | 52.6 | 45.7 | 42.0 | 39.1 | 37.2 | 35.1 | -2.8 | -2.4 | -2.6 | | | ssenger transport (toe/Mpkm) | 23.2 | 22.7 | 25.1 | 24.2 | 21.7 | 19.2 | 17.8 | 17.0 | 16.5 | 16.2 | 16.1 | 0.8 | -1.4 | -2.0 | | | eight transport (toe/Mtkm) | 22.1 | 27.6 | 36.7 | 34.9 | 33.3 | 31.3 | 29.9 | 28.9 | 28.1 | 27.4 | 26.9 | 5.2 | -1.0 | -1.1 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.27 | 0.25 | 0.23 | 0.15 | 0.13 | 0.12 | 0.10 | 0.09 | 0.06 | 0.06 | 0.05 | -1.4 | -5.9 | -1.9 | | | nal energy demand (t of CO ₂ /toe) | 2.22 | 2.17 | 2.32 | 2.21 | 2.12 | 2.10 | 2.02 | 1.99 | 1.97 | 1.93 | 1.92 | 0.5 | -0.9 | -0.5 | | | ndustry
Residential | 2.60
1.60 | 2.62
1.40 | 2.93
1.47 | 2.81
1.40 | 2.71
1.28 | 2.67
1.31 | 2.48
1.28 | 2.44
1.27 | 2.41
1.26 | 2.34
1.25 | 2.33
1.25 | 1.2
-0.9 | -0.8
-1.4 | -0.9
0.0 | | | residential
Fertiary | 1.85 | 1.40 | 1.58 | 1.40 | 1.26 | 1.08 | 0.97 | 0.92 | 0.90 | 0.87 | 0.83 | -1.6 | -3.3 | -1.6 | | | ransport ^(C) | 2.82 | 2.77 | 2.69 | 2.66 | 2.65 | 2.63 | 2.62 | 2.61 | 2.61 | 2.60 | 2.59 | -0.5 | -3.3
-0.2 | -0.1 | | | licators for renewables | 2.32 | 2.77 | 2.00 | 2.50 | 2.55 | 2.30 | 2.02 | 2.51 | | 2.50 | 2.03 | 5.0 | V.L | 0.1 | f | | are of RES in Gross Final Energy Consumption ^(D) (%) | 3.3 | 6.2 | 9.3 | 12.0 | 14.8 | 14.9 | 16.8 | 17.6 | 19.7 | 19.9 | 20.6 | | | | | | S in transport (%) | 0.5 | 0.2 | 7.8 | 9.3 | 10.1 | 10.9 | 11.3 | 11.6 | 12.0 | 12.3 | 12.7 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 30798 | 31352 | 27447 | 30831 | 35461 | 37920 | 41060 | 44674 | 45285 | 47401 | 47707 | -1.1 | 2.6 | 1.5 | | | luclear energy | 16494 | 17727 | 14574 | 19101 | 22363 | 23562 | 26441 | 29065 | 29090 | 29090 | 27631 | -1.2 | 4.4 | 1.7 | | | Solids | 5584 | 5535 | 3570 | 1673 | 2629 | 2930 | 2198 | 1631 | 777 | 2482 | 3363 | -4.4 | -3.0 | -1.8 | | | Dil (including refinery gas) | 202 | 741 | 600 | 6 | 41 | 42 | 51 | 47 | 29 | 17 | 4 | 11.5 | -23.5 | 2.2 | | | Gas (including derived gases) | 3871 | 2629 | 2716 | 2330 | 2152 | 2540 | 2536 | 2480 | 2320 | 2375 | 1970 | -3.5 | -2.3 | 1.7 | | | Biomass-waste | 32 | 76 | 726 | 1063 | 1525 | 1316 | 1694 | 2833 | 3971 | 4051 | 4305 | 36.6 | 7.7 | 1.1 | | | lydro (pumping excluded) | 4615 | 4638 | 5255 | 5984 | 5779 | 6132 | 6144 | 6319 | 6497 | 6587 | 7135 | 1.3 | 1.0 | 0.6 | | | Vind | 0 | 6 | 6 | 99 | 235 | 375 | 882 | 1092 | 1303 | 1408 | 1450 | 0.0 | 44.3 | 14.2 | | | olar | 0 | 0 | 0 | 576 | 739 | 1023 | 1115 | 1207 | 1299 | 1391 | 1850 | 0.0 | 0.0 | 4.2 | | | Geothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | -1 | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 6602
2436 | 7090
2550 | 6636
1831 | 7415
2748 | 7098
2762 | 7971
2921 | 8910
3294 | 9434
3633 | 9414
3636 | 9762
3636 | 9907
3510 | 0.1
-2.8 | 0.7
4.2 | 2.3
1.8 | | | <u>luclear energy</u>
Renewable energy | 1494 | 1584 | 1608 | 2213 | 2428 | 2886 | 3329 | 3523 | 3724 | 3866 | 4323 | 0.7 | 4.2 | 3.2 | | | Hydro (pumping excluded) | 1494 | 1579 | 1584 | 1626 | 1626 | 1758 | 1866 | 1899 | 1940 | 1973 | 2110 | 0.6 | 0.3 | 1.4 | | | Wind | 0 | 5 | 5 | 48 | 113 | 180 | 455 | 555 | 655 | 705 | 725 | 0.0 | 36.6 | 15.0 | | | Solar | 0 | 0 | 19 | 539 | 689 | 949 | 1009 | 1069 | 1129 | 1189 | 1488 | 0.0 | 43.2 | 3.9 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 2671 | 2957 | 3198 | 2453 | 1908 | 2163 | 2287 | 2278 | 2054 | 2260 | 2074 | 1.8 | -5.0 | 1.8 | | | of which cogeneration units | 618 | 786 | 1270 | 1032 | 1221 | 946 | 993 | 1812 | 1551 | 1654 | 1395 | 7.5 | -0.4 | -2.0 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 161 | 248 | 0.0 | 0.0 | 0.0 | | | Solids fired | 1357 | 1426 | 1357 | 1045 | 465 | 462 | 528 | 579 | 383 | 584 | 672 | 0.0 | -10.2 | 1.3 | | | Gas fired | 1122 | 1182 | 1488 | 1228 | 1230 | 1481 | 1523 | 1317 | 1138 | 1138 | 826 | 2.9 | -1.9 | 2.2 | | | Oil fired | 87 | 184 | 185 | 11 | 11 | 18 | 20 | 20 | 16 | 16 | 12 | 7.8 | -24.8 | 6.6 | | | Biomass-waste fired | 105
0 | 165
0 | 167 | 170
0 | 202
0 | 202
0 | 216
0 | 361
0 | 518
0 | 522
0 | 565
0 | 4.8
0.0 | 1.9 | 0.7 | | | Hydrogen plants
Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity ^(F) (%) | | | | | 54.7 | 52.0 | | | | | | 0.0 | 0.0 | 0.0 | | | | 47.4 | 47.0 | 43.0 | 45.5 | 54.7 | 52.0 | 50.4 | 51.9 | 52.7 | 52.8 | 52.1 | | | | _ | | ectricity indicators | 31.4 | 29.0 | 25.6 | 25.1 | 30.9 | 33.4 | 30.8 | 33.9 | 39.6 | 40.6 | 39.9 | | | | | | iciency of gross thermal power generation (%) of gross electricity from CHP | 31.4
18.4 | 29.0
15.3 | 25.6
15.9 | 25.1
8.0 | 12.3 | 33.4
14.4 | 30.8
12.3 | 33.9
15.2 | 39.6
15.5 | 40.6
15.4 | 15.2 | | | | | | or gross electricity from CHP of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 5.1 | | | | | | arbon free gross electricity generation (%) | 68.6 | 71.6 | 74.9 | 87.0 | 86.4 | 85.5 | 88.3 | 90.7 | 93.1 | 89.7 | 88.8 | | | | | | nuclear | 53.6 | 56.5 | 53.1 | 62.0 | 63.1 | 62.1 | 64.4 | 65.1 | 64.2 | 61.4 | 57.9 | | | | | | enewable energy forms | 15.1 | 15.1 | 21.8 | 25.0 | 23.3 | 23.3 | 24.0 | 25.6 | 28.9 | 28.3 | 30.9 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 37.2 | 39.0 | 36.2 | 40.2 | 44.7 | 50.5 | 57.0 | 60.2 | 63.6 | 65.4 | 67.3 | -0.3 | 2.1 | 2.4 | | | Public road transport | 9.3 | 8.5 | 5.3 | 5.8 | 6.5 | 7.3 | 8.2 | 8.6 | 9.0 | 9.2 | 9.5 | -5.5 | 2.1 | 2.4 | | | rivate cars and motorcycles | 24.4 | 26.4 | 27.4 | 30.3 | 33.5 | 37.6 | 42.2 | 44.4 | 46.7 | 47.7 | 48.7 | 1.2 | 2.0 | 2.3 | | | ail | 3.2 | 2.6 | 2.6 | 2.9 | 3.3 | 3.8 | 4.5 | 4.8 | 5.2 | 5.4 | 5.6 | -2.1 | 2.4 | 3.1 | | | viation | 0.2 | 1.5 | 0.9 | 1.1 | 1.4 | 1.7 | 2.0 | 2.3 | 2.7 | 3.1 | 3.5 | 14.8 | 4.7 | 3.6 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | eight transport activity (Gtkm) | 27.0 | 32.8 | 36.9 | 40.7 | 45.0 | 49.1 | 53.5 | 55.6 | 57.8 | 59.0 | 60.1 | 3.2 | 2.0 | 1.7 | | | rucks | 14.3 | 22.6 | 27.6 | 30.0 | 32.6 | 35.2 | 38.0 | 39.5 | 41.0 | 41.6 | 42.3 | 6.8 | 1.7 | 1.6 | | | Rail | 11.2 | 9.5 | 8.1 | 9.5 | 11.1 | 12.4 | 13.9 | 14.5 | 15.2 | 15.6 | 16.1 | -3.2 | 3.2 | 2.3 | | | nland navigation | 1.4 | 0.7 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | -1.5 | 1.5 | 1.3 | | | ergy demand in transport (ktoe) ^(G) | 1459 | 1790 | 2262 | 2393 | 2470 | 2506 | 2610 | 2632 | 2674 | 2678 | 2699 | 4.5 | 0.9 | 0.6 | | | Public road transport | 62 | 56 | 35 | 39 | 42 | 46 | 50 | 51 | 52 | 52 | 52 | -5.5 | 1.8 | 1.6 | | | Private cars and motorcycles | 759 | 784 | 825 | 878 | 864 | 847 | 881 | 884 | 899 | 901 | 910 | 0.8 | 0.5 | 0.2 | | | Trucks | 514 | 861 | 1308 | 1369 | 1439 | 1473 | 1527 | 1536 | 1551 | 1541 | 1542 | 9.8 | 1.0 | 0.6 | | | Rail
Aviation | 83 | 42 | 40 | 46 | 53 | 59
67 | 65 | 67 | 69 | 69 | 69 | -7.1 | 2.9 | 2.1 | | | Aviation | 27 | 39
7 | 41
12 | 50
13 | 59
14 | 67
14 | 73
15 | 78
16 | 88
16 | 98
16 | 110
16 | 4.5
-2.0 | 3.6
1.4 | 2.1
1.1 | | | Inland navigation | 14 | | | | | | | | | | | | | | | | Slovenia: Reference scenario | | | | | | | | SUM | MARY E | NERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |---|---|---|---|---|---|--|---
---|--|--|--|---|---|---|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | 10-'20 | 20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) | 3085 | 3492 | 3726 | 3520 | 3377 | 3565 | 3500 | 3172 | 3214 | 1755 | 1709 | 1.9 | -1.0 | 0.4 | -3.5 | | Solids
Oil | 1062
1 | 1184
0 | 1196
0 | 991
0 | 608
0 | 642
0 | 572
0 | 164
0 | 132
0 | 155
0 | 125
0 | 1.2
0.0 | -6.5
-100.0 | -0.6
0.0 | -7.3
0.0 | | Natural gas | 6 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -0.1 | -100.0 | 0.0 | 0.0 | | Nuclear | 1228 | 1518 | 1459 | 1467 | 1493 | 1493 | 1493 | 1493 | 1493 | 0 | 0 | 1.7 | 0.2 | 0.0 | -100.0 | | Renewable energy sources | 788 | 787 | 1064 | 1062 | 1276 | 1430 | 1435 | 1516 | 1589 | 1600 | 1585 | 3.1 | 1.8 | 1.2 | 0.5 | | Hydro | 330 | 298 | 388 | 363 | 396 | 396 | 397 | 395 | 395 | 397 | 397 | 1.6 | 0.2 | 0.0 | 0.0 | | Biomass & Waste | 458 | 489 | 642 | 629 | 759 | 783 | 744 | 780 | 845 | 844 | 802 | 3.4 | 1.7 | -0.2 | 0.4 | | Wind | 0 | 0 | 0
6 | 1
41 | 27 | 46 | 54 | 75
220 | 81
220 | 88
221 | 120
215 | 0.0 | 0.0
25.5 | 7.2
12.5 | 4.0 | | Solar and others Geothermal | 0 | 0 | 28 | 28 | 60
34 | 164
41 | 195
44 | 220
47 | 49 | 50 | 50 | 0.0 | 1.8 | 2.7 | 0.5
0.7 | | Net Imports | 3389 | 3830 | 3590 | 3995 | 4021 | 3900 | 4034 | 4226 | 4274 | 4833 | 4826 | 0.6 | 1.1 | 0.0 | 0.9 | | Solids | 244 | 323 | 282 | 191 | 197 | 132 | 128 | 83 | 67 | 64 | 61 | 1.5 | -3.5 | -4.2 | -3.7 | | Oil | 2439 | 2609 | 2604 | 2647 | 2593 | 2518 | 2525 | 2533 | 2540 | 2553 | 2560 | 0.7 | 0.0 | -0.3 | 0.1 | | - Crude oil and Feedstocks | 151 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -100.0 | 0.0 | 0.0 | 0.0 | | - Oil products | 2288 | 2609 | 2604 | 2647 | 2593 | 2518 | 2525 | 2533 | 2540 | 2553 | 2560 | 1.3 | 0.0 | -0.3 | 0.1 | | Natural gas | 820 | 925 | 857 | 1170 | 1098 | 1145 | 1239 | 1426 | 1455 | 1701 | 1683 | 0.4 | 2.5 | 1.2 | 1.5 | | Electricity | -114 | -28 | -182 | -110 | -60 | -82 | -81 | -41 | -42 | 253 | 262 | 4.8 | -10.5 | 3.1 | 0.0 | | Gross Inland Consumption | 6426 | 7301
1530 | 7264 | 7496 | 7379 | 7445 | 7515 | 7379 | 7468 | 6567 | 6515 | 1.2 | 0.2 | 0.2 | -0.7 | | Solids
Oil | 1305
2393 | 1539
2556 | 1458
2573 | 1182
2628 | 805
2574 | 774
2499 | 701
2506 | 247
2514 | 198
2521 | 219
2533 | 185
2540 | 1.1
0.7 | -5.8
0.0 | -1.4
-0.3 | -6.4
0.1 | | Natural gas | 826 | 929 | 863 | 1170 | 1097 | 1145 | 1239 | 1425 | 1454 | 1700 | 1682 | 0.7 | 2.4 | 1.2 | 1.5 | | Nuclear | 1228 | 1518 | 1459 | 1467 | 1493 | 1493 | 1493 | 1493 | 1493 | 0 | 0 | 1.7 | 0.2 | | -100.0 | | Electricity | -114 | -28 | -182 | -110 | -60 | -82 | -81 | -41 | -42 | 253 | 262 | 4.8 | -10.5 | 3.1 | 0.0 | | Renewable energy forms | 788 | 787 | 1093 | 1159 | 1470 | 1618 | 1657 | 1741 | 1844 | 1862 | 1846 | 3.3 | 3.0 | 1.2 | 0.5 | | as % in Gross Inland Consumption | | | | | | | | | | | | | | | | | Solids | 20.3 | 21.1 | 20.1 | 15.8 | 10.9 | 10.4 | 9.3 | 3.3 | 2.7 | 3.3 | 2.8 | | | | | | Oil | 37.2 | 35.0 | 35.4 | 35.1 | 34.9 | 33.6 | 33.4 | 34.1 | 33.8 | 38.6 | 39.0 | | | | | | Natural gas | 12.8 | 12.7 | 11.9 | 15.6 | 14.9 | 15.4 | 16.5 | 19.3 | 19.5 | 25.9 | 25.8 | | | | | | Nuclear
Renovable energy forms | 19.1
12.3 | 20.8
10.8 | 20.1
15.0 | 19.6
15.5 | 20.2
19.9 | 20.0
21.7 | 19.9
22.1 | 20.2
23.6 | 20.0
24.7 | 0.0
28.4 | 0.0
28.3 | | | | | | Renewable energy forms | | | | | | | | | | | | 4.0 | 0.7 | 0.5 | 4.0 | | Gross Electricity Generation in GWh _e Self consumption and grid losses | 13622
1640 | 15114
1921 | 1 6245
2045 | 17092
2096 | 17462
1992 | 17967
1988 | 18295
1972 | 17648
1807 | 18260
1885 | 14819
1688 | 14922
1684 | 1.8
2.2 | 0.7
-0.3 | 0.5
-0.1 | -1.0
-0.8 | | Fuel Inputs to Thermal Power Generation | 1302 | 1508 | 1561 | 1606 | 1284 | 1272 | 1300 | 1094 | 1156 | 1457 | 1385 | 1.8 | -1.9 | 0.1 | 0.3 | | Solids | 1215 | 1412 | 1381 | 1125 | 748 | 721 | 639 | 205 | 164 | 183 | 152 | 1.3 | -5.9 | -1.6 | -6.9 | | Oil (including refinery gas) | 13 | 9 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -13.4 | -10.1 | -1.0 | -2.9 | | Gas (including derived gases) | 59 | 58 | 113 | 397 | 374 | 398 | 513 | 693 | 711 | 973 | 945 | 6.7 | 12.7 | 3.2 | 3.1 | | Biomass & Waste | 15 | 30 | 65 | 83 | 161 | 151 | 147 | 195 | 281 | 301 | 286 | 15.4 | 9.5 | -0.9 | 3.4 | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 1477 | 1607 | 1562 | 1620 | 1766 | 1756 | 1759 | 1771 | 1757 | 235 | 241 | 0.6 | 1.2 | 0.0 | -9.5 | | Refineries | 170
0 | 0 | 0
45 | 0
90 | 0
190 | 0
192 | 0
193 | 0
202 | 0
205 | 0
203 | 0
208 | -100.0
0.0 | 0.0
15.4 | 0.0
0.2 | 0.0 | | Biofuels and hydrogen production District heating | 80 | 89 | 58 | 64 | 83 | 71 | 72 | 75 | 58 | 30 | 31 | -3.2 | 3.8 | -1.5 | -4.1 | | Derived gases, cokeries etc. | 1228 | 1518 | 1459 | 1467 | 1493 | 1493 | 1494 | 1494 | 1494 | 2 | 2 | 1.7 | 0.2 | 0.0 | -28.0 | | Energy Branch Consumption | 107 | 100 | 112 | 100 | 83 | 84 | 80 | 61 | 64 | 45 | 43 | 0.4 | -3.0 | -0.4 | -3.0 | | Non-Energy Uses | 238 | 311 | 207 | 209 | 208 | 201 | 200 | 198 | 197 | 195 | 193 | -1.3 | 0.0 | -0.4 | -0.2 | | Final Energy Demand | 4432 | 4872 | 4970 | 5278 | 5449 | 5539 | 5609 | 5617 | 5685 | 5713 | 5713 | 1.2 | 0.9 | 0.3 | 0.1 | | by sector | | | | | | | | | | | | | | | | | Industry | 1423 | 1643 | 1280 | 1389 | 1429 | 1455 | 1454 | 1441 | 1453 | 1449 | 1451 | -1.1 | 1.1 | 0.2 | 0.0 | | - energy intensive industries | 835 | 1029 | 782 | 859 | 901 | 921 | 918 | 895 | 887 | 869 | 859 | -0.7 | 1.4 | 0.2 | -0.3 | | - other industrial sectors | 587 | 614 | 498 | 530 | 528 | 534 | 536 | 546 | 565 | 580 | 591 | -1.6 | 0.6 | 0.2 | 0.5 | | Residential | 1125 | 1186 | 1275 | 1318 | 1323 | 1371 | 1394 | 1377 | 1372 | 1364 | 1331 | 1.3 | 0.4 | 0.5 | -0.2 | | Tertiary Transport | 645
1239 | 569
1475 | 621
1794 | 678
1893 | 680
2017 | 639
2074 | 618
2142 | 622
2176 | 633
2228 | 651
2249 | 648
2283 | -0.4
3.8 | 0.9
1.2 | -0.9
0.6 | 0.2 | | • | 1239 | 1475 | 1794 | 1093 | 2017 | 2074 | 2142 | 2170 | 2220 | 2249 | 2203 | 3.0 | 1.2 | 0.6 | 0.3 | | | | | | | | | | | | | | | | 0.9 | -3.2 | | by fuel Solids | 90 | 80 | 52 | 56 | 55 | 51 | 60 | 40 | 33 | 34 | 31 | -5.3 | 0.5 | | | | Solids | 90
2238 | 80
2384 | 52
2445 | 56
2494 | 55
2442 | 51
2374 | 60
2382 | 40
2391 | 33
2398 | 34
2412 | 31
2421 | -5.3
0.9 | 0.5 | | 0.1 | | Solids
Oil | 2238 | 80
2384
665 | 52
2445
620 | 2494 | 2442 | 51
2374
667 | 60
2382
647 | 40
2391
649 | 33
2398
661 | 34
2412
649 | 2421 | -5.3
0.9
0.9 | 0.0 | -0.3 | | | Solids | | 2384 | 2445 | | | 2374 | 2382 | 2391 | 2398 | 2412 | | 0.9 | | | 0.1 | | Solids
Oil
Gas | 2238
569 | 2384
665 | 2445
620 | 2494
654 | 2442
631 | 2374
667 | 2382
647 | 2391
649 | 2398
661 | 2412
649 | 2421
659 | 0.9
0.9 | 0.0
0.2 | -0.3
0.2 | 0.1
0.3 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 2238
569
905
195
435 | 2384
665
1096
196
452 | 2445
620
1029
192
631 | 2494
654
1171
218
685 | 2442
631
1265
247
807 | 2374
667
1287
243
916 | 2382
647
1318
251
949 | 2391
649
1320
247
969 | 2398
661
1364
232
994 | 2412
649
1380
229
1006 | 2421
659
1398
230
972 | 0.9
0.9
1.3
-0.2
3.8 | 0.0
0.2
2.1
2.5
2.5 | -0.3
0.2
0.4
0.2
1.6 | 0.3
-0.4
0.1 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 2238
569
905
195
435
0 | 2384
665
1096
196
452
0 | 2445
620
1029
192
631
0 | 2494
654
1171
218
685
0 | 2442
631
1265
247
807
0 | 2374
667
1287
243
916
1 | 2382
647
1318
251
949
1 | 2391
649
1320
247
969
2 | 2398
661
1364
232
994
2 | 2412
649
1380
229
1006
3 | 2421
659
1398
230
972
3 | 0.9
0.9
1.3
-0.2
3.8
0.0 | 0.0
0.2
2.1
2.5
2.5
57.5 | -0.3
0.2
0.4
0.2
1.6
12.9 | 0.1
0.3
-0.4
0.1
4.5 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 2238
569
905
195
435
0 | 2384
665
1096
196
452
0 | 2445
620
1029
192
631
0 | 2494
654
1171
218
685
0 |
2442
631
1265
247
807
0 | 2374
667
1287
243
916
1 | 2382
647
1318
251
949
1 | 2391
649
1320
247
969
2 | 2398
661
1364
232
994
2 | 2412
649
1380
229
1006
3
1758 | 2421
659
1398
230
972
3 | 0.9
0.9
1.3
-0.2
3.8
0.0 | 0.0
0.2
2.1
2.5
2.5
57.5 | -0.3
0.2
0.4
0.2
1.6
12.9 | 0.1
0.3
-0.4
0.1
4.5 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 2238
569
905
195
435
0 | 2384
665
1096
196
452
0
810 | 2445
620
1029
192
631
0
1020 | 2494
654
1171
218
685
0
1113 | 2442
631
1265
247
807
0
1444 | 2374
667
1287
243
916
1
1583 | 2382
647
1318
251
949
1
1606 | 2391
649
1320
247
969
2
1688 | 2398
661
1364
232
994
2
1749 | 2412
649
1380
229
1006
3
1758 | 2421
659
1398
230
972
3
1746 | 0.9
0.9
1.3
-0.2
3.8
0.0 | 0.0
0.2
2.1
2.5
2.5
57.5 | -0.3
0.2
0.4
0.2
1.6
12.9 | 0.1
0.3
-0.4
0.1
4.5
0.4 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 2238
569
905
195
435
0 | 2384
665
1096
196
452
0
810
20.2 | 2445 620 1029 192 631 0 1020 19.4 8.3 | 2494
654
1171
218
685
0
1113
19.1
7.9 | 2442
631
1265
247
807
0
1444
17.1
6.2 | 2374
667
1287
243
916
1
1583
17.0
6.3 | 2382
647
1318
251
949
1
1606 | 2391
649
1320
247
969
2
1688
15.2
4.5 | 2398
661
1364
232
994
2
1749
15.0
4.3 | 2412
649
1380
229
1006
3
1758
15.7
5.0 | 2421
659
1398
230
972
3
1746
15.5
4.8 | 0.9
0.9
1.3
-0.2
3.8
0.0 | 0.0
0.2
2.1
2.5
2.5
57.5
3.5
-1.2 | -0.3
0.2
0.4
0.2
1.6
12.9
1.1
-0.3
-0.4 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 2238
569
905
195
435
0
767 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 | -0.3
0.2
0.4
0.2
1.6
12.9
1.1
-0.3
-0.4
-0.2 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 2238
569
905
195
435
0
767
18.6 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2
15.5 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1
15.3 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9
0.5 | 0.0
0.2
2.1
2.5
2.5
57.5
3.5
-1.2
-2.9
-0.2 | -0.3
0.2
0.4
0.2
1.6
12.9
1.1
-0.3
-0.4
-0.2
-0.2 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1
0.0 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating | 2238
569
905
195
435
0
767 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 | -0.3
0.2
0.4
0.2
1.6
12.9
1.1
-0.3
-0.4
-0.2 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1
0.0
-0.4
-1.5 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) | 2238
569
905
195
435
0
767
18.6 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2
15.5
6.3 | 2445 620 1029 192 631 0 1020 19.4 8.3 11.1 15.3 6.2 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
5.8 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5
2.5 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
2.9 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9
0.5 | 0.0
0.2
2.1
2.5
57.5
3.5
-1.2
-2.9
-0.2
-1.5
-4.1 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.2 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1
0.0
-0.4
-1.5 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 2238
569
905
195
435
0
767
18.6 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2
15.5
6.3
0.0 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1
15.3
6.2
0.0 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
5.8
0.0 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0
0.0 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9
0.0 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5
2.5
0.0 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4
0.0 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1
0.0 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
2.9
0.0 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9
0.5 | 0.0
0.2
2.1
2.5
57.5
3.5
-1.2
-2.9
-0.2
-1.5
-4.1 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.4 0.0 | 0.1
0.3
-0.4
0.1
4.5
0.4
-0.4
-1.1
0.0
-0.4
-1.5
0.0 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS
sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 2238
569
905
195
435
0
767
18.6
14.0
5.5
0.1
2.4 | 2384
665
1096
196
452
0
810
20.2
9.0
11.2
15.5
6.3
0.0
2.3
1.4 | 2445 620 1029 192 631 0 1020 19.4 8.3 11.1 15.3 6.2 0.0 1.8 1.2 0.9 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
5.8
0.0
1.8
1.3
0.8 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1
0.0
1.8
1.2 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0
0.0
1.8
1.0 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9
0.0
1.8
0.9 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5
2.5
0.0
1.7 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4
0.0
1.6
0.9
0.5 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1
0.0
1.6
0.9
0.5 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
2.9
0.0
1.6
0.8
0.5 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9
0.5
0.9
1.3
-14.9
-2.9
-1.0
-2.6 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 -1.5 -4.1 -100.0 0.1 -0.4 -1.7 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.4 0.0 -0.1 -2.0 -3.3 | 0.1
0.3
-0.4
0.1
4.5
0.4
-1.1
0.0
-0.4
-1.5
0.0
-0.4
-0.7 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 2238
569
905
195
435
0
767
18.6
14.0
5.5
0.1
2.4
1.3
1.2 | 2384
665
1996
452
0
810
20.2
9.0
11.2
15.5
6.3
0.0
2.3
1.4
1.0 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1
15.3
6.2
0.0
1.8
1.2
0.9
5.2 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
15.2
1.8
0.0
1.8
1.3
0.8
5.4 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1
0.0
1.8
1.2
0.8
5.5 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0
0.0
1.8
1.0
0.6
5.6 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9
0.0
1.8
0.9
0.5
5.8 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5
2.5
0.0
1.7
0.9
0.5
5.9 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4
0.0
1.6
0.9
0.5
6.0 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1
0.0
1.6
0.9
0.5
6.1 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
2.9
0.0
1.6
0.8
0.5
6.1 | 0.9 0.9 1.3 -0.2 3.8 0.0 2.9 0.5 0.9 1.3 -14.9 -2.9 -1.0 -2.6 3.8 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 -1.5 -4.1 -100.0 0.1 -0.4 -1.7 0.4 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.2 -0.4 0.0 -0.1 -2.0 -3.3 0.6 | 0.1
0.3
-0.4
0.1
4.5
0.4
-1.1
0.0
-0.4
-1.5
0.0
-0.4
-0.7
-0.1 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 2238
569
905
195
435
0
767
18.6
14.0
5.5
0.1
2.4
1.3
1.2
3.6
1.0 | 2384
665
1096
452
0
810
20.2
9.0
11.2
15.5
6.3
0.0
2.3
1.4
1.0
4.4 | 2445 620 1029 192 631 0 1020 19.4 8.3 11.1 15.3 6.2 0.0 1.8 1.2 0.9 5.2 0.8 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
5.8
0.0
1.8
1.3
0.8
5.4 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1
0.0
1.8
1.2
0.8
5.5 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0
0.0
1.8
1.0
0.6
5.6
1.0 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9
0.0
1.8
0.9
0.5
5.8 | 2391 649 1320 247 969 2 1688 15.2 4.5 10.6 11.5 2.5 0.0 1.7 0.9 0.5 5.9 0.8 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4
0.0
1.6
0.9
0.5
6.0
0.8 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1
0.0
0.9
0.5
6.1
0.8 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
0.0
1.6
0.8
6.1
0.7 | 0.9
0.9
1.3
-0.2
3.8
0.0
2.9
0.5
0.9
1.3
-14.9
-2.9
-1.0
-2.8
3.8 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 -1.1 -100.0 0.1 -0.4 -1.7 0.4 1.4 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.4 0.0 -0.1 -2.0 -3.3 0.6 -1.2 | 0.1 0.3 -0.4 0.1 4.5 0.4 -1.1 0.0 -0.4 -1.5 0.0 -0.4 -0.7 -0.1 0.3 -0.8 | | Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 2238
569
905
195
435
0
767
18.6
14.0
5.5
0.1
2.4
1.3
1.2 | 2384
665
1996
452
0
810
20.2
9.0
11.2
15.5
6.3
0.0
2.3
1.4
1.0 | 2445
620
1029
192
631
0
1020
19.4
8.3
11.1
15.3
6.2
0.0
1.8
1.2
0.9
5.2 | 2494
654
1171
218
685
0
1113
19.1
7.9
11.2
15.2
15.2
1.8
0.0
1.8
1.3
0.8
5.4 | 2442
631
1265
247
807
0
1444
17.1
6.2
10.9
13.2
4.1
0.0
1.8
1.2
0.8
5.5 | 2374
667
1287
243
916
1
1583
17.0
6.3
10.7
13.0
4.0
0.0
1.8
1.0
0.6
5.6 | 2382
647
1318
251
949
1
1606
16.7
6.0
10.7
13.0
3.9
0.0
1.8
0.9
0.5
5.8 | 2391
649
1320
247
969
2
1688
15.2
4.5
10.6
11.5
2.5
0.0
1.7
0.9
0.5
5.9 | 2398
661
1364
232
994
2
1749
15.0
4.3
10.7
11.4
2.4
0.0
1.6
0.9
0.5
6.0 | 2412
649
1380
229
1006
3
1758
15.7
5.0
10.7
12.1
3.1
0.0
1.6
0.9
0.5
6.1 | 2421
659
1398
230
972
3
1746
15.5
4.8
10.7
12.0
2.9
0.0
1.6
0.8
0.5
6.1 | 0.9 0.9 1.3 -0.2 3.8 0.0 2.9 0.5 0.9 1.3 -14.9 -2.9 -1.0 -2.6 3.8 | 0.0 0.2 2.1 2.5 2.5 57.5 3.5 -1.2 -2.9 -0.2 -1.5 -4.1 -100.0 0.1 -0.4 -1.7 0.4 | -0.3 0.2 0.4 0.2 1.6 12.9 1.1 -0.3 -0.4 -0.2 -0.2 -0.4 0.0 -0.1 -2.0 -3.3 0.6 | 0.1
0.3
-0.4
0.1
4.5
0.4
-1.1
0.0
-0.4
-1.5
0.0
-0.4
-0.7
-0.1 | | SUMMARY ENERGY BALANCE AND INDICAT | <u> </u> | 2005 | 2010 | 2015 | 2020 | 2025 | 2020 | 2025 | 2040 | 2045 | | enia: R | | | | |---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|----| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10
Aı | 10-20 : | | | | lain Energy System Indicators | | | | | | | | | | | | | illiuai 70 ' | Change | · | | Population (Million) | 1.988 | 1.998 | 2.047 | 2.106 | 2.142 | 2.155 | 2.155 | 2.149 | 2.141 | 2.132 | 2.115 | 0.3 | 0.5 | 0.1 | -1 | | DP (in 000 M€10) | 27.1 | 32.4 | 35.4 | 38.2 | 41.8 | 45.1 | 48.8 | 52.1 | 55.2 | 57.9 | 60.7 | 2.7 | 1.7 | 1.6 | | | ross Inl. Cons./GDP (toe/M€10) | 236.9 | 225.3 | 205.1 | 196.0 | 176.6 | 164.9 | 154.0 | 141.5 | 135.3 | 113.3 | 107.4 | -1.4 | -1.5 | -1.4 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.18 | 2.12
52.3 | 2.11 | 2.02 | 1.79 | 1.75 | 1.73 | 1.56 | 1.53 | 1.85
73.4 | 1.84 | -0.3 | -1.6 | -0.4 | | | port Dependency %
stal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 52.7 | | 49.3 | 53.2 | 54.4 | 52.2 | 53.5 | 57.1 | 57.1 | | 73.8 | | 0.5 | | | | as % of GDP | 4.1 | 5.1
15.8 | 6.3
17.8 | 7.6
19.9 | 8.9 | 9.6
21.2 | 10.3 | 10.7
20.5 | 11.2 | 11.7
20.2 | 12.1
20.0 | 4.4 | 3.5 | 1.4 | | | | 15.1 | 15.6 | 17.0 | 19.9 | 21.4 | 21.2 | 21.1 | 20.5 | 20.3 | 20.2 | 20.0 | | | | | | ergy intensity indicators
dustry (Energy on Value added, index 2000=100) | 100.0 | 93.0 | 70.1 | 67.8 | 64.4 | 61.4 | 57.0 | 53.1 | 50.6 | 48.0 | 46.0 | -3.5 | -0.8 | -1.2 | | | esidential (Energy on Private Income, index 2000=100) | 100.0 | 92.3 | 88.4 | 84.2 | 76.7 | 72.8 | 67.6 | 61.6 | 57.2 | 53.4 | 49.1 | -1.2 | -1.4 | -1.3 | | | ertiary (Energy on Value added, index 2000=100) | 100.0 | 73.6 | 70.8 | 72.2 | 65.7 | 56.8 | 50.5 | 47.4 | 45.4 |
44.4 | 42.2 | -3.4 | -0.7 | -2.6 | | | assenger transport (toe/Mpkm) | 41.8 | 34.7 | 32.9 | 31.2 | 28.3 | 25.2 | 22.8 | 21.6 | 20.8 | 20.3 | 20.0 | -2.4 | -1.5 | -2.1 | | | eight transport (toe/Mtkm) | 22.7 | 37.8 | 41.2 | 37.5 | 36.3 | 35.2 | 33.6 | 32.9 | 32.2 | 31.5 | 31.0 | 6.1 | -1.2 | -0.8 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam production (t of CO ₂ /MWh) | 0.34 | 0.35 | 0.33 | 0.29 | 0.19 | 0.19 | 0.18 | 0.12 | 0.11 | 0.17 | 0.16 | -0.3 | -5.1 | -0.8 | | | nal energy demand (t of CO ₂ /toe) | 1.91 | 1.88 | 1.83 | 1.77 | 1.68 | 1.63 | 1.62 | 1.61 | 1.59 | 1.59 | 1.59 | -0.4 | -0.9 | -0.4 | | | Industry | 1.66 | 1.41 | 1.38 | 1.33 | 1.25 | 1.23 | 1.21 | 1.17 | 1.12 | 1.11 | 1.11 | -1.8 | -1.0 | -0.3 | | | Residential | 1.18 | 1.22 | 0.94 | 0.96 | 0.87 | 0.72 | 0.68 | 0.66 | 0.65 | 0.63 | 0.61 | -2.2 | -0.8 | -2.5 | | | Fernand (C) | 1.80 | 1.76 | 1.44 | 1.25 | 1.10 | 0.97 | 0.87 | 0.86 | 0.81 | 0.80 | 0.81 | -2.2 | -2.6 | -2.4 | | | Fransport (C) | 2.91 | 2.97 | 2.92 | 2.86 | 2.71 | 2.72 | 2.71 | 2.70 | 2.70 | 2.70 | 2.69 | 0.0 | -0.7 | 0.0 | _ | | licators for renewables | , | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (b) (%) | 16.4 | 15.7 | 19.4 | 20.2 | 25.5 | 27.5 | 27.6 | 29.0 | 29.7 | 29.8 | 29.6 | | | | | | S in transport (%) | 0.4 | 0.3 | 2.8 | 5.2 | 10.2 | 10.2 | 10.2 | 10.7 | 11.0 | 11.0 | 11.3 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 13624 | 15117 | 16248 | 17092 | 17462 | 17967 | 18295 | 17648 | 18260 | 14819 | 14922 | 1.8 | 0.7 | 0.5 | Γ. | | luclear energy | 4761
4611 | 5884
5271 | 5657 | 5684 | 5785
4026 | 5785 | 5785
3501 | 5785 | 5785
800 | 1016 | 937 | 1.7 | 0.2 | 0.0 | -1 | | Solids Dil (including refinery gas) | 4611
55 | 5271
42 | 5288
8 | 4301
4 | 4026
3 | 4058
4 | 3591
2 | 1123
2 | 899
3 | 1016
2 | 837
2 | 1.4
-17.5 | -2.7
-9.7 | -1.1
-3.5 | | | oil (including refinery gas) Gas (including derived gases) | 293 | 339 | 548 | 2425 | 1891 | 1841 | 2542 | 3881 | 4126 | 6098 | 6078 | -17.5
6.5 | -9.7
13.2 | 3.0 | | | Biomass-waste | 70 | 120 | 222 | 357 | 706 | 666 | 649 | 925 | 1419 | 1555 | 1490 | 12.2 | 12.3 | -0.8 | | | lydro (pumping excluded) | 3834 | 3461 | 4512 | 4225 | 4607 | 4600 | 4621 | 4588 | 4591 | 4621 | 4617 | 1.6 | 0.2 | 0.0 | | | Vind | 0 | 0 | 0 | 11 | 316 | 541 | 633 | 871 | 939 | 1029 | 1399 | 0.0 | 0.0 | 7.2 | | | Solar | 0 | 0 | 13 | 85 | 129 | 471 | 473 | 473 | 498 | 498 | 498 | 0.0 | 25.9 | 13.9 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 2822 | 3180 | 3164 | 3730 | 4201 | 4772 | 5145 | 5207 | 5263 | 4986 | 5240 | 1.1 | 2.9 | 2.0 | | | luclear energy | 696 | 696 | 694 | 694 | 694 | 694 | 694 | 694 | 694 | 0 | 0 | 0.0 | 0.0 | 0.0 | -1 | | Renewable energy | 829 | 963 | 1050 | 1232 | 1672 | 2147 | 2214 | 2384 | 2453 | 2517 | 2781 | 2.4 | 4.8 | 2.8 | | | Hydro (pumping excluded) | 829 | 963 | 1038 | 1139 | 1317 | 1317 | 1317 | 1317 | 1317 | 1317 | 1317 | 2.3 | 2.4 | 0.0 | | | Wind
Solar | 0 | 0 | 0
12 | 8
85 | 225
130 | 387
443 | 453
444 | 623
444 | 672
464 | 736
464 | 1000
464 | 0.0 | 0.0
26.9 | 7.2
13.1 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Thermal power | 1297 | 1520 | 1420 | 1804 | 1834 | 1930 | 2236 | 2129 | 2115 | 2468 | 2459 | 0.0 | 2.6 | 2.0 | | | of which cogeneration units | 648 | 507 | 428 | 486 | 471 | 479 | 511 | 494 | 479 | 900 | 890 | -4.1 | 1.0 | 0.8 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Solids fired | 956 | 955 | 889 | 889 | 737 | 703 | 701 | 658 | 649 | 649 | 649 | -0.7 | -1.8 | -0.5 | | | Gas fired | 213 | 441 | 472 | 853 | 959 | 1091 | 1410 | 1188 | 1137 | 1493 | 1515 | 8.3 | 7.4 | 3.9 | | | Oil fired | 19 | 12 | 11 | 10 | 8 | 7 | 0 | 0 | 0 | 0 | 0 | -4.9 | -3.3 | -44.0 | - | | Biomass-waste fired | 109 | 113 | 48 | 52 | 130 | 130 | 126 | 283 | 330 | 327 | 295 | -7.8 | 10.4 | -0.4 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | 51.8 | 50.8 | 54.9 | 49.2 | 45.1 | 40.9 | 38.8 | 37.3 | 38.2 | 32.9 | 31.6 | | | | | | ectricity indicators | | | | | | | | | | | | | | | | | iciency of gross thermal power generation (%) | 33.2 | 32.9 | 33.4 | 38.0 | 44.4 | 44.4 | 44.9 | 46.6 | 48.0 | 51.2 | 52.2 | | | | | | of gross electricity from CHP | 6.4 | 7.3 | 6.9 | 11.8 | 14.5 | 14.0 | 14.2 | 16.7 | 17.0 | 22.1 | 25.4 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | rbon free gross electricity generation (%) | 63.6 | 62.6 | 64.0 | 60.6 | 66.1 | 67.1 | 66.5 | 71.6 | 72.5 | 52.0 | 53.6 | | | | | | uclear | 34.9
28.7 | 38.9
23.7 | 34.8
29.2 | 33.3
27.4 | 33.1
33.0 | 32.2
34.9 | 31.6
34.8 | 32.8
38.9 | 31.7
40.8 | 0.0
52.0 | 0.0
53.6 | | | | | | enewable energy forms | 20.7 | 23.1 | 29. 2 | 21.4 | 33.0 | 34.9 | 34.0 | 36.9 | 40.0 | 52.0 | ع.دد
- | | | | | | ansport sector | 05.0 | 00.0 | 00.0 | 00 - | 0.4.0 | 07.0 | 00.0 | 40 - | | 40.0 | | | | | | | ssenger transport activity (Gpkm) | 25.0 | 26.9 | 30.3 | 32.5 | 34.9 | 37.2 | 39.6 | 40.7 | 41.9 | 42.6 | 43.2 | 1.9 | 1.4 | 1.3 | | | Public road transport | 3.5 | 3.1
22.7 | 3.2
26.0 | 3.3 | 3.4 | 3.5 | 3.6
33.2 | 3.7 | 3.7 | 3.8
35.2 | 3.8 | -1.0 | 0.7 | 0.5 | | | rivate cars and motorcycles
tail | 20.5
0.7 | 22.7
0.8 | 26.0
0.8 | 27.8
1.1 | 29.6
1.4 | 31.4
1.7 | 33.2
2.1 | 33.9
2.3 | 34.7
2.5 | 35.2
2.6 | 35.7
2.6 | 2.4
1.4 | 1.3
5.3 | 1.1
4.6 | | | viation | 0.7 | 0.6 | 0.8 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.7 | 3.8 | 3.3 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | eight transport activity (Gtkm) | 8.2 | 14.3 | 19.4 | 23.4 | 28.2 | 32.2 | 36.8 | 39.4 | 42.1 | 43.8 | 45.6 | 9.0 | 3.9 | 2.7 | | | Frucks | 5.3 | 11.0 | 15.9 | 19.0 | 22.6 | 25.4 | 28.6 | 30.5 | 32.6 | 33.9 | 35.3 | 11.6 | 3.5 | 2.4 | | | Rail | 2.9 | 3.2 | 3.4 | 4.4 | 5.7 | 6.8 | 8.2 | 8.8 | 9.5 | 9.9 | 10.3 | 1.8 | 5.2 | 3.8 | | | nland navigation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ergy demand in transport (ktoe) (G) | 1229 | 1474 | 1793 | 1892 | 2015 | 2072 | 2140 | 2174 | 2226 | 2247 | 2281 | 3.8 | 1.2 | 0.6 | Ť | | Public road transport | 41 | 35 | 37 | 39 | 40 | 40 | 40 | 39 | 39 | 39 | 39 | -1.0 | 0.7 | 0.0 | | | Private cars and motorcycles | 977 | 874 | 932 | 944 | 914 | 857 | 820 | 794 | 781 | 772 | 769 | -0.5 | -0.2 | -1.1 | | | Trucks | 163 | 514 | 772 | 849 | 992 | 1098 | 1193 | 1250 | 1311 | 1338 | 1373 | 16.8 | 2.5 | 1.9 | | | Rail | 24 | 28 | 26 | 31 | 36 | 41 | 47 | 48 | 49 | 48 | 47 | 1.0 | 3.3 | 2.5 | | | | | 22 | 00 | 00 | 00 | 00 | | | 40 | 40 | F2 | 0.5 | 0.0 | 2.1 | | | Aviation | 25 | 23 | 26 | 30 | 33 | 36 | 40 | 43 | 46 | 49 | 53 | 0.5 | 2.3 | 2.1 | | | ktoo | | | | | | | | SUN | MARY E | ENERGY | BALAN | CE AND | INDIC | ATORS | S (A) | |--|--|--
---|--|---|---|---|--|---|---|---|---|---|--|--| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | 10-'20 | '20-'30 ' | 30-'50 | | | | | | | | | | | | | | | | Change | | | Production (incl.recovery of products) Solids | 31592
7966 | 30002
6265 | 34105
3034 | 34644
2656 | 37342
2583 | 37070
1562 | 40903
1260 | 45907
887 | 46611
1221 | 47686
988 | 48246
813 | 0.8
-9.2 | 0.9
-1.6 | 0.9
-6.9 | 0.8
-2.2 | | Oil | 229 | 168 | 124 | 93 | 67 | 0 | 0 | 007 | 0 | 0 | 0 | -5.9 | -5.9 | -100.0 | 0.0 | | Natural gas | 234 | 185 | 85 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -9.7 | -100.0 | 0.0 | 0.0 | | Nuclear | 16046 | 14842 | 15991 | 15035 | 15035 | 14886 | 14886 | 18005 | 14782 | 13939 | 13939 | 0.0 | -0.6 | -0.1 | -0.3 | | Renewable energy sources | 7118 | 8542 | 14872 | 16829 | 19657 | 20622 | 24757 | 27015 | 30608 | 32760 | 33494 | 7.6 | 2.8 | 2.3 | 1.5 | | Hydro | 2543 | 1537 | 3635 | 2630 | 2739 | 2921 | 3093 | 3038 | 3108 | 3126 | 3185 | 3.6 | -2.8 | 1.2 | 0.1 | | Biomass & Waste
Wind | 4131
406 | 5112
1821 | 6404
3798 | 7512
4852 | 9043
4891 | 8965
5011 | 9502
7793 | 9453
9094 | 10968
9606 | 11045
10940 | 11096
11414 | 4.5
25.0 | 3.5
2.6 | 0.5
4.8 | 0.8
1.9 | | Solar and others | 33 | 65 | 1019 | 1775 | 2820 | 3547 | 4172 | 5219 | 5803 | 6289 | 6434 | 41.1 | 10.7 | 4.0 | 2.2 | | Geothermal | 5 | 7 | 16 | 60 | 163 | 177 | 196 | 210 | 1123 | 1361 | 1365 | 11.5 | 26.2 | 1.9 | 10.2 | | Net Imports | 99543 | 123977 | 106256 | 108271 | 104445 | 111338 | 109300 | 105416 | 105897 | 106082 | 104242 | 0.7 | -0.2 | 0.5 | -0.2 | | Solids | 12840 | 14418 | 6732 | 7121 | 7190 | 8895 | 8816 | 5253 | 5569 | 5461 | 4611 | -6.3 | 0.7 | 2.1 | -3.2 | | Oil | 70854 | 79426 | 68869 | 69259 | 64931 | 65428 | 66169 | 65931 | 65966 | 66090 | 65523 | -0.3 | -0.6 | 0.2 | 0.0 | | - Crude oil and Feedstocks | 59238 | 60839 | 56661 | 56544 | 52816 | 52820 | 53186 | 52871 | 52760 | 52758 | 52235 | -0.4 | -0.7 | 0.1 | -0.1 | | - Oil products | 11616
15467 | 18587
30248 | 12209
30950 | 12715
31254 | 12115
31317 | 12608
35961 | 12983
33194 | 13060
33001 | 13205
32858 | 13333
33243 | 13288
32970 | 0.5
7.2 | -0.1
0.1 | 0.7
0.6 | 0.1 | | Natural gas
Electricity | 382 | -115 | -717 | -262 | -253 | -129 | -113 | -116 | -104 | -275 | -350 | 0.0 | -9.9 | -7.7 | 5.8 | | Gross Inland Consumption | 123962 | 144336 | 130224 | 133598 | 132165 | 138601 | 140330 | 141131 | 142066 | 142970 | 141294 | 0.5 | 0.1 | 0.6 | 0.0 | | Solids | 20938 | 20566 | 7828 | 9776 | 9773 | 10457 | 10076 | 6140 | 6790 | 6449 | 5424 | -9.4 | 2.2 | 0.3 | -3.0 | | Oil | 64174 | 70616 | 60616 | 60055 | 55461 | 55794 | 56516 | 56278 | 56218 | 56107 | 55312 | -0.6 | -0.9 | 0.2 | -0.1 | | Natural gas | 15305 | 29886 | 31221 | 31266 | 31232 | 35788 | 32974 | 32464 | 32164 | 32428 | 31988 | 7.4 | 0.0 | 0.5 | -0.2 | | Nuclear | 16046 | 14842 | 15991 | 15035 | 15035 | 14886 | 14886 | 18005 | 14782 | 13939 | 13939 | 0.0 | -0.6 | -0.1 | -0.3 | | Electricity | 382 | -115 | -717 | -262 | -253 | -129 | -113 | -116 | -104 | -275 | -350 | 0.0 | -9.9 | -7.7 | 5.8 | | Renewable energy forms | 7118 | 8542 | 15285 | 17728 | 20916 | 21805 | 25992 | 28361 | 32217 | 34322 | 34982 | 7.9 | 3.2 | 2.2 | 1.5 | | as % in Gross Inland Consumption | | , | | | | | | | | | | | | | | | Solids | 16.9 | 14.2 | 6.0 | 7.3 | 7.4 | 7.5 | 7.2 | 4.4 | 4.8 | 4.5 | 3.8 | | | | | | Oil
Natural gas | 51.8
12.3 | 48.9
20.7 | 46.5
24.0 | 45.0
23.4 | 42.0
23.6 | 40.3
25.8 | 40.3
23.5 | 39.9
23.0 | 39.6
22.6 | 39.2
22.7 | 39.1
22.6 | | | | | | Nuclear | 12.3 | 10.3 | 12.3 | 11.3 | 11.4 | 10.7 | 10.6 | 12.8 | 10.4 | 9.7 | 9.9 | | | | | | Renewable energy forms | 5.7 | 5.9 | 11.7 | 13.3 | 15.8 | 15.7 | 18.5 | 20.1 | 22.7 | 24.0 | 24.8 | | | | | | Gross Electricity Generation in GWh _e | 222195 | 288872 | 299828 | 304544 | 314374 | 340480 | 358549 | 374400 | 387420 | 403020 | 412858 | 3.0 | 0.5 | 1.3 | 0.7 | | Self consumption and grid losses | 32640 | 40416 | 27398 | 21805 | 22729 | 25246 | 25550 | 26149 | 27791 | 28538 | 29837 | -1.7 | -1.9 | 1.2 | 0.8 | | Fuel Inputs to Thermal Power Generation | 26469 | 35403 | 25369 | 27345 | 26286 | 29461 | 25562 | 21213 |
24888 | 25461 | 23821 | -0.4 | 0.4 | -0.3 | -0.4 | | Solids | 18244 | 17623 | 5552 | 7566 | 7485 | 7994 | 7426 | 3381 | 4426 | 4224 | 3417 | -11.2 | 3.0 | -0.1 | -3.8 | | Oil (including refinery gas) | 4452 | 5249 | 3383 | 3781 | 1535 | 1152 | 463 | 290 | 268 | 168 | 48 | -2.7 | -7.6 | -11.3 | -10.7 | | Gas (including derived gases) | 3075 | 11140 | 15007 | 13808 | 14242 | 17890 | 15464 | 15484 | 15350 | 16077 | 15447 | 17.2 | -0.5 | 0.8 | 0.0 | | Biomass & Waste Geothermal heat | 697
0 | 1391
0 | 1427
0 | 2191
0 | 3024
0 | 2425
0 | 2209
0 | 2057
0 | 3941
904 | 3862
1130 | 3778
1130 | 7.4
0.0 | 7.8
0.0 | -3.1
0.0 | 2.7
0.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 904 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 80074 | 79615 | 78306 | 77667 | 74968 | 75492 | 76400 | 79193 | 75810 | 75049 | 74720 | -0.2 | -0.4 | 0.2 | -0.1 | | Refineries | | | | | | | | | | | | | | | | | | 60888 | 61499 | 58634 | 58629 | 55407 | 55705 | 56271 | 56054 | 56110 | 56146 | 55739 | | | 0.2 | 0.0 | | Biofuels and hydrogen production | 60888
72 | 61499
258 | 58634
1436 | 58629
2294 | 55407
2773 | 55705
3058 | 56271
3290 | 56054
3254 | 56110
3170 | 56146
3356 | 55739
3584 | -0.4
34.9 | -0.6
6.8 | 0.2
1.7 | 0.0 | | Biofuels and hydrogen production District heating | | | | | | | | | | | | -0.4 | -0.6 | | | | | 72 | 258 | 1436 | 2294 | 2773 | 3058 | 3290 | 3254 | 3170 | 3356 | 3584 | -0.4
34.9 | -0.6
6.8 | 1.7 | 0.4 | | District heating | 72
0
19115
6372 | 258
0
17857
6621 | 1436
0
18237
8136 | 2294
0
16744
6919 | 2773
0
16788
6699 | 3058
0
16729
6920 | 3290
0
16839
6692 | 3254
0
19885
6533 | 3170
0
16530
6266 | 3356
0
15547
6285 | 3584
0
15397
6153 | -0.4
34.9
0.0
-0.5 | -0.6
6.8
0.0
-0.8 | 1.7
0.0
0.0
0.0 | 0.4
0.0
-0.4 | | District heating Derived gases, cokeries etc. | 72
0
19115
6372
9407 | 258
0
17857
6621
8361 | 1436
0
18237
8136
7041 | 2294
0
16744
6919
7191 | 2773
0
16788
6699
7537 | 3058
0
16729
6920
7878 | 3290
0
16839
6692
8014 | 3254
0
19885
6533
8063 | 3170
0
16530
6266
8067 | 3356
0
15547
6285
8054 | 3584
0
15397
6153
8133 | -0.4
34.9
0.0
-0.5
2.5
- 2.9 | -0.6
6.8
0.0
-0.8
-1.9 | 1.7
0.0
0.0
0.0
0.6 | 0.4
0.0
-0.4
-0.4
0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand | 72
0
19115
6372 | 258
0
17857
6621 | 1436
0
18237
8136 | 2294
0
16744
6919 | 2773
0
16788
6699 | 3058
0
16729
6920 | 3290
0
16839
6692 | 3254
0
19885
6533 | 3170
0
16530
6266 | 3356
0
15547
6285 | 3584
0
15397
6153 | -0.4
34.9
0.0
-0.5 | -0.6
6.8
0.0
-0.8 | 1.7
0.0
0.0
0.0 | 0.4
0.0
-0.4 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector | 72
0
19115
6372
9407
79537 | 258
0
17857
6621
8361
97454 | 1436
0
18237
8136
7041
90587 | 2294
0
16744
6919
7191
92960 | 2773
0
16788
6699
7537
92444 | 3058
0
16729
6920
7878
97049 | 3290
0
16839
6692
8014
100934 | 3254
0
19885
6533
8063
102333 | 3170
0
16530
6266
8067
103329 | 3356
0
15547
6285
8054
104203 | 3584
0
15397
6153
8133
104718 | -0.4
34.9
0.0
-0.5
2.5
-2.9 | -0.6
6.8
0.0
-0.8
-1.9
0.7 | 1.7
0.0
0.0
0.0
0.6
0.9 | 0.4
0.0
-0.4
-0.4
0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry | 72
0
19115
6372
9407
79537 | 258
0
17857
6621
8361
97454 | 1436
0
18237
8136
7041
90587 | 2294
0
16744
6919
7191
92960
24357 | 2773
0
16788
6699
7537
92444
25763 | 3058
0
16729
6920
7878
97049 | 3290
0
16839
6692
8014
100934 | 3254
0
19885
6533
8063
102333 | 3170
0
16530
6266
8067
103329 | 3356
0
15547
6285
8054
104203 | 3584
0
15397
6153
8133
104718 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2 | 1.7
0.0
0.0
0.0
0.6
0.9 | 0.4
0.0
-0.4
-0.4
0.1
0.2 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries | 72
0
19115
6372
9407
79537
25360
17346 | 258
0
17857
6621
8361
97454
30956
20335 | 1436
0
18237
8136
7041
90587
23352
14562 | 2294
0
16744
6919
7191
92960
24357
15222 | 2773
0
16788
6699
7537
92444
25763
16278 | 3058
0
16729
6920
7878
97049
27058
17085 | 3290
0
16839
6692
8014
100934
27858
17711 | 3254
0
19885
6533
8063
102333
28085
17795 | 3170
0
16530
6266
8067
103329
27825
17599 | 3356
0
15547
6285
8054
104203
28154
17728 | 3584
0
15397
6153
8133
104718
28026
17352 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2 | 1.7
0.0
0.0
0.0
0.6
0.9 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry | 72
0
19115
6372
9407
79537 | 258
0
17857
6621
8361
97454 | 1436
0
18237
8136
7041
90587 | 2294
0
16744
6919
7191
92960
24357 | 2773
0
16788
6699
7537
92444
25763 | 3058
0
16729
6920
7878
97049 | 3290
0
16839
6692
8014
100934 | 3254
0
19885
6533
8063
102333 | 3170
0
16530
6266
8067
103329 | 3356
0
15547
6285
8054
104203 | 3584
0
15397
6153
8133
104718 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2 | 1.7
0.0
0.0
0.0
0.6
0.9 | 0.4
0.0
-0.4
-0.4
0.1
0.2 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors | 72
0
19115
6372
9407
79537
25360
17346
8014 | 258
0
17857
6621
8361
97454
30956
20335
10620 | 1436
0
18237
8136
7041
90587
23352
14562
8790 | 2294
0
16744
6919
7191
92960
24357
15222
9135 | 2773
0
16788
6699
7537
92444
25763
16278
9485 | 3058
0
16729
6920
7878
97049
27058
17085
9974 | 3290
0
16839
6692
8014
100934
27858
17711
10147 | 3254
0
19885
6533
8063
102333
28085
17795
10290 | 3170
0
16530
6266
8067
103329
27825
17599
10226 | 3356
0
15547
6285
8054
104203
28154
17728
10426 | 3584
0
15397
6153
8133
104718
28026
17352
10674 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8 | 1.7
0.0
0.0
0.0
0.6
0.9
0.8
0.8
0.7 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential | 72
0
19115
6372
9407
79537
25360
17346
8014
11985 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926 |
258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2
3.8 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2
3.8
1.2 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.2
0.1
0.2
0.0
-0.1
0.3
0.1
0.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2
3.8
1.2 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141 | 258
0
17857
621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.3
-1.4
0.0
-0.5 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2
3.8
1.2
-3.4
0.2
1.8
3.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.1
0.3
-1.4
0.0
-0.5
0.7 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380 |
3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772 | 3254
0
19885
6533
8063
102333
28085
10795
10290
19914
13452
40882
1684
45744
14347
29475
894 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224 | 3356
0
15547
6285
8054
104203
28154
10728
10426
19911
13610
42528
1302
46159
13504
31521
1397 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.3
-1.4
0.0
-0.5
0.7
4.0 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156 | -0.4
34.9
0.0
-0.5
2.5
-2.9
1.3
-0.8
-1.7
0.9
3.2
3.8
1.2
-3.4
0.2
1.8
3.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.3
-1.4
0.0
-0.5
0.7
4.0
0.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
0
5588 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
10321 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 | -0.6 6.8 0.0 0.0 -0.8 -1.9 0.7 0.2 1.0 1.1 0.8 0.2 -0.3 -0.1 0.4 -0.7 0.0 0.9 0.9 0.3 6.6 0.0 | 1.7
0.0
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
1.4
7.3
2.1 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.1
0.3
-1.4
0.0
-0.5
0.7
4.0
0.3
9.2 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
5588
0 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
1112 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
0.8
0.2
-0.3
-0.1
0.4
-0.7
0.0
0.9
0.0
0.4
-0.8 | 1.7
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
1.4
7.3
2.1
17.7 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
0.1
0.3
0.1
0.3
-1.4
0.0
0.5
0.7
4.0
0.3
9.2
1.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
0
5588 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898 |
3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
10321 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 | -0.6 6.8 0.0 0.0 -0.8 -1.9 0.7 0.2 1.0 1.1 0.8 0.2 -0.3 -0.1 0.4 -0.7 0.0 0.9 0.9 0.3 6.6 0.0 | 1.7
0.0
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
1.4
7.3
2.1 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
-0.1
0.3
0.1
0.1
0.3
-1.4
0.0
-0.5
0.7
4.0
0.3
9.2 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
0
3790
0
8398
447.5 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
5588
0 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
5777
8988
9 | 3290
0
168339
6692
8014
100934
27858
17711
10147
19269
13339
40468
45725
14899
28182
772
9791
19 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104 | 3356
0
15547
6285
8054
104203
28154
10426
19911
13610
42528
1302
46159
13504
31521
1397
1028
85
30842
293.8 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 | -0.6
6.8
0.0
-0.8
-1.9
0.7
0.2
1.0
1.1
1.0
8 0.2
-0.3
-0.1
0.4
-0.7
0.0
0.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 1.7
0.0
0.0
0.0
0.6
0.9
0.8
0.7
1.4
0.1
1.0
1.6
0.5
1.4
7.3
2.1
1.7,7 | 0.4
0.0
-0.4
-0.4
0.1
0.2
0.0
0.1
0.1
0.3
0.1
0.3
-1.4
0.0
0.5
0.7
4.0
0.3
9.2
-1.3 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which Post Sectors (2013 emissions of which Post Sectors (2013 emissions CO2 Emissions (energy related) | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
229.8
346.4 | 1436 0 18237 8136 7041 90587 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 5588 0 12874 364.5 146.4 218.1 272.8 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4
19346
355.7
161.0
194.7
261.2 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
5777
8898
9
20365
372.1
174.6
197.5
274.9 | 3290
0
168339
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.0 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
202.9
202.9
203.0 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
20.2 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.6 | -0.6
6.8
0.0
0.7
0.7
0.2
1.0
1.1
0.8
0.2
0.2
0.3
-0.1
0.4
-0.7
0.0
0.9
0.0
0.0
0.9
0.0
0.0
0.9
0.0
0.0 | 1.7
0.0
0.0
0.0
0.6
0.9
0.8
0.8
0.7
1.4
0.1
1.0
0.5
0.2
1.4
7.3
2.1
17.7
2.4
0.3
0.3
0.3 | 0.4 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO_Emissions (energy related) Power generation/District heating | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
217.7
229.8
346.4
117.7 | 1436 0 18237 8136 7041 90587 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 5588 0 12874 364.5 146.4 218.1 272.8 70.6 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8 | 2773 0 16788 6699 7537 92444 25763 16278 9485 16797 13170 36715 1313 43668 14604 24497 380 7977 4 19346 355.7 161.0 194.7 261.2 69.2 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6 | 3290
0 16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19269
360.5
160.3
200.2
288.7
68.3 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.9 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
5257
122.9
202.9
202.9
40.7 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31504
31597
10236
8900
203.8
203.8
204.7 | 3584 0 15397 6153 8133 104718 28026 17352 10674 19722 43247 1170 45810 13444 32156 17052 10321 112 31714 294.3 89.6 204.6 219.7 29.1 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.7 | -0.6 6.8 8.0 0.0 0.0 8.1 1.9 0.7 0.2 1.0 0.2 1.0 0.3 6.0 0.9 0.0 3.6 0.0 1.1 1.0 0.2 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
1.7
0.0
0.0
0.0
0.6
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
2.1
1.7,7
2.4
0.1
0.0
0.3
0.3 | 0.4 0.0 0.0 0.0 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
229.8
346.4
117.7
229.8 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
5588
0
12874
364.5
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2
146.2 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4
19346
355.7
161.0
194.7
261.2 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
5777
8898
9
20365
372.1
174.6
197.5
274.9
78.6 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
288.7
68.3
13.6 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.0
45.9
45.9
9
13.4 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
203.0
40.7
12.4 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
220.1
26.7
7 12.3 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
17055
10321
112
31714
294.3
89.6
204.6
219.7
29.1 | -0.4 34.9 0.0 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.7 | -0.6 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 1.7
0.0
0.0
0.0
0.6
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
1.4
7.3
2.1
17.7
2.4
0.0
0.3
0.3
0.3 | 0.4 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
37990
0
8398
447.5
217.7
229.8
346.4
117.7
13.5
59.2 | 1436 0 18237 8136 7041 90567 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 12874 364.5 146.4 218.1 272.8 70.6 16.3 43.5 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8
14.1
145.4 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4
19346
355.7
161.0
194.7
261.2
69.2
13.7
47.0 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7
68.3
13.6
48.7 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.0
45.9
13.4
47.9 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
203.6.0
40.7
12.4
43.4 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
200.1
26.7
12.3
42.0 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7
29.1
11.4
40.3 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.7 | -0.6 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 1.7
0.0
0.0
0.6
0.8
0.8
0.8
0.7
1.4
1.0
0.5
0.2
1.4
7.3
2.1
17.7
2.4
0.1
0.3
0.3
0.3
0.3 | 0.4 0.0 0.1 0.2 0.0 0.1 0.3 0.1 0.3 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.1 0.2 0.5 0.7 0.1 0.1 0.2 0.5 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mr of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential |
72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
3790
0
8398
447.5
217.7
229.8
346.4
117.7
13.5
59.2
20.8 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
5588
0
0
12874
364.5
146.4
218.1
272.8
70.6
16.3
43.5
19.9 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
194
6661
16819
366.2
162.3
203.9
276.8
14.1
45.4
45.8 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
161.0
194.7
261.2
69.2
13.7
47.0
017.3 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
5777
8898
9
20365
372.1
174.6
197.5
274.9
78.6
14.0
48.6
17.7 | 3290
0 16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7
68.3
13.6
48.7
77.9 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
327037
338.0
136.5
201.6
245.0
45.9
13.4
47.9
17.6 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
5257
122.9
202.9
202.9
202.9
203.6
40.7
12.4
43.4
43.4 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
90.0
203.8
220.1
26.7
12.3
42.0
15.9 | 3584 0 15397 6153 8133 104718 28026 17352 10674 19722 13723 43247 1170 45810 13444 32156 1705 10321 112 31714 294.3 89.6 204.6 219.7 29.1 11.4 40.3 14.7 | -0.4 34.9 0.0 -0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.7 | -0.6 6.8 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 1.7
0.0
0.0
0.0
0.8
0.8
0.8
0.7
1.4
0.1
1.0
1.6
0.5
0.2
2.1
17.7
2.4
0.1
0.0
0.3
0.3
0.3
0.3 | 0.4 0.0 0.1 0.1 0.2 0.0 0.0 0.1 0.3 0.1 0.3 0.1 0.0 0.0 0.0 0.3 0.1 0.3 0.1 0.1 0.2 0.0 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry Industry Industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which eTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
217.7
229.8
346.4
117.7
13.5
59.2
20.8 | 1436 0 18237 8136 7041 90587 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 5588 0 12874 218.1 272.8 70.6 16.3 43.5 19.9 14.1 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8
14.1
45.4
19.1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
4
19346
355.7
161.0
194.7
261.2
69.2
13.7
47.0
17.3
11.8 | 3058
0
16729
6920
7678
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6
14.0
48.6
17.7
11.0 | 3290
0 16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7
68.3
13.6
48.7
17.9
9,4 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
32
27037
338.0
136.5
201.6
245.0
45.9
13.4
47.9
17.6
8.3 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
243.4
40.7
12.4
43.4
16.8
7.9 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
20.1
12.3
42.0
15.3 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7
29.1
11.4
40.3
14.7
7.0 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 -6.9 -0.7 -0.6 -3.3 2.0 -1.5 1.6 0.7 | -0.6 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6 | 1.7 0.0 0.0 0.0 0.6 0.8 0.8 0.7 1.4 0.1 1.0 0.5 0.2 1.4 17.7 2.4 0.1 1.7.7 2.4 0.1 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 | 0.4 0.0 0.1 0.2 0.0 0.1 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which FTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions Co ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0
290.7
98.8
13.4
50.3
17.0
13.2
97.9 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
217.7
229.8
346.4
117.5
59.2
20.8
16.4
118.7 | 1436
0
18237
8136
7041
90587
23352
14562
8790
16478
13513
37244
1261
46762
14571
22406
0
5588
0
12874
364.5
146.3
43.5
19.9
14.1
108.4 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8
14.1
45.4
19.1
13.2
13.2
13.2 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4
19346
355.7
161.0
194.7
261.2
69.2
13.7
47.0
17.3
11.8
11.8
11.8 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6
14.0
48.6
17.7
11.0
105.1 | 3290
0
16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
120.2
268.7
68.3
13.6
48.7
17.9
9.4
4110.9 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.0
45.9
13.4
47.9
17.9 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
202.9
236.0
40.7
12.4
43.4
16.8
7.9
114.8 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
13504
31521
1397
10236
85
30842
233.8
90.0
203.8
220.1
26.3
42.0
15.9
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
11.7
29.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1
20 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 6.9 -0.7 -0.6 -3.3 2.0 -1.5 1.6 0.7 1.0 | -0.6 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 |
1.7
0.0
0.0
0.0
0.6
0.8
0.8
0.7
1.4
1.0
1.6
0.5
0.2
1.4
7.3
2.1
17.7
2.4
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.4 0.0 0.0 0.1 0.3 0.1 0.3 0.1 0.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry Industry Industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which eTS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 72
0
19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0
3470
0
6610
391.0 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
3790
0
8398
447.5
217.7
229.8
346.4
117.7
13.5
59.2
20.8 | 1436 0 18237 8136 7041 90587 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 5588 0 12874 218.1 272.8 70.6 16.3 43.5 19.9 14.1 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
38152
1276
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8
14.1
45.4
19.1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
4
19346
355.7
161.0
194.7
261.2
69.2
13.7
47.0
17.3
11.8 | 3058
0
16729
6920
7678
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6
14.0
48.6
17.7
11.0 | 3290
0 16839
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7
68.3
13.6
48.7
17.9
9,4 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
32
27037
338.0
136.5
201.6
245.0
45.9
13.4
47.9
17.6
8.3 | 3170
0
16530
6266
8067
103329
27825
17599
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
243.4
40.7
12.4
43.4
16.8
7.9 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
20.1
12.3
42.0
15.3 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7
29.1
11.4
40.3
14.7
7.0 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 13.3 -6.9 -0.7 -0.6 -3.3 2.0 -1.5 1.6 0.7 | -0.6 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6 | 1.7 0.0 0.0 0.0 0.6 0.8 0.8 0.7 1.4 0.1 1.0 0.5 0.2 1.4 17.7 2.4 0.1 1.7.7 2.4 0.1 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 | 0.4 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | District heating Derived gases, cokeries etc. Energy Branch Consumption Non-Energy Uses Final Energy Demand by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 72
0 19115
6372
9407
79537
25360
17346
8014
11985
9266
32926
1774
45947
12141
16205
0 3470
0 6610
391.0
290.7
98.8
13.4
50.3
17.0
13.2
97.9
26.1 | 258
0
17857
6621
8361
97454
30956
20335
10620
15114
11684
39701
1712
53146
17978
20827
0
37990
0
8398
447.5
217.7
229.8
346.4
117.7
13.5
59.2
20.8
16.4
118.7
29.5 | 1436 0 18237 8136 7041 90587 23352 14562 8790 16478 13513 37244 1261 46762 14571 22406 0 12874 364.5 146.4 218.1 272.8 70.6 16.3 43.5 19.9 14.1 108.4 21.9 | 2294
0
16744
6919
7191
92960
24357
15222
9135
16988
13464
46075
15040
23714
194
6661
1
16819
366.2
162.3
203.9
276.0
75.8
14.1
13.2
19.1
13.2
108.4
19.1 | 2773
0
16788
6699
7537
92444
25763
16278
9485
16797
13170
36715
1313
43668
14604
24497
380
7977
4
19346
355.7
161.0
194.7
261.2
69.2
13.7
47.0
17.3
11.8
102.2
29.6 | 3058
0
16729
6920
7878
97049
27058
17085
9974
18144
13729
38118
1433
44317
15161
26653
577
8898
9
20365
372.1
174.6
197.5
274.9
78.6
14.0
48.6
17.7
11.0
105.1
31.6 | 3290
0
168339
6692
8014
100934
27858
17711
10147
19269
13339
40468
1546
45725
14899
28182
772
9791
19
24469
360.5
160.3
200.2
268.7
68.3
13.6
48.7
17.9
9.4
110.9
9.4 | 3254
0
19885
6533
8063
102333
28085
17795
10290
19914
13452
40882
1684
45744
14347
29475
894
10156
33
27037
338.0
136.5
201.6
245.0
45.9
13.4
47.9
17.6
8.3
111.9
26.0 | 3170
0
16530
6266
8067
103329
10226
20087
13552
41865
1363
46121
14060
30439
1224
10063
58
29104
325.7
122.9
202.9
236.0
40.7
12.4
43.4
16.8
7.9
114.8
7.9 | 3356
0
15547
6285
8054
104203
28154
17728
10426
19911
13610
42528
1302
46159
13504
31521
1397
10236
85
30842
293.8
90.0
203.8
200.1
26.7
12.3
12.0
13.0
20.0
20.3
20.0
20.0
20.0
20.0
20.0
2 | 3584
0
15397
6153
8133
104718
28026
17352
10674
19722
13723
43247
1170
45810
13444
32156
1705
10321
112
31714
294.3
89.6
204.6
219.7
29.1
114.3
40.3
14.7
7.0
117.2
3.1 | -0.4 34.9 0.0 0.5 2.5 -2.9 1.3 -0.8 -1.7 0.9 3.2 3.8 1.2 -3.4 0.2 1.8 3.3 0.0 4.9 -0.7 -0.6 -3.3 2.0 -1.5 1.6 0.7 1.0 -1.7 | -0.6 6.8 8 -1.9 0.7 0.2 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.0 | 1.7
0.0
0.0
0.6
0.8
0.8
0.7
1.4
0.1
1.0
0.5
0.2
1.4
7.3
2.1
17.7
2.4
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.4 0.0 0.0 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.2 0.9 0.1 0.3 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | | SUMMARY ENERGY BALANCE AND INDICAT | | 0005 | 0040 | 2015 | 0000 | 0005 | 2000 | 0005 | 20.40 | 2045 | | pain: R | | | | |--|--------------|--------------|---------------|----------------|--------------|--------------|----------------|--------------|-----------------|-----------------|-----------------|--------------|-------------|--------------|--------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-20 : | | | | lain Energy System Indicators | | | | | | | | | | | | | | onange
 | | | opulation (Million) | 40.050 | 43.038 | 45.989 | 46.923 | 47.961 | 49.028 | 49.961 | 50.867 | 51.714 | 52.378 | 52.688 | 1.4 | 0.4 | 0.4 | | | DP (in 000 M€10) | 856.8 | 1005.9 | 1051.3 | 1118.9 | 1227.4 | 1395.9 | 1583.3 | 1723.5 | 1835.6 | 1933.4 | 2045.3 | 2.1 | 1.6 | 2.6 | | | oss Inl. Cons./GDP (toe/M€10) | 144.7 | 143.5 | 123.9 | 119.4 | 107.7 | 99.3 | 88.6 | 81.9 | 77.4 | 73.9 | 69.1 | -1.5 | -1.4 | -1.9 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.34
76.6 | 2.40
81.5 | 2.09 | 2.07 | 1.98
73.7 | 1.98 | 1.91 | 1.74 | 1.66
69.4 | 1.54
69.0 | 1.55 | -1.1 | -0.6 | -0.3 | | | port Dependency %
tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | | | 76.7 | 75.8 | | 75.0 | 72.8 | 69.7 | | | 68.4 | | | | | | | | 100.9 | 128.8 | 160.6 | 176.3 | 193.9 | 205.4 | 212.9 | 223.9 | 233.7 | 237.1 | 5.4 | 3.2 | 1.5 | | | s % of GDP | 8.9 | 10.0 | 12.3 | 14.4 | 14.4 | 13.9 | 13.0 | 12.4 | 12.2 | 12.1 | 11.6 | | | | | | nergy intensity indicators
dustry (Energy on Value added, index 2000=100) | 100.0 | 114.4 | 98.2 | 95.4 | 90.8 | 84.3 | 79.6 | 75.7 | 71.1 | CO 7 | 65.0 | 0.0 | -0.8 | 4.2 | | | esidential (Energy on Private Income, index 2000=100) | 100.0 | 106.3 | 112.3 | 108.8 | 90.8 | 93.0 | 79.6
86.9 | 82.3 | 71.1 | 68.7
73.0 | 68.1 | -0.2
1.2 | -1.3 | -1.3
-1.2 | | | ertiary (Energy on Value added, index 2000=100) | 100.0 | 100.3 | 110.9 | 103.1 | 91.7 | 83.9 | 71.0 | 65.2 | 61.2 | 58.1 | 55.1 | 1.0 | -1.9 | -2.5 | | | assenger transport (toe/Mpkm) | 41.5 | 39.8 | 38.2 | 36.6 | 32.9 | 29.5 | 27.2 | 26.0 | 25.2 | 24.5 | 24.1 | -0.8 | -1.5 | -1.9 | | | eight transport (toe/Mtkm) | 68.1 | 65.6 | 67.5 | 66.5 | 62.0 | 59.3 | 57.5 | 55.1 | 53.6 | 52.8 | 51.8 | -0.1 | -0.8 | -0.8 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ectricity and Steam
production (t of CO ₂ /MWh) | 0.44 | 0.41 | 0.24 | 0.25 | 0.22 | 0.23 | 0.19 | 0.12 | 0.10 | 0.06 | 0.07 | -6.2 | -0.8 | -1.5 | | | nal energy demand (t of CO ₂ /toe) | 2.24 | 2.21 | 2.05 | 2.00 | 1.93 | 1.88 | 1.85 | 1.82 | 1.77 | 1.74 | 1.71 | -0.9 | -0.6 | -0.4 | | | Industry | 1.98 | 1.91 | 1.86 | 1.86 | 1.83 | 1.80 | 1.75 | 1.71 | 1.56 | 1.49 | 1.44 | -0.6 | -0.2 | -0.4 | | | Residential | 1.42 | 1.38 | 1.21 | 1.12 | 1.03 | 0.97 | 0.93 | 0.88 | 0.84 | 0.80 | 0.74 | -1.6 | -1.6 | -1.0 | | | Tertiary | 1.42 | 1.41 | 1.05 | 0.98 | 0.90 | 0.80 | 0.70 | 0.62 | 0.59 | 0.53 | 0.51 | -3.0 | -1.5 | -2.4 | | | ransport (G) | 2.97 | 2.99 | 2.91 | 2.84 | 2.78 | 2.76 | 2.74 | 2.74 | 2.74 | 2.73 | 2.71 | -0.2 | -0.4 | -0.2 | | | licators for renewables | | | | | | | | | | | | | | | ſ | | are of RES in Gross Final Energy Consumption (D) (%) | 8.0 | 8.2 | 13.7 | 17.7 | 20.6 | 20.6 | 23.7 | 25.9 | 27.6 | 29.0 | 29.7 | | | | | | ES in transport (%) | 0.4 | 1.2 | 4.9 | 7.8 | 10.2 | 11.1 | 11.7 | 11.9 | 11.8 | 12.6 | 13.3 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 222235 | 288924 | 299882 | 304544 | 314374 | 340480 | 358549 | 374400 | 387420 | 403020 | 412858 | 3.0 | 0.5 | 1.3 | .11111 | | Nuclear energy | 62206 | 57539 | 61990 | 58274 | 58274 | 57733 | 57733 | 72167 | 62321 | 60909 | 60909 | 0.0 | -0.6 | -0.1 | | | Solids | 79094 | 84047 | 25499 | 33847 | 33432 | 36541 | 33978 | 14642 | 16902 | 15992 | 14364 | -10.7 | 2.7 | 0.2 | | | Dil (including refinery gas) | 22578 | 24420 | 16562 | 15425 | 7387 | 5510 | 2173 | 1328 | 1329 | 863 | 292 | -3.1 | -7.8 | -11.5 | | | Gas (including derived gases) | 21942 | 80725 | 97607 | 83749 | 86237 | 107679 | 91741 | 89040 | 88656 | 86307 | 90895 | 16.1 | -1.2 | 0.6 | | | Biomass-waste | 2100 | 3104 | 4676 | 10047 | 13792 | 11234 | 10371 | 9620 | 16112 | 16004 | 16078 | 8.3 | 11.4 | -2.8 | | | Hydro (pumping excluded) | 29570 | 17872 | 42278 | 30578 | 31846 | 33966 | 35967 | 35331 | 36145 | 36347 | 37031 | 3.6 | -2.8 | 1.2 | | | Wind
Solar | 4727 | 21176
41 | 44165
6411 | 56421
16144 | 56876 | 58271 | 90621
35906 | 105747 | 111698
53147 | 127205
58022 | 132720
59195 | 25.0
80.0 | 2.6
15.2 | 4.8
3.1 | | | Seothermal and other renewables | 18
0 | 0 | 694 | 58 | 26473
58 | 29487
58 | 35906
58 | 46468
58 | 1109 | 1372 | 1372 | 0.0 | -21.9 | 0.0 | | | Other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | et Generation Capacity in MW _e | 47652 | 68493 | 95422 | 104382 | 109809 | 110661 | 123306 | 134100 | 137643 | 136969 | 142482 | 7.2 | 1.4 | 1.2 | | | Nuclear energy | 7579 | 7579 | 7500 | 7052 | 7052 | 6982 | 6982 | 8738 | 7557 | 7393 | 7393 | -0.1 | -0.6 | -0.1 | | | Renewable energy | 14780 | 23076 | 38679 | 46876 | 52407 | 54842 | 67755 | 77571 | 82755 | 89581 | 92272 | 10.1 | 3.1 | 2.6 | | | Hydro (pumping excluded) | 12533 | 12993 | 13513 | 14151 | 14509 | 14830 | 15073 | 15447 | 15655 | 15892 | 16132 | 0.8 | 0.7 | 0.4 | | | Wind | 2235 | 10023 | 20567 | 25028 | 25213 | 25828 | 35707 | 40333 | 42155 | 46891 | 48577 | 24.9 | 2.1 | 3.5 | | | Solar | 12 | 60 | 4598 | 7667 | 12655 | 14154 | 16945 | 21761 | 24916 | 26767 | 27532 | 81.3 | 10.7 | 3.0 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 0.0 | 0.0 | 0.0 | | | Thermal power | 25294 | 37838 | 49244 | 50454 | 50350 | 48836 | 48568 | 47791 | 47330 | 39996 | 42817 | 6.9 | 0.2 | -0.4 | | | of which cogeneration units | 4570 | 5223 | 4812 | 4821 | 5409 | 5798 | 6028 | 6468 | 6484 | 6860 | 7494 | 0.5 | 1.2 | 1.1 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 667 | 1903 | 11024 | 5702 | 0.0 | 0.0 | 0.0 | | | Solids fired | 10987 | 11091 | 10864 | 10864 | 10527 | 10006 | 9335 | 8822 | 8605 | 7631 | 2426 | -0.1 | -0.3 | -1.2 | | | Gas fired | 6713 | 20263 | 31560 | 34121 | 34219 | 33957 | 33914 | 33657 | 33454 | 28130 | 36326 | 16.7 | 0.8 | -0.1 | | | Oil fired | 7091 | 5600 | 5737 | 4295 | 4256 | 3520 | 3513 | 3507 | 2774 | 1696 | 1003 | -2.1 | -2.9 | -1.9 | | | Biomass-waste fired | 503
0 | 884
0 | 1083
0 | 1174
0 | 1349
0 | 1354
0 | 1806
0 | 1805
0 | 2378
0 | 2389
0 | 2912
0 | 8.0
0.0 | 2.2 | 3.0 | | | Hydrogen plants Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 150 | 150 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity ^(F) (%) | | | | | | | | | | | | 0.0 | 0.0 | 0.0 | | | | 50.8 | 46.2 | 34.6 | 32.3 | 31.8 | 34.1 | 32.3 | 31.2 | 31.4 | 32.8 | 32.3 | | | | - | | ectricity indicators
ficiency of gross thermal power generation (%) | 40.8 | 46.7 | 49.2 | 45.0 | 46.1 | 47.0 | 46.5 | 46.5 | 42.9 | 40.7 | 44.4 | | | | | | of gross electricity from CHP | 9.2 | 7.8 | 7.4 | 8.3 | 9.2 | 8.5 | 8.4 | 7.2 | 7.8 | 8.0 | 8.4 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.4 | 0.4 | 1.6 | | | | | | arbon free gross electricity generation (%) | 44.4 | 34.5 | 53.4 | 56.3 | 59.6 | 56.0 | 64.3 | 72.0 | 72.4 | 74.4 | 74.4 | | | | | | nuclear | 28.0 | 19.9 | 20.7 | 19.1 | 18.5 | 17.0 | 16.1 | 19.3 | 16.1 | 15.1 | 14.8 | | | | | | renewable energy forms | 16.4 | 14.6 | 32.8 | 37.2 | 41.0 | 39.1 | 48.2 | 52.7 | 56.3 | 59.3 | 59.7 | | | | | | ansport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 476.1 | 535.4 | 539.1 | 569.6 | 599.9 | 683.4 | 778.2 | 826.8 | 877.8 | 916.7 | 957.4 | 1.3 | 1.1 | 2.6 | | | Public road transport | 50.3 | 53.2 | 50.9 | 52.9 | 55.0 | 59.1 | 63.5 | 66.6 | 69.9 | 72.1 | 74.4 | 0.1 | 0.8 | 1.4 | | | Private cars and motorcycles | 310.2 | 346.4 | 351.8 | 363.8 | 373.0 | 425.1 | 483.2 | 506.3 | 529.4 | 545.9 | 562.9 | 1.3 | 0.6 | 2.6 | | | Rail | 25.4 | 27.6 | 28.6 | 33.1 | 38.2 | 47.2 | 58.3 | 63.3 | 68.7 | 72.2 | 75.9 | 1.2 | 2.9 | 4.3 | | | Aviation | 88.6 | 106.5 | 106.2 | 118.1 | 131.9 | 150.1 | 170.9 | 188.1 | 207.3 | 223.9 | 241.4 | 1.8 | 2.2 | 2.6 | | | nland navigation | 1.6 | 1.7 | 1.6 | 1.7 | 1.8 | 2.0 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 0.2 | 0.9 | 2.5 | | | eight transport activity (Gtkm) | 191.4 | 278.5 | 246.6 | 259.7 | 273.5 | 302.8 | 335.3 | 351.5 | 368.5 | 378.9 | 389.5 | 2.6 | 1.0 | 2.1 | | | Trucks | 148.7 | 233.2 | 210.1 | 220.9 | 232.3 | 257.1 | 284.7 | 298.8 | 313.7 | 322.9 | 332.3 | 3.5 | 1.0 | 2.1 | | | Rail | 11.6 | 11.6 | 9.2 | 10.2 | 11.3 | 13.0 | 15.0 | 15.8 | 16.6 | 17.1 | 17.5 | -2.3 | 2.1 | 2.8 | | | Inland navigation | 31.1 | 33.7 | 27.3 | 28.6 | 29.9 | 32.7 | 35.7 | 36.9 | 38.2 | 39.0 | 39.7 | -1.3 | 0.9 | 1.8 | | | ergy demand in transport (ktoe) (G) | 32780 | 39554 | 37233 | 38139 | 36701 | 38103 | 40452 | 40866 | 41848 | 42510 | 43228 | 1.3 | -0.1 | 1.0 | Ī | | Public road transport | 662 | 688 | 648 | 666 | 670 | 698 | 730 | 749 | 773 | 787 | 802 | -0.2 | 0.3 | 0.9 | | | Private cars and motorcycles | 14008 | 14540 | 13950 | 13737 | 12271 | 12243 | 13061 | 13257 | 13558 | 13755 | 14037 | 0.0 | -1.3 | 0.6 | | | Trucks | 11534 | 16434 | 15298 | 15879 | 15513 | 16438 | 17675 | 17763 | 18139 | 18433 | 18620 | 2.9 | 0.1 | 1.3 | | | | 705 | 1024 | 898 | 956 | 1001 | 1075 | 1161 | 1139 | 1128 | 1107 | 1086 | 2.5 | 1.1 | 1.5 | | | Rail | | | | | | | | | | | | | | | | | Rail
Aviation
Inland navigation | 4486
1386 | 5323
1544 | 5389
1050 | 5804
1097 | 6105
1140 | 6402
1248 | 6462
1364 | 6560
1398 | 6814
1435 | 6979
1450 | 7220
1463 | 1.9
-2.7 | 1.3
0.8 | 0.6
1.8 | | | Personant | Sweden: Reference scenario | | | | | | | | SUN | IMARY E | NERGY | BALAN | CE AND | INDIC | ATORS | (A) | |--
--|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-----------|--------|-----------|-------------------| | Pose | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 | '20-'30 ' | 30-'50 | | Section 19 | | | | | | | | | | | | | | | | | | Name | | | | | | | | | | | | | | | | 0.5
0.0 | | Part | | | | | | | | | - | | | | | | | 0.0 | | Hydro Hydr | | | 44 | 18 | | 0 | 0 | | 0 | | 0 | | | | | 0.0 | | Page | Nuclear | 14785 | 18670 | 14917 | 16430 | 17384 | 18492 | 19039 | 20146 | 21171 | 21731 | 21258 | 0.1 | 1.5 | 0.9 | 0.6 | | Belles Pelles P | | | | | | | | | | | | | | | | 0.4 | | Mathematic | | | | | | | | | | | | | | | | 0.0 | | Section Personal | | | | | | | | | | | | | | | | 3.9 | | Second | | | | | | | | | | | | | | | | 0.9 | | Solic Soli | Geothermal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.3 | 0.8 | | Control of and Feedstocks 1500 7146 1542 1521 1418 1521 1522 1520 | Net Imports | 19188 | 20206 | 19467 | 19366 | 17768 | 17256 | 17069 | 16537 | 16498 | 16518 | 16801 | 0.1 | -0.9 | -0.4 | -0.1 | | Composition | | | | | | | | | | | | | | | | -1.4 | | Column C | | | | | | | | | | | | | | | | -0.3 | | Pattern Patt | | | | | | | | | | | | | | | | -0.3 | | Description 402 403 403 405 40 | • | | | | | | | | | | | | | | | 2.3 | | Solic | | | | | | | | | | | | | | | | 4.2 | | Description 1419 1482 1509 1294 1179 1170 1170 11025 1071 11023 1073 1083 0.3 0.1 0.1 Noticiar 1478 1475 1570 1497 1498 1498 1499 1498 1499 1498 1499 1498 1499 | Gross Inland Consumption | 47660 | 51739 | 51352 | 53594 | 53330 | 54102 | 54181 | 55076 | 56257 | 57298 | 57471 | 0.7 | 0.4 | 0.2 | 0.3 | | No. | | | | | | | | | | | | | | | | -1.4 | | Number 1475 1870 1971 1972 | | | | | | | | | | | | | | | | 0.1 | | Remereally energy forms | | | | | | | | | | | | | | | | 1.7 | | Reference 1,000 | | | | | | | | | | | | | | | | 0.6
4.2 | | Section Solids | | | | | | | | | | | | | | | | 0.7 | | Solids | | | | | | | | | | | - | | | | - | | | Nuclear 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 | • | 5.1 | 5.1 | 4.9 | 5.5 | 5.7 | 6.0 | 5.7 | 5.4 | 4.5 | 4.0 | 4.1 | | | | | | Number N | Oil | 29.7 | 28.8 | 28.3 | 24.2 | 22.5 | 20.8 | 19.9 | 19.5 | 19.3 | 19.2 | 19.2 | | | | | | Reference Perform Pe | | | | | | | | | | | | | | | | | | Selection Company Co | | | | | | | | | | | | | | | | | | Self-consumption and grid losses 1870 7745 7550 7650 7740 7740 7750
7750 775 7750 7 | | | | | | | | | | | | | 0.2 | 15 | 0.5 | 1.0 | | Public place to Thermal Power Generation 3622 4473 6532 6143 6592 6143 6799 7258 725 7518 7.2 2.1 2.0 | the contract of o | | | | | | | | | | | | | | | 0.9 | | Solids | | | | | | | | | | | | | | | | 0.7 | | Beams | | 462 | 508 | 597 | 716 | 721 | 724 | 713 | 697 | 431 | 106 | 100 | 2.6 | 1.9 | | -9.3 | | Binnas & Waste | | | | | | | | | | | | | | | | 4.8 | | Public Human | | | | | | | | | | | | | | | | 3.0 | | Pyticing purisher processes 3960 20 20 20 20 20 20 20 | | | | | | | | | | | | | | | | 0.8 | | Pell Input to other conversion processes 39360 4260 4260 4260 4260 4271 42453 42456 4261 4271 43297 4360 43910 0.2 0.6 0.1 Refinence 21632 20262 21354 21108 1993 19130 18467 1818 1955 1518 1718 1718 0.3 0.1 0.7 0.3 Bibrules and hydrogen production 0 135 401 475 615 566 566 579 597 597 598 611 668 0.0 0.1 0.7 0.3 District heating 1213 1335 1615 3030 2475 1818 1913 1714 1764 2227 2251 229 4.4 2.5 Derived gases, cokeines etc. 16516 0.5010 16536 18320 18343 2078 21424 22188 2291 2381 23287 0.1 1.5 0.5 Derived gases, cokeines etc. 1559 1559 16536 18320 18343 2078 21424 22188 2281 2381 2382 0.0 0.1 Derived gases, cokeines etc. 1731 2233 2005 1558 18350 1 | | | | - | | | | | - | | | | | | | 0.0 | | Refinemente 1918 2018 2018 2018 2019 1910 1910 1914 1916 1816 1816 1816 1816 1816 1816 0.0 3.4 0.3 | | 39360 | 42800 | 40006 | | 42453 | 42436 | | 42713 | | | | | | | 0.2 | | District heating 1213 1336 1615 3308 2475 1948 1913 1744 1764 2227 2351 2.9 4.4 2.5 Denived passes, cokeries etc. 16516 20501 16158 1820 19483 2078 21724 22189 22981 2281 2202 0.7 0.8 0.1 Non-Energy Branch Consumption 1509 1514 1611 1719 1740 1762 1764 1779 1782 1282 1298 2021 0.7 0.8 0.1 Non-Energy Uses 1731 2293 2005 1958 1959 1959 1993 2048 2084 2091 2098 1.5 0.2 0.2 Timal Energy Demand 34851 33555 34358 34929 33255 34110 34310 34523 34955 35516 35722 0.1 0.3 0.3 Dy sector 1040stry 14264 12557 12597 13164 12694 12695 9901 10238 10301 10403 10444 10217 -1.0 0.0 1.0 - energy intensive industries 10610 9348 9557 9703 9166 9901 10238 10301 10403 10444 10217 -1.0 0.0 1.0 - energy intensive industries 3654 3229 3040 3461 3439 3553 3633 3730 3928 4189 4461 -1.8 1.2 0.6 Residential sectors 3654 3229 3040 3461 3439 3553 3533 3730 3928 4189 4461 -1.8 1.2 0.6 Timal Energy Mand 5205 5636 5631 5548 5526 5526 5241 5444 5427 5480 5438 0.4 0.7 0.6 0.5 Dy fuel Solids 1115 1346 1202 1175 1196 1315 1268 1270 1254 1248 1265 0.8 0.1 0.6 0.5 Dy fuel Solids 1315 1388 10092 9481 8784 8136 7743 7648 7755 7826 7889 2.6 0.1 0.6 0.5 Dy fuel Solids 1315 1348 10092 9481 8784 8136 7743 7648 7755 7826 7889 0.2 0.4 | | | | | | | | | | | | | | | | -0.2 | | Deriver gases, cokenies etc. 16516 20501 16636 18300 19483 20786 21242 22189 22981 23641 23287 0.1 1.6 0.9 | Biofuels and hydrogen production | 0 | 135 | 401 | | 561 | 565 | 579 | 597 | 598 | | 668 | 0.0 | 3.4 | 0.3 | 0.7 | | Part | | | | | | | | | | | | | | | | 1.0 | | Non-Energy Uses | | | | | | | | | | | | | | | | 0.5 | | Primal Energy Demand 34851 33554 34368 34929 33255 34110 34310 34523 34956 35516 35722 -0.1 -0.3 0.3 | | | | | | | | | | | | | - | | | 0.7 | | Industry 14264 12557 12597 13164 12604 13453 13870 14032 14331 14633 14678 -1.2 0.0 1.0 - energy intensive industries 10610 8348 8557 8703 9166 8901 10238 10301 10403 10444 10217 -1.0 -0.4 1.1 - other industrial sectors 3654 3209 3040 3461 3439 3553 3633 3730 3928 4189 4461 -1.8 1.2 0.6 Residential 7294 7302 7558 5528 5752 7757 77218 7721 7730 7331 7410 7463 0.4 -0.5 0.2 Tertiary 5205 5108 5631 5548 5320 5556 5421 5444 5427 5480 5438 0.4 -0.5 0.2 Tertiary 5205 5108 5631 5548 5320 5556 5421 5444 5427 5480 5438 0.4 -0.5 0.2 Transport 8088 8587 8649 8625 8174 7912 7749 7766 8001 8143 0.7 -0.6 0.5 5016 | | | | | | | | | | | | | | | | 0.3
0.2 | | Industry Hacka 12567 12567 12567 13164 12604 13453 13870 14032 14331 14633 14678 1.2 0.0 1.0 0.0 | | 34031 | 33334 | 34436 | 34929 | 33233 | 34110 | 34310 | 34323 | 34936 | 33316 | 35/22 | -0.1 | -0.3 | 0.3 |
0.2 | | - other industrial sectors | | 14264 | 12557 | 12597 | 13164 | 12604 | 13453 | 13870 | 14032 | 14331 | 14633 | 14678 | -1.2 | 0.0 | 1.0 | 0.3 | | Residential 7294 7302 7558 7592 7167 7218 7271 7307 7331 7401 7463 0.4 -0.5 0.2 Tertiary 5205 5108 5631 5548 5520 5526 5421 5444 5427 5480 5438 0.8 -0.6 0.2 Transport 8088 8587 8649 8625 8174 7912 7749 7749 7740 7866 8001 8143 0.7 -0.6 -0.5 by fuel Solids 1115 1346 1202 1175 1196 1315 1268 1270 1254 1248 1205 0.8 -0.1 0.6 Oil 13151 1388 10092 9481 8784 8136 7743 7648 7735 7826 7889 -2.6 -1.4 -1.3 Gas 673 694 618 657 754 917 812 677 660 657 682 -0.8 2.0 0.7 Electricity 11068 11238 11238 11771 11487 11802 11985 12097 12319 12653 12885 0.2 0.2 0.4 Heat (from CHP and District Heating) 3550 4174 5141 5307 5300 4943 4704 4721 4605 4638 4747 3.8 0.3 -1.2 Renewable energy forms 5294 4715 6100 6528 5651 6875 7668 7888 8275 8380 8193 1.4 -0.8 3.1 RES in Gross Final Energy Consumption 13722 14414 17510 1893 19078 19981 20053 20663 21054 21583 22317 2.5 0.9 0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 74.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 74.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 74.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 74.6 74.6 74.8 | - energy intensive industries | 10610 | 9348 | 9557 | 9703 | 9166 | 9901 | 10238 | 10301 | 10403 | 10444 | 10217 | -1.0 | -0.4 | 1.1 | 0.0 | | Tertiary S205 S108 S631 S548 S320 S526 S421 S444 S427 S480 S438 0.8 0.6 0.2 Transport S808 S587 S869 S625 S474 7912 7749 7740 7866 S011 S436 0.7 0.6 0.5 S01dis S014 S115 S1346 S120 S1175 S196 S1315 S1268 S1270 S1254 S128 S1255 S126 S1255 S126 S1255 | | | | | | | | | | | | | | | | 1.0 | | Transport B088 8587 8649 8625 8174 7912 7749 7766 8001 8143 0.7 -0.6 -0.5 | | | | | | | | | | | | | | | | 0.1 | | Solids 1115 1346 1202 1175 1196 1315 1268 1270 1254 1248 1205 0.8 -0.1 0.6 | | | | | | | | | | | | | | | | 0.0 | | Solids | | 0000 | 0307 | 0043 | 0023 | 0174 | 7512 | 1143 | 7740 | 7000 | 0001 | 0143 | 0.7 | -0.0 | -0.5 | 0.2 | | Oil 13151 11388 10092 9481 8784 8136 7743 7648 7735 7826 7889 -2.6 -1.4 -1.3 Gas 673 694 618 657 754 917 812 677 660 657 682 -0.8 2.0 0.7 Electricity 11068 11238 11283 11771 11487 11802 1297 12319 12653 12885 0.2 0.2 0.4 Heat (from CHP and District Heating) 3550 4174 5141 5307 5300 4943 4704 4721 4605 4638 4747 3.8 0.3 -1.2 Renewable energy forms 5294 4715 6100 6528 5651 6875 7668 7988 8275 8380 8193 1.4 -0.8 3.1 Of the fuels (hydrogen, ethanol) 13722 14414 17510 18930 19078 19961 20063 21063 21583 | | 1115 | 1346 | 1202 | 1175 | 1196 | 1315 | 1268 | 1270 | 1254 | 1248 | 1205 | 0.8 | -0.1 | 0.6 | -0.3 | | Electricity 11068 11238 11283 11771 11487 11802 11985 12097 12319 12653 12885 0.2 0.2 0.4 Heat (from CHP and District Heating) 3550 4174 5141 5307 5300 4943 4704 4721 4605 4638 4747 3.8 0.3 1.2 Renewable energy forms 5294 4715 6100 6528 5651 6875 7668 7868 8275 8380 8193 1.4 0.8 3.1 Other fuels (hydrogen, ethanol) 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | 0.1 | | Heat (from CHP and District Heating) 3550 4174 5141 5307 5300 4943 4704 4721 4605 4638 4747 3.8 0.3 -1.2 | Gas | 673 | 694 | 618 | 657 | 754 | 917 | 812 | 677 | 660 | 657 | 682 | -0.8 | 2.0 | 0.7 | -0.9 | | Renewable energy forms 5294 4715 6100 6528 5651 6875 7668 7988 8275 8380 8193 1.4 -0.8 3.1 Other fuels (hydrogen, ethanol) 0 0 0 10 84 123 123 123 123 109 113 121 0.0 0.0 0.0 4.7 RES in Gross Final Energy Consumption (A) 13722 14414 17510 18930 19078 19961 20053 20663 21054 21583 22317 2.5 0.9 0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 -0.8 of which ETS sectors (2013 scope) GHG emissions 26.1 25.8 26.1 26.4 25.6 23.9 23.1 21.5 19.4 16.5 0.3 -1.0 of which error (2013 scope) GHG emissions 44.5 41.3 39.5 37.3 36.3 35.2 34.9 35.0 35.2 35.6 -1.0 -0.6 CO ₂ Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 2.1 2.0 1.9 1.9 1.8 1.9 1.9 0.4 0.1 -0.6 Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.9 7.6 -4.3 -0.7 -0.6 Residential 2.9 1.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -17.8 2.7 -2.6 Terriary 4.5 3.2 2.7 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 4.8 -3.5 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.0 21.0 0.5 0.9 0.8 CO ₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 -0.1 0.2 Ron-CO ₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.0 14.0 14.0 14.6 14.7 15.0 15.4 -0.6 0.0 0.0 | | | | | | | | | | | | | | | | 0.4 | | Other fuels (hydrogen, ethanol) 0 0 0 10 84 123 123 123 109 113 121 0.0 0.0 4.7 RES in Gross Final Energy Consumption (A) 13722 14414 17510 18930 19078 19961 20053 20663 21054 21583 22317 2.5 0.9 0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 -0.8 of which ETS sectors (2013 scope) GHG emissions 26.1 25.8 26.1 26.4 26.6 23.9 23.1 21.5 19.4 16.5 0.3 -1.0 -0.6 CO ₂ Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 Co ₂ Emissions (energy related) 5.3 52.1 49.4 48.0 46.1 | | | | | | | | | | | | | | | | 0.0 | | RES in Gross Final Energy Consumption (A) 13722 14414 17510 18930 19078 19961 20053 20663 21054 21583 22317 2.5 0.9 0.5 TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 -0.8 of which ETS sectors (2013 scope) GHG emissions 26.1 25.8 26.1 26.4 25.6 23.9 23.1 21.5 19.4 16.5 0.3 -1.0 -0.6 CO2 Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 2.1 | | | | | | | | | | | | | | | | 0.3
-0.5 | | TOTAL GHG emissions (Mt of CO2 eq.) 73.2 70.6 67.1 65.6 63.8 61.8 59.1 58.0 56.5 54.7 52.1 -0.9 -0.5 -0.8 of which ETS sectors (2013 scope) GHG emissions 26.1 25.8 26.1 26.4 25.6 23.9 23.1 21.5 19.4 16.5 0.3 -1.0 -0.6 CO ₂ Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 -0.6 CO ₂ Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 -0.6 Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 | | | | | | | | | | | | | | | | 0.5 | | of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (2013 scope) GHG emissions (44.5 41.3 39.5 37.3 36.3 35.2 34.9 35.0 35.2 35.6 -1.0 -0.6 CO_2 Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 2.1 2.0 1.9 1.9 1.8 1.9 1.9 1.9 0.4 0.1 -0.6 Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.9 7.6 -4.3 -0.7 -0.2 Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -1.1 -1.7 -2.6 Territary 4.5 3.2 2.7 1.9 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 | | | | | | | | | | | | | | | | -0.6 | | of which non ETS sectors GHG emissions 44.5 41.3 39.5 37.3 36.3 35.2 35.0 35.2 35.6 -1.0 -0.6 Co2 Emissions (energy related) 55.3 52.1 49.4 48.0 46.1 43.8 41.7 40.6 38.9 39.0 36.2 -1.1 -0.7 -1.0 -0.6 Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 2.1 2.0 1.9 1.9 1.9 1.8 1.9 1.9 0.4 0.1 -0.6 Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.9 7.6 -4.3 -0.7 -0.2 Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 | | 13.2 | | | | | | | | | | | 0.5 | | | -1.8 | | Power generation/District heating 6.8 7.4 9.6 9.5 10.0 7.6 7.7 8.0 6.4 6.1 3.4 3.5 0.4 -2.6 Energy Branch 2.0 1.9 2.0 2.1 2.1 2.0 1.9 1.9 1.8 1.9 1.9 0.4 0.1 -0.6 Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.9 7.6 -4.3 -0.7 -0.2 Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -17.8 -2.7 -2.6 Territary 4.5 3.2 2.7 1.9 1.9 2.0 1.9 1.9 1.9 1.9 4.8 3.5 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.6 6.5 -0.9 -0.8 | | | | | | | | | | | | | | | | 0.1 | | Energy Branch 2.0 1.9 2.0 2.1 2.1 2.0 1.9 1.9 1.8 1.9 1.9 1.9 0.4 0.1 -0.6 Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.6 -4.3 -0.7 -0.2 Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -1.8 -2.7 -2.6 Tertiary 4.5 3.2 2.7 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 -4.8 -3.5 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.0 21.2 0.5 -0.9 -0.8 CO ₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 <td></td> <td>-0.7</td> | | | | | | | | | | | | | | | | -0.7 | | Industry 16.2 13.7 10.5 10.2 9.7 10.8 9.5 8.3 7.9 7.9 7.6 -4.3 -0.7 -0.2 Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -17.8 -2.7 -2.6 Tertiary 4.5 3.2 2.7 1.9 1.9 2.0 1.9 1.9 1.9 1.9 -1.9 -1.9 -4.8 -3.5 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.0 21.2 0.5 -0.9 -0.8 CO ₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 -0.1 -2.2 Non-CO ₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.3 14.4 14.6 14.7 15.0 15.4 -0.6 0.0 0.3 | | | | | | | | | | | | | | | | -3.9 | | Residential 2.9 1.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1 -17.8 -2.7 -2.6 Tertiary 4.5 3.2 2.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 -1.8 -2.7 -2.6 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.3 20.7 21.0 21.2 0.5 -0.9 -0.8 CO ₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 -0.1 -2.2 Non-CO ₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.3 14.4 14.6
14.7 15.0 15.4 -0.6 0.0 0.3 | | | | | | | | | | | | | | | | -0.1 | | Tertiary 4.5 3.2 2.7 1.9 1.9 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 4.8 3.5 0.2 Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.0 21.2 0.5 -0.9 -0.8 CO ₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 -0.1 -2.2 Non-CO ₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.3 14.4 14.6 14.7 15.0 15.4 -0.6 0.0 0.3 | | | | | | | | | | | | | | | | -1.1
-3.2 | | Transport 22.9 24.5 24.2 23.9 22.1 21.1 20.4 20.3 20.7 21.0 21.2 0.5 -0.9 -0.8 CO₂ Emissions (non energy related) 3.1 3.3 3.8 3.6 3.8 3.8 3.0 2.9 2.8 0.7 0.6 1.9 -0.1 -2.2 Non-CO₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.3 14.4 14.6 14.7 15.0 15.4 -0.6 0.0 0.3 | | | | | | | | | | | | | | | | -0.1 | | Non-CO ₂ GHG emissions 14.8 15.1 13.9 14.0 13.9 14.3 14.4 14.6 14.7 15.0 15.4 -0.6 0.0 0.3 | | | | | | | | | | | | | | | | 0.2 | | | · | | | | | | | | | | | | | | | -8.1 | | TOTAL OUR | Non-CO ₂ GHG emissions | 14.8 | 15.1 | 13.9 | 14.0 | 13.9 | 14.3 | 14.4 | 14.6 | 14.7 | 15.0 | 15.4 | -0.6 | 0.0 | 0.3 | 0.3 | | 101 AL GHG emissions index (1990=100) 98.8 95.2 90.5 88.6 86.1 83.5 79.8 78.3 76.2 73.8 70.4 | TOTAL GHG emissions Index (1990=100) | 98.8 | 95.2 | 90.5 | 88.6 | 86.1 | 83.5 | 79.8 | 78.3 | 76.2 | 73.8 | 70.4 | | | | | | UMMARY ENERGY BALANCE AND INDICAT | • • • | | | **** | | | | **** | | **** | | eden: R | | | | |---|-------------------|-------------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|-------------------|-------------------|-------------------|-------------------|---------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | | | ain Energy System Indicators | | | | | | | | | | | | A | nnual % | Cnange | <u></u> | | epulation (Million) | 8.861 | 9.011 | 9.341 | 9.732 | 10.072 | 10.355 | 10.578 | 10.746 | 10.898 | 11.060 | 11.231 | 0.5 | 0.8 | 0.5 | | | DP (in 000 M€10) | 283.3 | 323.5 | 349.2 | 388.9 | 423.6 | 463.1 | 505.2 | 551.4 | 603.1 | 659.7 | 717.0 | 2.1 | 2.0 | 1.8 | | | oss Inl. Cons./GDP (toe/M€10) | 168.2 | 159.9 | 147.0 | 137.8 | 125.9 | 116.8 | 107.3 | 99.9 | 93.3 | 86.9 | 80.2 | -1.3 | -1.5 | -1.6 | | | urbon intensity (t of CO ₂ /toe of GIC) | 1.16 | 1.01 | 0.96 | 0.90 | 0.86 | 0.81 | 0.77 | 0.74 | 0.69 | 0.68 | 0.63 | -1.9 | -1.1 | -1.1 | | | port Dependency % | 39.2 | 37.7 | 36.5 | 34.7 | 32.0 | 30.5 | 30.1 | 28.6 | 27.9 | 27.4 | 27.7 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 31.7 | 40.4 | 47.9 | 53.1 | 58.6 | 58.3 | 60.4 | 63.3 | 66.9 | 70.7 | 74.5 | 4.2 | 2.0 | 0.3 | | | s % of GDP | 11.2 | 12.5 | 13.7 | 13.7 | 13.8 | 12.6 | 12.0 | 11.5 | 11.1 | 10.7 | 10.4 | | | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | ustry (Energy on Value added, index 2000=100) | 100.0 | 68.7 | 69.3 | 65.0 | 58.3 | 58.4 | 56.5 | 53.9 | 51.3 | 48.8 | 45.2 | -3.6 | -1.7 | -0.3 | | | sidential (Energy on Private Income, index 2000=100) rtiary (Energy on Value added, index 2000=100) | 100.0 | 89.6 | 84.3 | 75.1 | 64.3 | 58.7 | 53.6 | 48.8 | 44.3 | 40.4 | 37.0 | -1.7 | -2.7 | -1.8 | | | ssenger transport (toe/Mpkm) | 100.0
44.1 | 88.8
42.5 | 89.2
41.8 | 78.6
38.9 | 68.7
34.1 | 64.7
30.9 | 57.6
28.2 | 52.5
27.1 | 47.5
26.7 | 43.6
26.3 | 39.7
25.9 | -1.1
-0.5 | -2.6
-2.0 | -1.7
-1.9 | | | ight transport (toe/Mtkm) | 36.1 | 40.1 | 37.7 | 36.0 | 33.7 | 31.0 | 29.2 | 28.2 | 27.4 | 26.9 | 26.5 | 0.4 | -1.1 | -1.4 | | | bon Intensity indicators | | | | | | | 20.2 | | | 20.0 | 20.0 | 0.4 | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 2.4 | -0.7 | -2.7 | | | al energy demand (t of CO ₂ /toe) | 1.34 | 1.28 | 1.10 | 1.04 | 1.02 | 1.00 | 0.94 | 0.89 | 0.88 | 0.87 | 0.86 | -1.9 | -0.7 | -0.9 | | | dustry | 1.14 | 1.09 | 0.83 | 0.78 | 0.77 | 0.80 | 0.69 | 0.59 | 0.55 | 0.54 | 0.52 | -3.1 | -0.7 | -1.2 | | | esidential | 0.40 | 0.20 | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | -18.1 | -2.2 | -2.7 | | | ertiary | 0.86 | 0.62 | 0.48 | 0.35 | 0.36 | 0.37 | 0.36 | 0.35 | 0.36 | 0.35 | 0.35 | -5.6 | -2.9 | 0.0 | | | ransport (C) | 2.83 | 2.86 | 2.79 | 2.77 | 2.70 | 2.67 | 2.64 | 2.63 | 2.63 | 2.62 | 2.60 | -0.1 | -0.3 | -0.2 | | | icators for renewables | | | | | | | | | | | | | | | | | are of RES in Gross Final Energy Consumption (D) (%) | 36.7 | 40.3 | 48.1 | 50.6 | 53.4 | 54.6 | 54.5 | 55.8 | 56.2 | 56.7 | 58.2 | | | | | | S in transport (%) | 1.9 | 3.5 | 6.5 | 8.3 | 11.9 | 13.8 | 15.2 | 15.9 | 15.9 | 16.5 | 17.5 | | | | | | oss Electricity generation by source (in GWh _e) ^(E) | 145231 | 158365 | 148506 | 161881 | 171978 | 177016 | 180905 | 191989 | 197829 | 209669 | 220189 | 0.2 | 1.5 | 0.5 | | | uclear energy | 57316 | 72377 | 57828 | 63650 | 67330 | 71710 | 73830 | 78409 | 82691 | 88206 | 89518 | 0.1 | 1.5 | 0.9 | | | olids | 1706 | 1169 | 1770 | 735 | 1218 | 1233 | 1207 | 1311 | 733 | 181 | 171 | 0.4 | -3.7 | -0.1 | | | il (including refinery gas) | 1533 | 1379 | 1774 | 589 | 294 | 173 | 109 | 81 | 90 | 151 | 154 | 1.5 | -16.5 | -9.4 | | | as (including derived gases) | 1292 | 1342 | 3828 | 2498 | 3565 | 1879 | 1716 | 2267 | 1749 | 2645 | 5477 | 11.5 | -0.7 | -7.1 | | | iomass-waste | 4342 | 8357 | 13397 | 17133 | 19542 | 20051 | 20886 | 21740 | 23651 | 24743 | 26124 | 11.9 | 3.8 | 0.7 | | | ydro (pumping excluded) | 78584 | 72803 | 66398 | 68113 | 68434 | 68966 | 69694 | 69606 | 69826 | 69924 | 70018 | -1.7 | 0.3 | 0.2 | | | /ind | 457 | 936 | 3502 | 9152 | 11421 | 12767 | 13224 | 18314 | 18809 | 23538 | 28442 | 22.6 | 12.5 | 1.5 | | | olar | 1 | 2 | 9 | 12 | 174 | 238 | 239 | 260 | 279 | 282 | 282 | 19.7 | 35.1 | 3.2 | | | eothermal and other renewables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | -100.0 | 0.0 | | | other fuels (hydrogen, methanol) | 0
32778 | 0
33409 | 36314 | 0
38687 | 0
40135 | 0
40366 | 0
40473 | 0
42633 | 0
43583 | 45836 | 0
48205 | 0.0
1.0 | 0.0
1.0 | 0.0
0.1 | | | Generation Capacity in MW _e uclear energy | 9786 | 9850 | 9275 | 9280 | 9282 | 9271 | 9271 | 9654 | 10173 | 10750 | 10807 | -0.5 | 0.0 | 0.0 | | | enewable energy | 15756 | 16661 | 18437 | 21053 | 22413 | 23403 | 23674 | 25587 | 25891 | 27597 | 29385 | 1.6 | 2.0 | 0.5 | | | Hydro (pumping excluded) | 15522 | 16147 | 16407 | 17394 | 17784 | 18218 | 18319 | 18429 | 18551 | 18684 | 18828 | 0.6 | 0.8 | 0.3 | | | Wind | 231 | 510 | 2019 | 3646 | 4447 | 4937 | 5107 | 6888 | 7051 | 8622 | 10265 | 24.2 | 8.2 | 1.4 | | | Solar | 3 | 4 | 11 | 13 | 182 | 247 | 248 | 269 | 289 | 292 | 292 | 13.9 | 32.4 | 3.2 | | | Other renewables (tidal etc.) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | hermal power | 7236 | 6898 | 8602 | 8354 | 8441 | 7692 | 7528 | 7393 | 7518 | 7490 | 8013 | 1.7 | -0.2 | -1.1 | | | of which cogeneration units | 4940 | 3950 | 5523 | 5463 | 5904 | 5060 | 5196 | 5179 | 5276 | 5186 | 5237 | 1.1 | 0.7 | -1.3 | | | of which CCS units | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 353 | 0.0 | 0.0 | 0.0 | | | Solids fired | 527 | 481 | 482 | 482 | 483 | 479 | 479 | 479 | 358 | 69 | 66 | -0.9 | 0.0 | -0.1 | | | Gas fired | 554 | 408 | 1107 | 1116 | 1357 | 1347 | 1280 | 1256 | 1073 | 1204 | 1501 | 7.2 | 2.1 | -0.6 | | | Oil fired | 3777 | 2501 | 3264 | 2826 | 2198 | 1420 | 1135 | 973 | 952 | 950 | 928 | -1.5 | -3.9 | -6.4 | | | Biomass-waste fired | 2377 | 3508
0 | 3749
0 | 3930
0 | 4403 | 4447 | 4634
0 | 4685
0 | 5135
0 | 5266
0 | 5519 | 4.7 | 1.6 | 0.5 | | | Hydrogen plants Geothermal heat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | g. Load factor of net power capacity (F) (%) | | | | | 47.1 | | | | | | | 0.0 | 0.0 | 0.0 | | | | 49.3 | 52.8 | 45.6 | 46.0 | 47.1 | 48.3 | 49.2 | 49.6 | 49.9 | 50.2 | 50.0 | | | | _ | | ctricity indicators
ciency of gross thermal power generation (%) | 23.4 | 23.5 | 27.3 | 29.3 | 26.2 | 27.7 | 31.2 | 32.1 | 33.2 | 35.3 | 36.5 | | | | | | of gross electricity from CHP | 5.9 | 6.7 | 12.5 | 29.3
11.7 | 13.1 | 13.2 | 13.2 | 13.2 | 13.3 | 13.2 | 13.2 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | | | | | | bon free gross electricity generation (%) | 96.9 | 97.5 | 95.0 | 97.6 | 97.0 | 98.1 | 98.3 | 98.1 | 98.7 | 98.6 | 97.4 | | | | | | uclear | 39.5 | 45.7 | 38.9 | 39.3 | 39.2 | 40.5 | 40.8 | 40.8 | 41.8 | 42.1 | 40.7 | | | | | | enewable energy forms | 57.4 | 51.8 | 56.1 | 58.3 | 57.9 | 57.6 | 57.5 | 57.3 | 56.9 | 56.5 | 56.7 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 132.3 | 137.1 | 142.0 | 150.8 | 159.0 | 168.8 | 178.1 | 184.4 | 190.2 | 196.0 | 202.2 | 0.7 | 1.1 | 1.1 | | | ublic road transport | 9.5 | 8.8 | 8.6 | 9.1 | 9.8 | 10.1 | 10.6 | 10.9 | 11.2 | 11.5 | 11.8 | -1.0 | 1.4 | 0.8 | | | rivate cars and motorcycles | 92.4 | 98.1 | 100.1 | 105.0 | 108.7 | 114.0 | 118.1 | 120.7 | 122.5 | 124.6 | 126.8 | 0.8 | 0.8 | 0.8 | | | ail | 10.2 | 11.0 | 13.5 | 14.4 | 15.4 | 16.2 | 17.1 | 17.7 | 18.3 | 18.9 | 19.5 | 2.8 | 1.3 | 1.1 | | | viation | 14.2 | 13.5 | 14.2 | 16.3 | 18.7 | 21.8 | 25.3 | 27.9 | 30.8 | 33.5 | 36.5 | 0.0 | 2.8 | 3.1 | | | land navigation | 6.1 | 5.8 | 5.6 | 6.0 | 6.4 | 6.7 | 6.9 | 7.1 | 7.3 | 7.5 | 7.6 | -0.9 | 1.4 | 0.8 | | | ight transport activity (Gtkm) | 62.5 | 68.6 | 72.2 | 76.6 | 81.4 | 87.1 | 93.2 | 97.6 | 102.2 | 106.0 | 109.8 | 1.5 | 1.2 | 1.4 | | | rucks | 35.6 | 38.6 | 36.3 | 38.2 | 40.2 | 41.8 | 43.3 | 45.0 | 46.7 | 48.4 | 50.1 | 0.2 | 1.0 | 0.7 | | | ail | 19.5 | 21.7 | 23.5 | 25.3 | 27.2 | 30.4 | 33.9 | 35.7 | 37.6 | 39.0 | 40.4 | 1.9 | 1.5 | 2.2 | | | land navigation | 7.4
 8.4 | 12.4 | 13.2 | 13.9 | 14.9 | 16.0 | 16.9 | 17.9 | 18.6 | 19.4 | 5.4 | 1.1 | 1.4 | | | ergy demand in transport (ktoe) (G) | 8088 | 8587 | 8651 | 8624 | 8173 | 7911 | 7748 | 7739 | 7865 | 8000 | 8142 | 0.7 | -0.6 | -0.5 | | | ublic road transport | 143 | 130 | 127 | 134 | 141 | 141 | 143 | 143 | 144 | 145 | 146 | -1.2 | 1.1 | 0.1 | | | rivate cars and motorcycles | 4556 | 4678 | 4782 | 4599 | 4043 | 3715 | 3520 | 3462 | 3457 | 3457 | 3470 | 0.5 | -1.7 | -1.4 | | | rucks | 2006 | 2543 | 2507 | 2527 | 2498 | 2438 | 2433 | 2460 | 2499 | 2551 | 2619 | 2.3 | 0.0 | -0.3 | | | Rail | 299 | 246 | 208 | 220 | 237 | 252 | 270 | 272 | 278 | 274 | 271 | -3.6 | 1.3 | 1.3 | | | viation | 928 | 846 | 840 | 944 | 1041 | 1145 | 1155 | 1170 | 1253 | 1336 | 1395 | -1.0 | 2.2 | 1.0 | | | nland navigation | 155 | 142 | 187 | 199 | 212 | 220 | 228 | 232 | 236 | 238 | 240 | 1.9 | 1.3 | 0.7 | | | United Kingdom: Reference scenario | | | | | | | | | | NERGY | | | | | | |---|---|--|---|--|--|--|---|---|--|--|--
--|---|---|---| | ktoe | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 | | | 30-'50 | | | | | | | | | | | | | | | nual % | | | | Production (incl.recovery of products) Solids | 270137
18658 | 204270
11899 | 148109
10751 | 130226
11394 | 111180
9983 | 95544
11182 | 82429
5917 | 74225
4425 | 69447
3794 | 60779
3485 | 54307 2669 | -5.8
-5.4 | -2.8
-0.7 | -2.9
-5.1 | -2.1 | | Oil | 129530 | 87786 | 64141 | 50743 | 39815 | 30831 | 23832 | 17758 | 12274 | 6812 | 2536 | -6.8 | -4.7 | -5.0 | -10.6 | | Natural gas | 97554 | 79397 | 51468 | 41748 | 32705 | 25095 | 19580 | 13514 | 8638 | 4413 | 1739 | -6.2 | -4.4 | -5.0 | -11.4 | | Nuclear | 21942 | 21054 | 16029 | 16255 | 7941 | 5563 | 8462 | 11461 | 16525 | 17477 | 17477 | -3.1 | -6.8 | 0.6 | 3.7 | | Renewable energy sources | 2453 | 4134 | 5720 | 10086 | 20736 | 22873 | 24638 | 27067 | 28217 | 28591 | 29884 | 8.8 | 13.7 | 1.7 | 1.0 | | Hydro | 437 | 423 | 310 | 465 | 464 | 463 | 464 | 463 | 463 | 464 | 463 | -3.4 | 4.1 | 0.0 | 0.0 | | Biomass & Waste | 1922 | 3430 | 4444 | 5965 | 8056 | 8227 | 8068 | 8424 | 8778 | 8535 | 8450 | 8.7 | 6.1 | 0.0 | 0.2 | | Wind | 81 | 250 | 876 | 2848 | 9857 | 11305 | 13058 | 14977 | 15952 | 16168 | 17573 | 26.8 | 27.4 | 2.9 | 1.5 | | Solar and others | 11 | 30 | 90 | 803 | 2317 | 2786 | 2907 | 3018 | 2814 | 3199 | 3159 | 23.0 | 38.4 | 2.3 | 0.4 | | Geothermal | 1 | 1 | 1 | 5 | 42 | 93 | 143 | 185 | 210 | 226 | 239 | 0.0 | 48.9 | 13.0 | 2.6 | | Net Imports | -39661 | 31733 | 60700 | 79199 | 74397 | 84421 | 91372 | 98031 | 105701 | 116354 | 123212 | 0.0 | 2.1 | 2.1 | 1.5 | | Solids | 14454 | 27222 | 15740 | 17461 | 7680 | 3215 | 1025 | 1250 | 1581 | 1474 | 2101 | 0.9 | -6.9 | -18.2 | 3.7 | | Oil | -46024 | -2592 | 11302 | 22915 | 27953 | 34931 | 40270 | 45612 | 50390 | 55640 | 60324 | 0.0 | 9.5 | 3.7 | 2.0 | | - Crude oil and Feedstocks | -39602 | 4552 | 12975 | 24187 | 29315 | 35521 | 40163 | 44710 | 48585 | 52840 | 56342 | 0.0 | 8.5 | 3.2 | 1.7 | | - Oil products | -6422
-9311 | -7144
5973 | -1673
31968 | -1272
35944 | -1362
34712 | -589
42155 | 107
46009 | 902
46845 | 1805
49231 | 2800
54712 | 3982
56239 | -12.6
0.0 | -2.0
0.8 | 0.0
2.9 | 19.8 | | Natural gas Electricity | 1219 | 715 | 229 | 838 | 1188 | 1082 | 978 | 980 | 889 | 896 | 831 | -15.4 | 17.9 | -1.9 | -0.8 | | | | | | | | | | | | | | | | | | | Gross Inland Consumption | 231729 | 233400 | 212629 | 206933 | 183020 | 177409 | 171188 | 169566 | 172374 | 174282 | 174539 | -0.9 | -1.5 | -0.7 | 0.1 | | Solids
Oil | 36516
82200 | 37737
83873 | 30457
73919 | 28856
71174 | 17662
65245 | 14397
63273 | 6941
61572 | 5675
60801 | 5375
60058 | 4960
59931 | 4771
60267 | -1.8
-1.1 | -5.3
-1.2 | -8.9
-0.6 | -1.9 | | | 82200
87399 | 83873
85473 | 73919
84814 | 71174
77684 | 65245 | 63273 | 61572
65506 | 60801 | 57701 | 59931
58795 | 57592 | -1.1
-0.3 | -1.2
-2.3 | -0.6
-0.3 | -0.1
-0.6 | | Natural gas | 21942 | 21054 | 16029 | 16255 | 7941 | 5563 | 8462 | 11461 | 16525 | 17477 | 17477 | -0.3
-3.1 | -2.3
-6.8 | -0.3
0.6 | 3.7 | | Nuclear
Electricity | 1219 | 715 | 229 | 838 | 1188 | 1082 | 978 | 980 | 16525
889 | 896 | 831 | -3.1
-15.4 | -ხ.8
17.9 | -1.9 | -0.8 | | Renewable energy forms | 2453 | 4548 | 7181 | 12126 | 23600 | 25911 | 27729 | 30412 | 31826 | 32222 | 33601 | 11.3 | 12.6 | 1.6 | 1.0 | | | 2400 | 4340 | 7101 | 12120 | 23000 | 23311 | 21123 | 30412 | 31020 | JZZZZ | 33001 | 11.5 | 12.0 | 1.0 | 1.0 | | as % in Gross Inland Consumption Solids | 15.8 | 16.2 | 14.3 | 13.9 | 9.7 | 8.1 | 4.1 | 3.3 | 3.1 | 2.8 | 2.7 | | |
 | | Oil | 35.5 | 35.9 | 34.8 | 34.4 | 35.6 | 35.7 | 36.0 | 35.9 | 34.8 | 34.4 | 34.5 | | | | | | Natural gas | 37.7 | 36.6 | 39.9 | 37.5 | 36.8 | 37.9 | 38.3 | 35.5 | 33.5 | 33.7 | 33.0 | | | | | | Nuclear | 9.5 | 9.0 | 7.5 | 7.9 | 4.3 | 37.9 | 4.9 | 6.8 | 9.6 | 10.0 | 10.0 | | | | | | Renewable energy forms | 1.1 | 1.9 | 3.4 | 5.9 | 12.9 | 14.6 | 16.2 | 17.9 | 18.5 | 18.5 | 19.3 | | | | | | Gross Electricity Generation in GWh _e | 374308 | 395354 | 377911 | 378836 | 356074 | 363790 | 373960 | 390507 | 422981 | 447085 | 454792 | 0.1 | -0.6 | 0.5 | 1.0 | | Self consumption and grid losses | 48243 | 46542 | 43689 | 47128 | 40616 | 39582 | 38310 | 39806 | 43176 | 45663 | 46137 | -1.0 | -0.7 | -0.6 | 0.9 | | | 56133 | 60361 | 57472 | 51448 | 37645 | 35902 | 29047 | 25362 | 24409 | 25544 | 24532 | 0.2 | -4.1 | -2.6 | -0.8 | | Fuel Inputs to Thermal Power Generation | 28027 | 29535 | 23521 | | | 9218 | 1822 | | 24409
878 | 668 | | -1.7 | | | | | Solids | 767 | 1000 | | 22146 | 11847 | | | 942
422 | | | 636 | -0.2 | -6.6 | -17.1 | -5.1
0.0 | | Oil (including refinery gas) Gas (including derived gases) | 26034 | 26641 | 752
29439 | 306
25593 | 327
21289 | 396
21795 | 392
22595 | 19293 | 435
18018 | 438
19481 | 396
18220 | 1.2 | -8.0
-3.2 | 1.8
0.6 | -1.1 | | Biomass & Waste | 1304 | 3185 | 3760 | 3402 | 4149 | 4424 | 4132 | 4575 | 4922 | 4776 | 5086 | 11.2 | 1.0 | 0.0 | 1.0 | | Geothermal heat | 1304 | 0 | 0 | 0 | 32 | 68 | 107 | 131 | 155 | 179 | 194 | 0.0 | 0.0 | 12.8 | 3.0 | | Hydrogen - Methanol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | Fuel Input to other conversion processes | 122735 | 117156 | 99795 | 97954 | 84394 | 78778 | 79194 | 80520 | 83806 | 83554 | 82815 | -2.0 | -1.7 | -0.6 | 0.2 | | Refineries | 89911 | 88250 | 75278 | 73451 | 67556 | 64853 | 62556 | 61092 | 59575 | 58451 | 57749 | -1.8 | -1.1 | -0.8 | -0.4 | | Biofuels and hydrogen production | 0 | 68 | 1127 | 1939 | 3210 | 3252 | 3256 | 3369 | 3397 | 3463 | 3586 | 0.0 | 11.0 | 0.1 | 0.5 | | District heating | 3201 | 2124 | 2258 | 897 | 898 | 726 | 615 | 549 | 409 | 407 | 414 | -3.4 | -8.8 | -3.7 | -2.0 | | Derived gases, cokeries etc. | 29623 | 26714 | 21131 | 21668 | 12729 | 9947 | 12766 | 15510 | 20425 | 21233 | 21065 | -3.3 | -4.9 | 0.0 | 2.5 | | Energy Branch Consumption | | | | | 10608 | 9398 | 8491 | 7758 | 7239 | 6750 | 6352 | | | -2.2 | -1.4 | | | | | | | 10000 | 9390 | 0491 | 1130 | 1239 | | | | | | -0.2 | | Non-Energy Uses | 14944 | 16104 | 13542 | 12864 | 0445 | 0202 | 0257 | 0222 | 0245 | | | -1.0 | -2.4 | | | | | 11323 | 11205 | 8084 | 8765 | 9445 | 9383 | 9357 | 9323 | 9215 | 9070 | 9006 | -3.3 | 1.6 | -0.1 | | | Final Energy Demand | | | | | 9445
134101 | 9383
133004 | 9357
130740 | 9323
130341 | 9215
131612 | 9070
133483 | | | | -0.1
-0.3 | | | by sector | 11323
152576 | 11205
152311 | 8084
142950 | 8765
142898 | 134101 | 133004 | 130740 | 130341 | 131612 | 133483 | 9006
134529 | -3.3
-0.6 | 1.6
-0.6 | -0.3 | 0. | | by sector
Industry | 11323
152576
36873 | 11205
152311
33390 | 8084
142950
28248 | 8765
142898
29326 | 134101
27981 | 133004
27267 | 130740
27351 | 130341
26554 | 131612
26205 | 133483
26218 | 9006
134529
26184 | -3.3
-0.6
-2.6 | 1.6
-0.6
-0.1 | -0.3
-0.2 | 0. -0.2 | | by sector
Industry
- energy intensive industries | 11323
152576
36873
19391 | 11205
152311
33390
16519 | 8084
142950
28248
13416 | 8765
142898
29326
14387 | 27981
13505 | 133004
27267
12889 | 27351
12548 | 26554
11975 | 26205
11468 | 26218
11167 | 9006
134529
26184
10807 | -3.3
-0.6
-2.6
-3.6 | 1.6
-0.6
-0.1
0.1 | -0.3
-0.2
-0.7 | -0.2
-0.7 | | by sector Industry - energy intensive industries - other industrial sectors | 11323
152576
36873
19391
17483 | 11205
152311
33390
16519
16871 | 8084
142950
28248
13416
14832 | 8765
142898
29326
14387
14939 | 27981
13505
14476 | 133004
27267
12889
14378 | 27351
12548
14803 | 130341
26554
11975
14580 | 26205
11468
14737 | 133483
26218
11167
15051 | 9006
134529
26184
10807
15377 | -3.3
-0.6
-2.6
-3.6
-1.6 | 1.6
-0.6
-0.1
0.1
-0.2 | -0.3
-0.2
-0.7
0.2 | -0.2
-0.3 | | by sector Industry - energy intensive industries - other industrial sectors Residential | 11323
152576
36873
19391
17483
43033 | 11205
152311
33390
16519
16871
44151 | 8084
142950
28248
13416
14832
44633 | 8765
142898
29326
14387
14939
44651 | 27981
13505
14476
42040 | 27267
12889
14378
42631 | 27351
12548
14803
41273 | 26554
11975
14580
41282 | 26205
11468
14737
41753 | 26218
11167
15051
42182 | 9006
134529
26184
10807
15377
42070 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4 | -0.6
-0.1
0.1
-0.2
-0.6 | -0.3
-0.2
-0.7
0.2
-0.2 | -0.:
-0.:
-0.:
0.: | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary | 11323
152576
36873
19391
17483
43033
20362 | 11205
152311
33390
16519
16871
44151
19675 | 8084
142950
28248
13416
14832
44633
17508 | 8765
142898
29326
14387
14939
44651
16414 | 27981
13505
14476
42040
15151 | 27267
12889
14378
42631
14875 | 27351
12548
14803
41273
14405 | 26554
11975
14580
41282
14589 | 26205
11468
14737
41753
15337 | 26218
11167
15051
42182
16137 | 9006
134529
26184
10807
15377
42070
16323 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5 | -0.:
-0.:
-0.:
0.: | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport | 11323
152576
36873
19391
17483
43033 | 11205
152311
33390
16519
16871
44151 | 8084
142950
28248
13416
14832
44633 | 8765
142898
29326
14387
14939
44651 | 27981
13505
14476
42040 | 27267
12889
14378
42631 | 27351
12548
14803
41273 | 26554
11975
14580
41282 | 26205
11468
14737
41753 | 26218
11167
15051
42182 | 9006
134529
26184
10807
15377
42070 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4 | -0.6
-0.1
0.1
-0.2
-0.6 | -0.3
-0.2
-0.7
0.2
-0.2 | -0.2
-0.3
-0.3
0.2
0.6 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel | 11323
152576
36873
19391
17483
43033
20362
52307 | 11205
152311
33390
16519
16871
44151
19675
55095 | 8084
142950
28248
13416
14832
44633
17508
52562 | 8765
142898
29326
14387
14939
44651
16414
52507 | 27981
13505
14476
42040
15151
48929 | 27267
12889
14378
42631
14875
48230 | 27351
12548
14803
41273
14405
47710 | 26554
11975
14580
41282
14589
47917 | 26205
11468
14737
41753
15337
48317 | 26218
11167
15051
42182
16137
48945 | 9006
134529
26184
10807
15377
42070
16323
49953 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5
-0.3 | 0.2
-0.2
-0.3
0.2
0.2
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids | 11323
152576
36873
19391
17483
43033
20362
52307 | 11205
152311
33390
16519
16871
44151
19675
55095 | 8084
142950
28248
13416
14832
44633
17508
52562 | 8765
142898
29326
14387
14939
44651
16414
52507 | 27981
13505
14476
42040
15151
48929 | 27267
12889
14378
42631
14875
48230 | 27351
12548
14803
41273
14405
47710 | 130341
26554
11975
14580
41282
14589
47917 | 26205
11468
14737
41753
15337
48317 | 133483
26218
11167
15051
42182
16137
48945 | 9006
134529
26184
10807
15377
42070
16323
49953 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5
-0.3 | 0.2
-0.2
-0.2
0.2
0.6
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701 | 27981
13505
14476
42040
15151
48929
3566
51951 | 27267
12889
14378
42631
14875
48230
3249
50460 | 27351
12548
14803
41273
14405
47710
3266
48959 | 130341
26554
11975
14580
41282
14589
47917
3033
48433 | 26205
11468
14737
41753
15337
48317
2880
47990 | 133483
26218
11167
15051
42182
16137
48945
2746
48104 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4 |
1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5
-0.3
-0.9
-0.6 | 0.2
-0.2
-0.3
0.2
0.6
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111 | 27981
13505
14476
42040
15151
48929
3566
51951
41032 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873 | 27351
12548
14803
41273
14405
47710
3266
48959
39159 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843 | 26205
11468
14737
41753
15337
48317
2880
47990
37156 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7
-1.0
-1.5
-1.3 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5
-0.3
-0.9
-0.6
-0.5 | 0.1
-0.2
-0.7
0.2
0.2
-1.0
-0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709 | 27267
12889
14378
42631
14875
48230
3249
50460
40873
28381 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278 | 26554
11975
14580
41282
14589
47917
3033
48433
37843
30548 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7
-1.0
-1.5
-1.3
-0.2 | -0.3
-0.2
-0.7
0.2
-0.2
-0.5
-0.3
-0.9
-0.6
-0.5
0.6 | 0.1
-0.2
-0.1
0.2
0.2
-1.0
0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139 | 27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524 | 27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442 | 26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719 | 26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 | -0.3
-0.2
-0.7
0.2
-0.5
-0.3
-0.9
-0.6
-0.5
0.6 | 00.2 -0.7 0.6 0.2 -1.0 -0.2 -1.0 -1.1 -1.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285
2232 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
577011
28634
1139
5128 | 27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239 | 27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495 | 26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751 | 26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 | -0.3 -0.2 -0.7 0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.6 0.3 | 0
-0.2
-0.5
0
0.6
0.2
-1.0
-0.2
0.9
1
0.1 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285
2232
0 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23 | 27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
39159
29278
1442
8495
141 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 | -0.3 -0.2 -0.7 0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.6 0.3 6.0 | -0.20
-0.20
-0.20
-1.40
-0.20
-1.40
-0.30
-0.30
-0.30 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiany Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285
2232
0 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79 | 27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173
26312 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262 |
9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 | -0.3 -0.2 -0.7 0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.6 0.3 6.0 | 0.1
-0.2
-0.3
-0.3
-1.1
-0.3
-0.3
-0.3 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285
2232
0 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
28634
1139
5128
23
9615 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173
26312 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
27813 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 -2.2 | -0.3 -0.2 -0.7 0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 0.3 6.0 1.4 -1.5 | 0.0 -0000001001000 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173
26312
401.6 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219
27813
392.8
119.9 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37533
37533
37533
37583
1787
8256
290
29719
389.0
112.4 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 -2.2 -3.4 | -0.3 -0.2 -0.7 0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.5 0.6 -1.4 -1.5 -2.8 | 0.0 -000000100100100 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0 | 8084
142950
28248
13416
14832
44633
17508
52562
3962
60323
46917
28230
1285
2232
0
4658
621.5
273.9
347.6 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0 | 27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4
146.3
129.1 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173
26312
401.6
125.5
276.1 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219
27813
392.8
119.9
272.9 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
274.2 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
78256
290
29719
389.0
112.4
276.6 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 -2.2 -3.4 -1.4 | -0.3 -0.2 -0.7 -0.2 -0.5 -0.3 -0.9 -0.6 -0.6 -0.6 -0.3 -0.9 -1.4 -1.5 -2.8 | 0.0
-0.1
-0.0
0.0
0.0
-1.1
-0.0
-0.3
-1.1
-0.0 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (GHG emissions of which non ETS sectors GHG emissions | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0
2071
691.0
314.7
376.3
572.3 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0
489.6 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4
146.3
282.1
338.3 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
30548
1620
8691
173
26312
401.6
125.5
276.1
312.8 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
27813
392.8
119.9
272.9
304.3 | 133483 26218 11167 15051 42182 16137 48945 2746 48104 37249 34735 1754 8632 262 28033 390.3 116.1 274.2 305.5 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5 |
-3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3 | 1.6
-0.6
-0.1
0.1
-0.2
-0.6
-1.4
-0.7
-1.5
-1.3
-0.2
1.7
14.0
0.0
-1.5
-1.3
-1.2
-2.2
-3.4
-2.2 | -0.3 -0.2 -0.7 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.6 0.3 6.0 1.4 -1.5 -2.8 -0.7 -1.6 | 0.000000000000000000000000000000000000 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (4018 emissions CO ₂ Emissions (energy related) Power generation/District heating | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0
2071
691.0
314.7
376.3
572.3
199.6 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 65 621.5 273.9 347.6 518.6 178.2 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0
48.6
48.6
48.6 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
39159
392278
1442
8495
141
23946
428.4
146.3
282.1
338.3
62.9 | 130341
26554
11975
14580
41282
14589
47917
3033
48493
37843
30548
1620
8691
173
26312
401.6
125.5
276.1
312.8
47.3 | 26205 11468 14737 41753 15337 48317 2880 47990 37156 32896 1719 8751 219 27813 392.8 119.9 272.9 304.3 | 133483 26218 11167 15051 42182 16137 48945 2746 48104 37249 34735 1754 8632 262 28033 390.3 116.1 274.2 305.5 46.5 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
2919
389.0
112.4
276.6
303.5
43.4 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3 | 1.6 -0.6 -0.1 0.1 -0.2 -0.6 -1.4 -0.7 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 -2.2 -3.4 -1.4 -5.3 | -0.3 -0.2 -0.7 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 0.6 -0.6 -0.5 -0.3 -0.9 -1.4 -1.5 -2.8 -0.7 -1.6 -4.8 | 000. 0. 0. 01. 00. 310101. | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
690
0
2071
691.0
314.7
376.3
572.3 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 178.2 29.0 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0
489.6
157.0 | 27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2
103.2
22.6 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1441
23946
428.4
146.3
282.1
338.3
62.9
18.2 | 26554
11975
14580
41282
14589
47917
3033
348433
37843
30548
1620
26312
401.6
125.5
276.1
312.8
47.3 | 26205
11468
14737
41753
15337
2880
37156
32896
1719
27813
392.8
119.9
272.9
304.3
44.0 | 26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
274.2
305.5
46.5 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
412.3 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3 | 1.6
-0.6
-0.1
-0.2
-0.6
-1.4
-0.7
-1.0
-1.5
-1.3
-0.2
1.7
14.0
0.0
0.1
-1.4
-2.2
-3.4
-1.4
-2.5
-3.2
-2.5 | -0.3 -0.2 -0.7 -0.2 -0.5 -0.3 -0.9 -0.6 -0.6 -0.6 -0.3 -0.9 -1.4 -1.5 -2.8 -0.7 -1.6 -4.8 -2.1 | 000. 0. 0. 01. 00. 3. 101011111. | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiany Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205
152311
33390
16519
16871
44151
19675
55095
4579
65413
50380
29981
1268
6990
0
2071
691.0
314.7
376.3
572.3
199.6
35.2
67.6 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 178.2 29.0 54.5 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0
489.6
157.8
27.0
56.8 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2
103.2
22.6
50.8 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.6
377.7
92.2
19.9
48.1 | 130740
27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4
146.3
38.3
62.9
18.2
48.2 | 26554
11975
14580
41282
14589
47917
3033
348433
30548
1620
8691
173
26312
401.6
125.5
276.1
312.8
47.3
16.1
143.5 | 26205 11468 14737 41753 15337 2880 47990 37156 32896 1719 27813 392.8 119.9 272.9 304.3 44.0 41.3 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
274.2
305.5
46.5
13.2
40.3 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
12.3
40.6 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3 | 1.6
-0.6
-0.1
-0.2
-0.6
-1.4
-0.7
-1.0
-1.5
-1.3
-0.2
-1.7
14.0
0.0
-1.4
-2.2
-3.4
-1.4
-2.6
-5.3
-0.7 | -0.3 -0.2 -0.7 -0.2 -0.5 -0.3 -0.9 -0.6 -0.5 -0.6 -0.6 -0.6 -1.4 -1.5 -1.6 -4.8 | 0.4
-0.2-0.0
0.2-0.0
0.0
0.0
0.0
0.0
0.0
1.7
-1.3
1.7
-0.9
-1.8
-0.9
-1.8
-0.9
-1.8
-0.9
-0.9 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205 152311 33390 16519 16871 44151 19675 55095 4579 65413 50380 29981 1268 690 0 2071 691.0 314.7 376.3 199.6 35.2 67.6 80.4 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 178.2 29.0 54.5 83.1 | 8765
142898
29326
14387
14939
44651
16414
52507
4162
57701
46111
28634
1139
5128
23
9615
590.1
256.2
334.0
157.8
27.0
56.8
80.1 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
30.8
30.8
22.6
50.8
71.8 |
133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9
48.1
71.6 | 130740 27351 12548 14803 41273 14405 47710 3266 48959 39159 29278 1442 8495 141 23946 428.4 146.3 328.1 328.1 328.1 328.1 328.1 328.1 328.1 348.2 48.2 67.4 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
30548
1620
8691
173
26312
401.6
125.5
276.18
47.3
16.1
43.5
65.2 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219
27813
392.8
119.9
270.4
344.0
14.6
41.3
64.4 | 133483 26218 11167 15051 42182 16137 48945 2746 48104 37249 34735 1754 8632 262 28033 390.3 116.1 274.2 305.5 46.5 13.2 40.3 65.0 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
12.3
40.6
64.3 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-6.2
13.5
-1.3
-0.9
-0.9
-0.8
-3.4
-0.1 | 1.6 -0.6 -0.1 -0.1 -0.2 -0.6 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 1.7 14.0 0.0 16.1 -2.2 -3.4 -2.6 -5.3 -2.5 -0.7 -1.4 | -0.3 -0.2 -0.7 -0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.6 -0.6 -0.6 -1.4 -1.5 -2.8 -4.8 -2.1 -0.5 -0.6 -0.6 | 0.1 -0.2-0.7 -0.2-0.7 -0.2-0.7 -0.6 -0.2-0.7 -0.6 -0.2-0.7 -0.5 -0.7 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO ₂ Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205 152311 33390 16519 16871 44151 19675 55095 4579 65413 50380 29981 1268 690 0 2071 591.0 311.7 376.3 572.3 199.6 35.2 67.6 80.4 455.3 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 0 4658 621.5 273.9 347.6 518.6 29.0 54.5 83.1 19.8 | 8765 142898 29326 14387 14939 44651 16414 52507 4162 57701 46111 28634 1139 5128 23 9615 590.1 256.2 334.0 489.6 157.8 27.0 56.8 80.1 16.1 | 27981
13505
14476
42040
15151
15151
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2
103.2
22.6
50.8
71.8 | 27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9
48.1
71.6
6
11.7 | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1441
23946
428.4
146.3
282.1
38.3
62.9
18.2
48.2
67.4
9.7 | 26554
11975
14580
41282
14589
47917
3033
48433
37843
30548
1620
8691
173
26312
401.6
125.5
276.1
312.8
47.3
16.1
43.5
65.2
9.2 | 26205 11468 14737 41753 15337 48317 2880 37156 32896 1719 27813 392.8 119.9 272.9 304.3 44.0 14.6 41.3 64.4 8.2 | 26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
274.2
30.5
13.2
40.3
65.0
7.8 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
1112.4
276.6
303.5
43.4
12.3
40.6
64.3
8.3 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3
-0.9
-0.8
-3.4
0.1
-3.0 | 1.6
-0.6
-0.1
-0.1
-0.2
-0.6
-1.4
-0.7
-1.5
-1.3
-0.2
-1.7
14.0
-0.0
-1.5
-1.3
-0.2
-2.5
-3.4
-1.4
-2.5
-3.4
-1.4
-1.4
-1.4
-1.4
-1.4
-1.4
-1.4
-1 | -0.3 -0.2 -0.7 -0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.6 -0.6 -0.6 -0.6 -0.7 -1.1 -1.5 -2.8 -0.7 -4.8 -2.1 -0.5 -0.6 -0.6 -2.9 | -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (HG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205 152311 33390 16519 16871 44151 19675 55095 4579 65413 50380 29981 1268 690 0 2071 691.0 314.7 376.3 572.3 199.6 80.4 25.3 164.2 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 178.2 29.0 54.5 83.1 19.8 154.0 | 8765 142898 29326 14387 14939 44651 16414 52507 4162 57701 46111 28634 1139 5128 23 9615 590.1 256.2 334.0 489.6 157.8 80.1 16.1 151.7 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2
103.2
6
50.8
71.8
71.8
71.8
71.8
71.8
71.8
71.8
71 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9
48.1
71.6
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11. | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4
146.3
382.1
338.3
62.9
18.9
67.4
9.7
131.9 | 26554 11975 14580 41282 14589 47917 3033 348433 30548 1620 8691 173 26312 401.6 125.5 276.1 312.8 47.3 16.1 43.5 65.2 9.2 131.5 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219
27813
392.8
119.9
272.9
304.3
44.6
41.3
64.4
8.2
2
131.8 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
1274.2
305.5
46.5
13.2
40.3
65.0
7.8
132.7 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
12.3
40.6
64.3
8.3
3.3
134.7 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-1.3
0.0
12.5
-1.3
-0.9
-0.8
-3.4
0.1
-3.0
-3.6
-1.6
0.4
-1.5
0.0 | 1.6 -0.6 -0.1 -0.1 -0.2 -0.6 -0.1 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 -1.7 -1.4 -0.7 -1.6 -1.7 -1.7 -1.0 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 | -0.3 -0.2 -0.7 -0.2 -0.2 -0.5 -0.6 -0.6 -0.5 0.6 -0.6 -0.7 -1.6 -4.8 -0.7 -1.6 -2.9 -0.4 | -0.1 -0.2 -0.7 -0.2 -0.7 -0.2 -0.6 -0.2 -1.0 -0.6 -0.2 -1.0 -0.1 -0.1 -0.1 -0.1
-0.5 -1.8 -2.0 -0.9 -0.8 -0.1 -0.8 -0.8 -0.8 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors (CHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport CO2 Emissions (non energy related) | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205 152311 33390 16519 16871 44151 19675 55095 4579 65413 50380 29981 1268 6990 0 2071 691.0 314.7 376.3 372.3 199.6 35.2 67.6 80.4 25.3 164.2 20.4 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 518.6 178.2 29.0 54.5 83.1 19.8 154.0 155.1 | 8765 142898 29326 14387 14939 44651 16414 52507 4162 57701 46111 28634 1139 5128 23 9615 590.1 256.2 334.0 489.6 157.8 27.0 56.8 80.1 16.1 151.7 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.6
302.6
398.2
103.2
22.6
398.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2
103.2 | 133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19. | 130740 27351 12548 14803 41273 14405 47710 3266 48959 29278 1442 8495 141 23946 428.4 146.3 282.1 338.3 62.9 18.2 67.4 9.7 131.9 14.5 | 130341
26554
11975
14580
41282
14589
47917
3033
48433
30548
1620
8691
173
26312
401.6
125.5
276.1
312.8
47.3
16.1
43.5
65.2
9.2
131.5
131.4 | 26205 11468 14737 41753 15337 48317 2880 47990 37156 32896 1719 8751 219 27813 392.8 119.9 277.9 304.3 44.0 14.6 41.3 64.4 8.2 131.8 12.6 | 133483 26218 11167 15051 42182 16137 48945 2746 48104 37249 34735 1754 8632 262 28033 390.3 116.1 274.2 305.5 46.5 13.2 7.8 132.7 7.3 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
12.3
40.6
64.3
8.3
134.7
6.8 |
-3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-0.4
-1.1
0.0
-6.2
13.5
0.0
12.5
-1.3
-0.9
-0.8
-3.4
0.1
-3.0
-3.6
-1.6
0.4
-1.1
0.0
-3.6
-1.6
0.4
-1.1
0.0
-3.6
-1.1
0.0
-3.6
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1
-1.1 | 1.6 -0.6 -0.1 -0.1 -0.2 -0.6 -0.1 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 -1.7 -1.0 -1.4 -2.6 -5.3 -2.5 -0.7 -1.4 -1.1 -1.2 -1.5 -1.5 | -0.3 -0.2 -0.7 -0.2 -0.2 -0.5 -0.3 -0.9 -0.6 -0.6 -0.6 -0.6 -0.6 -1.5 -2.8 -2.1 -0.7 -1.6 -4.8 -2.1 -0.5 -0.6 -0.9 -0.9 -0.9 -0.0 -0.0 -0.0 -0.0 -0.0 | -0.22
-0.77
-0.22
-1.00
-0.22
-1.00
-0.23
-1.13
-0.15
-0.18
-1.8
-2.00
-0.22
-0.8
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0 | | by sector Industry - energy intensive industries - other industrial sectors Residential Tertiary Transport by fuel Solids Oil Gas Electricity Heat (from CHP and District Heating) Renewable energy forms Other fuels (hydrogen, ethanol) RES in Gross Final Energy Consumption (A) TOTAL GHG emissions (Mt of CO2 eq.) of which ETS sectors (2013 scope) GHG emissions of which non ETS sectors GHG emissions CO2 Emissions (energy related) Power generation/District heating Energy Branch Industry Residential Tertiary Transport | 11323
152576
36873
19391
17483
43033
20362
52307
5956
63047
52180
28325
2439
630
0
1430
707.5 | 11205 152311 33390 16519 16871 44151 19675 55095 4579 65413 50380 29981 1268 690 0 2071 691.0 314.7 376.3 572.3 199.6 80.4 25.3 164.2 | 8084 142950 28248 13416 14832 44633 17508 52562 3962 60323 46917 28230 1285 2232 0 4658 621.5 273.9 347.6 518.6 178.2 29.0 54.5 83.1 19.8 154.0 | 8765 142898 29326 14387 14939 44651 16414 52507 4162 57701 46111 28634 1139 5128 23 9615 590.1 256.2 334.0 489.6 157.8 80.1 16.1 151.7 | 134101
27981
13505
14476
42040
15151
48929
3566
51951
41032
27709
1524
8239
79
20789
496.4
193.8
302.6
398.2
103.2
6
50.8
71.8
71.8
71.8
71.8
71.8
71.8
71.8
71 |
133004
27267
12889
14378
42631
14875
48230
3249
50460
40873
28381
1579
8350
113
22220
474.1
179.5
294.6
377.7
92.2
19.9
48.1
71.6
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11.7
11. | 27351
12548
14803
41273
14405
47710
3266
48959
39159
29278
1442
8495
141
23946
428.4
146.3
382.1
338.3
62.9
18.9
67.4
9.7
131.9 | 26554 11975 14580 41282 14589 47917 3033 348433 30548 1620 8691 173 26312 401.6 125.5 276.1 312.8 47.3 16.1 43.5 65.2 9.2 131.5 | 26205
11468
14737
41753
15337
48317
2880
47990
37156
32896
1719
8751
219
27813
392.8
119.9
272.9
304.3
44.6
41.3
64.4
8.2
2
131.8 | 133483
26218
11167
15051
42182
16137
48945
2746
48104
37249
34735
1754
8632
262
28033
390.3
116.1
1274.2
305.5
46.5
13.2
40.3
65.0
7.8
132.7 | 9006
134529
26184
10807
15377
42070
16323
49953
2667
48512
37733
35283
1787
8256
290
29719
389.0
112.4
276.6
303.5
43.4
12.3
40.6
64.3
8.3
3.3
134.7 | -3.3
-0.6
-2.6
-3.6
-1.6
0.4
-1.5
0.0
-4.0
-0.4
-1.1
0.0
-1.3
0.0
12.5
-1.3
-0.9
-0.8
-3.4
0.1
-3.0
-3.6
-1.6
0.4
-1.5
0.0 | 1.6 -0.6 -0.1 -0.1 -0.2 -0.6 -0.1 -1.4 -0.7 -1.0 -1.5 -1.3 -0.2 -1.7 -1.4 -0.7 -1.6 -1.7 -1.7 -1.0 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 | -0.3 -0.2 -0.7 -0.2 -0.2 -0.5 -0.6 -0.6 -0.5 0.6 -0.6 -0.7 -1.6 -4.8 -0.7 -1.6 -2.9 -0.4 | -0.1 -0.2 -0.7 -0.2 -0.7 -0.2 -0.6 -0.2 -1.0 -0.6 -0.2 -1.0 -0.1 -0.1 -0.1 -0.1 -0.5 -1.8 -2.0 -0.9 -0.8 -0.1 -0.8 -0.8 -0.8 | | JMMARY ENERGY BALANCE AND INDICATO | DRS (B) | | | | | | | | | Unit | ed King | jdom: R | eferenc | ce scei | na | |--|-----------------------|------------------|------------------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------|--------------------|--------------|----------| | | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | '00-'10 ' | 10-'20 ' | 20-'30 ' | '30 | | | | | | | | | | | | | | An | nnual % (| Change | <u>}</u> | | in Energy System Indicators | 50.705 | 60.000 | 62 027 | C4 440 | cc 202 | CO 250 | 70 200 | 74.074 | 70 440 | 74.000 | 70.400 | 0.5 | 0.7 | 0.0 | | | pulation (Million)
PP (in 000 M€10) | 58.785
1444.8 | 60.039
1664.7 | 62.027
1706.3 | 64.148
1835.1 | 66.292
2023.8 | 68.350
2229.4 | 70.208
2445.4 | 71.874
2687.2 | 73.443
2965.4 | 74.962
3271.0 | 76.406
3581.8 | 0.5
1.7 | 0.7
1.7 | 0.6
1.9 | | | oss Inl. Cons./GDP (toe/M€10) | 160.4 | 140.2 | 124.6 | 112.8 | 90.4 | 79.6 | 70.0 | 63.1 | 58.1 | 53.3 | 48.7 | -2.5 | -3.2 | -2.5 | | | rbon intensity (t of CO ₂ /toe of GIC) | 2.44 | 2.45 | 2.44 | 2.37 | 2.18 | 2.13 | 1.98 | 1.84 | 1.77 | 1.75 | 1.74 | 0.0 | -1.1 | -1.0 | | | port Dependency % | -17.0 | 13.5 | 28.3 | 37.8 | 40.1 | 46.9 | 52.6 | 56.9 | 60.3 | 65.7 | 69.4 | | | | | | tal energy-rel. and other mitigation costs ^(B) (in 000 M€10) | 162.6 | 162.9 | 184.4 | 222.0 | 260.0 | 278.3 | 293.4 | 305.0 | 312.1 | 326.2 | 342.8 | 1.3 | 3.5 | 1.2 | | | s % of GDP | 11.3 | 9.8 | 10.8 | 12.1 | 12.8 | 12.5 | 12.0 | 11.3 | 10.5 | 10.0 | 9.6 | | 0.0 | | | | ergy intensity indicators | | | | | | | | | | | | | | | | | lustry (Energy on Value added, index 2000=100) | 100.0 | 93.0 | 83.4 | 81.1 | 73.0 | 67.0 | 63.6 | 58.3 | 54.4 | 51.6 | 49.1 | -1.8 | -1.3 | -1.4 | | | sidential (Energy on Private Income, index 2000=100) | 100.0 | 87.2 | 87.6 | 82.4 | 71.1 | 65.9 | 58.3 | 53.0 | 48.4 | 44.0 | 39.6 | -1.3 | -2.1 | -2.0 | | | rtiary (Energy on Value added, index 2000=100) | 100.0 | 79.9 | 67.4 | 58.7 | 48.6 | 43.0 | 37.6 | 34.4 | 32.5 | 30.7 | 28.2 | -3.9 | -3.2 | -2.5 | | | ssenger transport (toe/Mpkm) | 46.1 | 47.1 | 45.2 | 42.6 | 37.5 | 34.1 | 31.7 | 30.3 | 29.3 | 28.8 | 28.6 | -0.2 | -1.9 | -1.7 | | | ight transport (toe/Mtkm) | 62.9 | 61.8 | 67.5 | 66.6 | 61.0 | 59.3 | 55.5 | 55.0 | 53.4 | 52.6 | 51.8 | 0.7 | -1.0 | -0.9 | | | rbon Intensity indicators | | | | | | | | | | | | | | | | | ctricity and Steam production (t of CO ₂ /MWh) | 0.48 | 0.49 | 0.45 | 0.40 | 0.27 | 0.24 | 0.16 | 0.11 | 0.10 | 0.10 | 0.09 | -0.6 | -4.9 | -5.2 | | | al energy demand (t of CO ₂ /toe) | 2.23 | 2.22 | 2.18 | 2.13 | 2.03 | 2.00 | 1.97 | 1.91 | 1.87 | 1.84 | 1.84 | -0.3 | -0.7 | -0.3 | | | ndustry | 2.10 | 2.02 | 1.93 | 1.94 | 1.82 | 1.76 | 1.76 | 1.64 | 1.58 | 1.54 | 1.55 | -0.8 | -0.6 | -0.3 | | | esidential | 1.92 | 1.82 | 1.86 | 1.80 | 1.71 | 1.68 | 1.63 | 1.58 | 1.54 | 1.54 | 1.53 | -0.3 | -0.8 | -0.5 | | | ertiary | 1.32 | 1.29 | 1.13 | 0.98 | 0.86 | 0.78 | 0.68 | 0.63 | 0.53 | 0.48 | 0.51 | -1.5 | -2.7 | -2.4 | | | ransport (C) | 2.94 | 2.98 | 2.93 | 2.89 | 2.80 | 2.78 | 2.76 | 2.75 | 2.73 | 2.71 | 2.70 | 0.0 | -0.5 | -0.1 | _ | | licators for renewables | | | | | , | 400 | | 60.0 | 6.1.6 | 61.1 | | | | | | | are of RES in Gross Final Energy Consumption (") (%) | 0.9 | 1.3 | 3.2 | 6.7 | 15.5 | 16.8 | 18.5 | 20.3 | 21.2 | 21.1 | 22.2 | | | | | | S in transport (%) | 0.0 | 0.2 | 2.9 | 5.2 | 10.1 | 11.0 | 11.9 | 12.8 | 13.4 | 13.9 | 14.8 | | | | | | oss Electricity generation by source (in GWh _e) (E) | 374375 | 395425 | 377979 | 378836 | 356074 | 363790 | 373960 | 390507 | 422981 | 447085 | 454792 | 0.1 | -0.6 | 0.5 | | | luclear energy | 85063
119950 | 81618
134637 | 62140
107695 | 61901
105609 | 29981
58060 | 22177
45608 | 34923
9629 | 48103
5207 | 70364
4785 | 76479
3763 | 76479 | -3.1
-1.1 | -7.0
6.0 | 1.5 | | | olids
bil (including refinery gas) | 8446 | 5339 | 4861 | 1657 | 1796 | 2055 | 2246 | 2484 | 2612 | 2650 | 3573
2368 | -1.1 | -6.0
-9.5 | -16.4
2.3 | | | Gas (including derived gases) | 150427 | 154339 | 176101 | 154161 | 120687 | 125667 | 139003 | 121076 | 118384 | 131000 | 122377 | 1.6 | -3.7 | 1.4 | | | iomass-waste | 4455 | 11658 | 13362 | 14704 | 17693 | 19197 | 17993 | 20898 | 22726 | 21942 | 22089 | 11.6 | 2.8 | 0.2 | | | ydro (pumping excluded) | 5086 | 4922 | 3604 | 5402 | 5397 | 5388 | 5392 | 5386 | 5381 | 5391 | 5389 | -3.4 | 4.1 | 0.0 | | | /ind | 947 | 2904 | 10183 | 33120 | 114619 | 131449 | 151832 | 174152 | 185490 | 188001 | 204340 | 26.8 | 27.4 | 2.9 | | | olar | 1 | 8 | 33 | 1516 | 5767 | 8262 | 8907 | 9140 | 9148 | 9213 | 9279 | 42.0 | 67.5 | 4.4 | | | eothermal and other renewables | 0 | 0 | 0 | 766 | 2073 | 3988 | 4033 | 4061 | 4090 | 8645 | 8898 | 0.0 | 0.0 | 6.9 | | | other fuels (hydrogen, methanol) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | t Generation Capacity in MW _e | 74755 | 80254 | 91185 | 97797 | 110945 | 118038 | 123687 | 133987 | 143320 | 149805 | 156263 | 2.0 | 2.0 | 1.1 | | | luclear energy | 13038 | 10962 | 10399 | 9585 | 3708 | 2802 | 4402 | 6056 | 8850 | 9600 | 9600 | -2.2 | -9.8 | 1.7 | | | enewable energy | 1870 | 2796 | 6876 | 15648 | 47064 | 55819 | 62789 | 70309 | 73965 | 76664 | 81833 | 13.9 | 21.2 | 2.9 | | | Hydro (pumping excluded) | 1462 | 1453 | 1595 | 1622 | 1622 | 1622 | 1622 | 1622 | 1642 | 1682 | 1769 | 0.9 | 0.2 | 0.0 | | | Wind | 406 | 1332 | 5204 | 12140 | 38627 | 44340 | 50721 | 58028 |
61656 | 62410 | 67334 | 29.1 | 22.2 | 2.8 | | | Solar (idel at a) | 2 | 11 | 77 | 1574 | 5985 | 8263 | 8853 | 9065 | 9073 | 9133 | 9193 | 44.1 | 54.5 | 4.0 | | | Other renewables (tidal etc.) | 0 | 0 | 72010 | 312 | 830 | 1594 | 1594 | 1594 | 1594 | 3440 | 3536 | 0.0 | 0.0 | 6.7 | | | hermal power of which cogeneration units | 59846
5794 | 66496
5425 | 73910
4310 | 72564
5579 | 60173
7222 | 59416
7600 | 56496
7996 | 57622
9195 | 60505
10709 | 63540
10954 | 64830
11465 | 2.1
-2.9 | -2.0
5.3 | -0.6
1.0 | | | of which CCS units | 0 | 0 | 4310 | 0 | 448 | 448 | 448 | 947 | 947 | 947 | 947 | 0.0 | 0.0 | 0.0 | | | Solids fired | 26097 | 25930 | 25256 | 19089 | 7220 | 5527 | 3989 | 2142 | 2142 | 725 | 471 | -0.3 | -11.8 | -5.8 | | | Gas fired | 26612 | 33444 | 40990 | 47011 | 48907 | 49617 | 47937 | 50924 | 53349 | 57668 | 58923 | 4.4 | 1.8 | -0.2 | | | Oil fired | 5819 | 5442 | 5520 | 4192 | 1307 | 1147 | 1052 | 966 | 819 | 866 | 757 | -0.5 | -13.4 | -2.1 | | | Biomass-waste fired | 1319 | 1680 | 2144 | 2273 | 2735 | 3117 | 3504 | 3573 | 4174 | 4257 | 4654 | 5.0 | 2.5 | 2.5 | | | Hydrogen plants | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | | | Geothermal heat | 0 | 0 | 0 | 0 | 4 | 9 | 14 | 17 | 21 | 24 | 26 | 0.0 | 0.0 | 12.8 | | | g. Load factor of net power capacity (F) (%) | 54.7 | 53.7 | 45.3 | 42.0 | 35.2 | 34.0 | 33.6 | 32.5 | 32.9 | 33.3 | 32.5 | | | | | | ectricity indicators | | | | | | | | | | | | | | | Г | | ciency of gross thermal power generation (%) | 43.4 | 43.6 | 45.2 | 46.2 | 45.3 | 46.1 | 50.0 | 50.8 | 52.4 | 53.7 | 52.8 | | | | | | of gross electricity from CHP | 6.1 | 6.8 | 6.2 | 8.6 | 9.9 | 11.5 | 14.4 | 12.5 | 12.9 | 12.9 | 11.4 | | | | | | of electricity from CCS | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.3 | 1.2 | 2.1 | 1.8 | 1.7 | 1.6 | | | | | | bon free gross electricity generation (%) | 25.5 | 25.6 | 23.6 | 31.0 | 49.3 | 52.4 | 59.7 | 67.0 | 70.3 | 69.3 | 71.8 | | | | | | uclear | 22.7 | 20.6 | 16.4 | 16.3 | 8.4 | 6.1 | 9.3 | 12.3 | 16.6 | 17.1 | 16.8 | | | | | | enewable energy forms | 2.8 | 4.9 | 7.2 | 14.7 | 40.9 | 46.3 | 50.3 | 54.7 | 53.6 | 52.2 | 55.0 | | | | | | nsport sector | | | | | | | | | | | | | | | | | ssenger transport activity (Gpkm) | 822.9 | 882.2 | 857.7 | 896.5 | 933.6 | 989.5 | 1045.8 | 1086.9 | 1130.1 | 1164.8 | 1200.3 | 0.4 | 0.9 | 1.1 | | | ublic road transport | 48.5 | 46.5 | 46.5 | 48.5 | 50.6 | 53.0 | 55.6 | 57.6 | 59.6 | 61.2 | 62.8 | -0.4 | 8.0 | 1.0 | | | rivate cars and motorcycles | 644.7 | 680.6 | 658.8 | 683.5 | 705.1 | 739.9 | 772.3 | 796.6 | 821.8 | 842.1 | 862.5 | 0.2 | 0.7 | 0.9 | | | ail | 46.7 | 53.1 | 66.0 | 70.1 | 74.9 | 79.4 | 84.6 | 88.2 | 91.9 | 94.1 | 96.5 | 3.5 | 1.3 | 1.2 | | | viation | 77.4 | 96.7 | 81.3 | 89.0 | 97.5 | 111.5 | 127.3 | 138.3 | 150.4 | 160.9 | 171.9 | 0.5 | 1.8 | 2.7 | | | land navigation | 5.5 | 5.3 | 5.1 | 5.3 | 5.5 | 5.7 | 6.0 | 6.2 | 6.4 | 6.5 | 6.6 | -0.9 | 0.8 | 0.8 | | | ight transport activity (Gtkm) | 219.9 | 219.2 | 203.8 | 215.5 | 228.1 | 244.7 | 261.9 | 273.0 | 284.1 | 293.0 | 301.8 | -0.8 | 1.1 | 1.4 | | | rucks | 165.6 | 161.3 | 146.7 | 154.9 | 163.6 | 176.3 | 189.3 | 198.5 | 207.7 | 214.8 | 221.8 | -1.2 | 1.1 | 1.5 | | | ail
nland navigation | 18.1
36.2 | 21.4
36.5 | 18.6 | 20.0 | 21.7
42.8 | 23.4 | 25.4 | 26.7 | 28.0 | 29.3 | 30.7 | 0.3 | 1.5 | 1.6 | | | | | | 38.5 | 40.6 | | 44.9 | 47.2 | 47.7 | 48.4 | 48.9 | 49.4 | 0.6 | 1.1 | 1.0 | _ | | | 51798 | 55091 | 52551 | 52505 | 48926 | 48227
685 | 47707
692 | 47914
700 | 48314
712 | 48942
721 | 49949
732 | 0.1
-0.7 | -0.7
0.4 | -0.3 | | | ergy demand in transport (ktoe) ^(G) | | 000 | | | | | | | /1/ | 721 | 1.52 | -0.7 | U.4 | 0.2 | | | ergy demand in transport (ktoe) (G) Public road transport | 704 | 663 | 656
25610 | 674 | 680 | | | | | | | | | -1.1 | | | ergy demand in transport (ktoe) ⁽⁹⁾ rublic road transport trivate cars and motorcycles | 704
25608 | 26965 | 25610 | 24232 | 20944 | 19321 | 18751 | 18649 | 18715 | 18843 | 19109 | 0.0 | -2.0 | -1.1
0.4 | | | ergy demand in transport (ktoe) ⁽⁶⁾ Public road transport Private cars and motorcycles Trucks | 704
25608
12628 | 26965
12123 | 25610
12323 | 24232
12822 | 20944
12280 | 19321
12792 | 18751
12725 | 18649
13198 | 18715
13342 | 18843
13603 | 19109
13840 | 0.0
-0.2 | -2.0
0.0 | 0.4 | | | ergy demand in transport (ktoe) ^(©)
Public road transport
Private cars and motorcycles | 704
25608 | 26965 | 25610 | 24232 | 20944 | 19321 | 18751 | 18649 | 18715 | 18843 | 19109 | 0.0 | -2.0 | | | - (A) including the part of electricity and heat generated by renewables - (B) excluding payments for auctioned emission allowances (if applicable) - (C) including pipeline transport and other non-specified transport - (D) according to Eurostat's indicator "Share of Renewables in Gross Final Energy Consumption", calculated as ratio of renewable energy in all sectors including the part of electricity and heat generated by renewables over final energy demand increased by distribution losses and self consumption of electricity and steam plants - (E) for years 2000 to 2010, total gross electricity generation by source as reported in this table and total gross electricity generation reported in table (A), as part of the energy balance, slightly differ becauses of differences in the respective statistical sources - (F) electricity generated over maximum potential generation based on net power capacity - (G) energy demand in transport reported in table (B) does not include pipeline transport and other non-specified transport compared to table (A) where this category is included Disclaimer: Energy and transport statistics reported in this publication and used for the modelling are taken mainly from Eurostat and from the publications "EU Energy in Figures" of the Directorate General for Energy and "EU Transport in Figures" of the Directorate General for Mobility and Transport. Energy and transport statistical concepts have developed differently in the past according to their individual purposes. Energy demand in transport reflects usually sales of fuels at the point of refuelling, which may differ from the region of consumption. This is particularly relevant for air transport and road freight transport. For road freight, transport activity is defined according to the nationality principle because of the lack of sufficiently long time series defined according to the territoriality principle. These differences should be borne in mind when comparing energy and transport figures. This applies in particular to transport activity ratios, such as energy efficiency in freight transport, which is measured in tonnes of oil equivalent per million tonne-km. #### Abbreviations GIC: Gross Inland Consumption CHP: combined heat and power toe: tonne of oil equivalent, or 10' kilocalories, or 41.86 GJ (Gigajoule) ktoe: 1000 toe MW: Megawatt or 10⁶ watt MWh: megawatt-hour or 10⁶ watt-hours GWh: gigawatt-hour or 109 watt-hours t: metric tonnes, or 1000 kilogrammes Mt: Million metric tonnes km: kilometre pkm: passenger-kilometre (one passenger transported a distance of one kilometre) tkm: tonne-kilometre (one tonne transported a distance of one kilometre) Gpkm: Giga passenger-kilometre, or 10^9 passenger-kilometre Gtkm: Giga tonne-kilometre, or 109 tonne-kilometre EU-28 Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH ₄ | | 430.24 | 400.48 | 352.13 | 343.34 | 336.03 | 325.58 | 325.21 | 327.46 | 328.69 | 329.81 | | Total N₂O | | 389.56 | 340.26 | 340.70 | 327.97 | 322.61 | 320.02 | 318.27 | 318.40 | 319.48 | 320.26 | | Total F-gases | | 83.49 | 90.20 | 83.10 | 86.20 | 88.25 | 82.61 | 81.21 | 79.38 | 83.65 | 87.88 | | Agriculture | 4A-4F | 481.19 | 463.90 | 466.33 | 464.80 | 460.77 | 459.75 | 459.72 | 460.99 | 462.91 | 464.88 | | Energy | 1A-1B | 114.68 | 101.41 | 95.84 | 88.67 | 82.90 | 73.40 | 69.18 | 67.88 | 66.08 | 63.87 | | Industry | 2A-2E,2F.7,8 | 64.43 | 21.52 | 20.73 | 9.43 | 9.59 | 9.75 | 9.87 | 10.00 | 10.11 | 10.16 | | Waste | 6A | 109.37 | 99.96 | 54.83 | 52.24 | 48.35 | 44.99 | 46.75 | 48.88 | 50.98 | 53.09 | | Wastewater | 6B | 38.87 | 37.64 | 38.82 | 39.78 | 40.73 | 41.53 | 41.88 | 42.18 | 42.35 | 42.48 | | Air Conditioning & refrigeration | 2F.1 | 56.09 | 68.01 | 60.57 | 62.46 | 63.45 | 59.25 | 57.01 | 54.41 | 57.89 | 61.38 | | Other sectors | 3D, 2F.2,4,9 | 25.47 | 25.30 | 25.62 | 26.94 | 27.91 | 26.36 | 27.08 | 27.72 | 28.32 | 28.90 | | Calibration to UNFCCC data | | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | 13.19 | | in ETS sectors | | 57.35 | 17.83 | 16.91 | 5.53 | 5.55 | 5.55 | 5.52 | 5.48 | 5.39 | 5.30 | | in non-ETS sectors | | 845.95 | 813.11 | 759.02 | 751.98 | 741.34 | 722.67 | 719.16 | 719.76 | 726.43 | 732.66 | | Total non-CO ₂ GHG | | 903.29 | 830.94 | 775.93 | 757.51 | 746.89 | 728.22 | 724.68 | 725.24 | 731.82 | 737.96 | Source: GAINS EU-27 Non-CO₂ GHG emissions Reference scenario | | LINIEGGG | 2005 | 2010 | 2015 | 2020 | 2025 | 2020 | 2025 | 2040 | 2045 | 2050 | |--|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | _ | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 427.17 | 397.39 | 349.44 | 340.81 | 333.39 | 322.95 | 322.83 | 325.06 | 326.25 | 327.37 | | Total N₂O | | 386.08 | 336.99 | 337.60 | 325.57 | 320.21 | 317.59 | 315.78 | 315.88 | 316.96 | 317.74 | | Total F-gases | | 83.16 |
89.77 | 82.79 | 85.90 | 87.94 | 82.31 | 80.90 | 79.07 | 83.33 | 87.54 | | Agriculture | 4A-4F | 477.84 | 460.78 | 463.27 | 461.76 | 457.70 | 456.63 | 456.54 | 457.79 | 459.70 | 461.70 | | Energy | 1A-1B | 113.41 | 100.16 | 94.75 | 87.78 | 82.02 | 72.56 | 68.36 | 67.06 | 65.25 | 63.05 | | Industry | 2A-2E,2F.7,8 | 63.66 | 20.74 | 19.96 | 9.35 | 9.51 | 9.67 | 9.79 | 9.92 | 10.03 | 10.09 | | Waste | 6A | 108.42 | 98.99 | 54.22 | 51.59 | 47.63 | 44.24 | 46.25 | 48.35 | 50.43 | 52.53 | | Wastewater | 6B | 38.41 | 37.17 | 38.33 | 39.27 | 40.21 | 41.00 | 41.34 | 41.63 | 41.80 | 41.92 | | Air Conditioning & refrigeration | 2F.1 | 55.80 | 67.61 | 60.29 | 62.19 | 63.18 | 58.99 | 56.74 | 54.14 | 57.61 | 61.08 | | Other sectors | 3D, 2F.2,4,9 | 25.32 | 25.16 | 25.48 | 26.79 | 27.76 | 26.21 | 26.93 | 27.56 | 28.17 | 28.75 | | Calibration to UNFCCC data | | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | 13.55 | | in ETS sectors | | 56.59 | 17.05 | 16.15 | 5.46 | 5.48 | 5.48 | 5.45 | 5.41 | 5.33 | 5.23 | | in non-ETS sectors | | 839.83 | 807.10 | 753.69 | 746.81 | 736.07 | 717.37 | 714.05 | 714.60 | 721.21 | 727.43 | | Total non-CO₂ GHG | | 896.42 | 824.16 | 769.84 | 752.28 | 741.55 | 722.85 | 719.51 | 720.01 | 726.53 | 732.66 | Source: GAINS Austria Non-CO₂ GHG emissions Reference scenario | | 552 5 | | | | | | | | | | | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 6.09 | 5.34 | 5.25 | 4.96 | 4.87 | 4.97 | 4.85 | 4.83 | 4.87 | 4.92 | | Total N₂O | | 5.43 | 5.33 | 5.62 | 5.51 | 5.55 | 5.59 | 5.48 | 5.44 | 5.43 | 5.39 | | Total F-gases | | 1.85 | 1.75 | 1.70 | 1.75 | 1.75 | 1.34 | 1.27 | 1.21 | 1.25 | 1.31 | | Agriculture | 4A-4F | 7.24 | 7.15 | 7.54 | 7.47 | 7.57 | 7.68 | 7.51 | 7.50 | 7.53 | 7.52 | | Energy | 1A-1B | 1.64 | 1.80 | 1.75 | 1.55 | 1.38 | 1.27 | 1.19 | 1.11 | 1.08 | 1.09 | | Industry | 2A-2E,2F.7,8 | 0.73 | 0.25 | 0.25 | 0.26 | 0.27 | 0.27 | 0.28 | 0.28 | 0.29 | 0.30 | | Waste | 6A | 1.76 | 1.02 | 0.87 | 0.72 | 0.72 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | | Wastewater | 6B | 0.50 | 0.52 | 0.53 | 0.54 | 0.56 | 0.58 | 0.58 | 0.58 | 0.59 | 0.59 | | Air Conditioning & refrigeration | 2F.1 | 0.93 | 1.19 | 1.09 | 1.12 | 1.11 | 1.00 | 0.92 | 0.85 | 0.88 | 0.92 | | Other sectors | 3D, 2F.2,4,9 | 0.60 | 0.51 | 0.56 | 0.57 | 0.58 | 0.27 | 0.28 | 0.29 | 0.29 | 0.30 | | Calibration to UNFCCC data | | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | -0.02 | | in ETS sectors | | 0.27 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | in non-ETS sectors | | 13.11 | 12.35 | 12.50 | 12.14 | 12.10 | 11.82 | 11.54 | 11.40 | 11.48 | 11.54 | | Total non-CO₂ GHG | | 13.38 | 12.42 | 12.57 | 12.21 | 12.17 | 11.89 | 11.61 | 11.47 | 11.55 | 11.62 | Belgium Non-CO₂ GHG emissions Reference scenario | 3 | | | | | | | | | | | | |--|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 7.05 | 6.51 | 6.63 | 6.20 | 6.19 | 6.14 | 6.04 | 6.06 | 6.06 | 6.09 | | Total N₂O | | 9.66 | 8.33 | 6.68 | 6.70 | 6.70 | 6.69 | 6.57 | 6.57 | 6.56 | 6.58 | | Total F-gases | | 1.90 | 2.04 | 1.82 | 1.87 | 1.91 | 1.75 | 1.72 | 1.68 | 1.81 | 1.93 | | Agriculture | 4A-4F | 10.81 | 10.54 | 10.83 | 10.77 | 10.73 | 10.65 | 10.34 | 10.28 | 10.19 | 10.15 | | Energy | 1A-1B | 1.12 | 1.24 | 1.19 | 1.10 | 1.07 | 1.03 | 1.05 | 1.05 | 1.05 | 1.06 | | Industry | 2A-2E,2F.7,8 | 3.62 | 2.28 | 0.46 | 0.47 | 0.47 | 0.47 | 0.47 | 0.48 | 0.48 | 0.49 | | Waste | 6A | 1.34 | 0.93 | 0.95 | 0.65 | 0.68 | 0.69 | 0.72 | 0.76 | 0.80 | 0.85 | | Wastewater | 6B | 0.63 | 0.65 | 0.67 | 0.71 | 0.74 | 0.77 | 0.80 | 0.83 | 0.87 | 0.90 | | Air Conditioning & refrigeration | 2F.1 | 1.40 | 1.61 | 1.34 | 1.38 | 1.41 | 1.31 | 1.26 | 1.21 | 1.31 | 1.42 | | Other sectors | 3D, 2F.2,4,9 | 0.45 | 0.39 | 0.44 | 0.46 | 0.48 | 0.41 | 0.43 | 0.45 | 0.47 | 0.49 | | Calibration to UNFCCC data | | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | -0.76 | | in ETS sectors | | 3.40 | 2.07 | 0.25 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | | in non-ETS sectors | | 15.21 | 14.82 | 14.87 | 14.52 | 14.55 | 14.32 | 14.07 | 14.05 | 14.17 | 14.34 | | Total non-CO ₂ GHG | | 18.61 | 16.89 | 15.12 | 14.78 | 14.81 | 14.58 | 14.32 | 14.31 | 14.43 | 14.60 | Source: GAINS Bulgaria Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|------|------|------|------|------|------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 7.76 | 6.63 | 5.05 | 4.44 | 4.30 | 4.15 | 4.16 | 3.83 | 3.91 | 3.94 | | Total N₂O | | 5.01 | 4.96 | 4.98 | 5.01 | 5.08 | 5.13 | 5.21 | 5.14 | 5.14 | 5.04 | | Total F-gases | | 0.52 | 0.62 | 0.61 | 0.63 | 0.59 | 0.51 | 0.47 | 0.44 | 0.46 | 0.48 | | Agriculture | 4A-4F | 5.53 | 5.68 | 5.60 | 5.87 | 5.96 | 6.07 | 6.17 | 6.03 | 6.11 | 6.00 | | Energy | 1A-1B | 1.26 | 1.28 | 1.31 | 1.29 | 1.34 | 1.18 | 1.17 | 0.89 | 0.89 | 0.92 | | Industry | 2A-2E,2F.7,8 | 0.73 | 0.29 | 0.32 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | | Waste | 6A | 3.55 | 3.10 | 1.58 | 0.97 | 0.78 | 0.75 | 0.78 | 0.80 | 0.82 | 0.84 | | Wastewater | 6B | 1.10 | 0.65 | 0.64 | 0.62 | 0.61 | 0.59 | 0.58 | 0.57 | 0.56 | 0.55 | | Air Conditioning & refrigeration | 2F.1 | 0.38 | 0.55 | 0.53 | 0.54 | 0.50 | 0.41 | 0.37 | 0.33 | 0.35 | 0.36 | | Other sectors | 3D, 2F.2,4,9 | 0.24 | 0.18 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | 0.18 | 0.18 | | Calibration to UNFCCC data | | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | in ETS sectors | | 0.71 | 0.27 | 0.29 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | | in non-ETS sectors | | 12.59 | 11.94 | 10.35 | 9.98 | 9.88 | 9.69 | 9.76 | 9.32 | 9.43 | 9.38 | | Total non-CO₂ GHG | | 13.30 | 12.21 | 10.65 | 10.08 | 9.97 | 9.79 | 9.85 | 9.41 | 9.52 | 9.46 | Source: GAINS Croatia Non-CO₂ GHG emissions Reference scenario | 2 | | | | | | | | | | | |--------------|--|--|--|---|--|---|---|--|--|---| | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | CRF code | | | | | | | | | | | | | 3.06 | 3.09 | 2.69 | 2.53 | 2.64 | 2.63 | 2.37 | 2.40 | 2.44 | 2.44 | | | 3.49 | 3.27 | 3.09 | 2.40 | 2.40 | 2.44 | 2.49 | 2.52 | 2.53 | 2.52 | | | 0.33 | 0.43 | 0.31 | 0.31 | 0.31 | 0.30 | 0.31 | 0.31 | 0.33 | 0.34 | | 4A-4F | 3.35 | 3.12 | 3.05 | 3.04 | 3.07 | 3.12 | 3.18 | 3.20 | 3.21 | 3.19 | | 1A-1B | 1.27 | 1.25 | 1.10 | 0.89 | 0.89 | 0.84 | 0.82 | 0.82 | 0.83 | 0.82 | | 2A-2E,2F.7,8 | 0.77 | 0.78 | 0.77 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | 6A | 0.95 | 0.98 | 0.61 | 0.65 | 0.73 | 0.75 | 0.50 | 0.52 | 0.55 | 0.56 | | 6B | 0.46 | 0.47 | 0.49 | 0.51 | 0.52 | 0.53 | 0.54 | 0.55 | 0.55
| 0.56 | | 2F.1 | 0.29 | 0.40 | 0.27 | 0.27 | 0.27 | 0.26 | 0.27 | 0.26 | 0.28 | 0.29 | | 3D, 2F.2,4,9 | 0.15 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | | | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | -0.36 | | | 0.76 | 0.77 | 0.76 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | | | 6.12 | 6.01 | 5.33 | 5.17 | 5.28 | 5.30 | 5.11 | 5.16 | 5.22 | 5.23 | | | 6.88 | 6.78 | 6.09 | 5.23 | 5.34 | 5.37 | 5.17 | 5.23 | 5.29 | 5.29 | | | 4A-4F
1A-1B
2A-2E,2F.7,8
6A
6B
2F.1 | UNFCCC CRF code 3.06 3.49 0.33 4A-4F 3.35 1A-1B 1.27 2A-2E,2F.7,8 0.77 6A 0.95 6B 0.46 2F.1 0.29 3D, 2F.2,4,9 0.15 -0.36 0.76 6.12 | UNFCCC CRF code 3.06 3.09 3.49 3.27 0.33 0.43 4A-4F 3.35 3.12 1A-1B 1.27 1.25 2A-2E,2F.7,8 0.77 0.78 6A 0.95 0.98 6B 0.46 0.47 2F.1 0.29 0.40 3D, 2F.2,4,9 0.15 0.14 -0.36 -0.36 0.76 0.77 6.12 6.01 | CRF code 3.06 3.09 2.69 3.49 3.27 3.09 0.33 0.43 0.31 4A-4F 3.35 3.12 3.05 1A-1B 1.27 1.25 1.10 2A-2E,2F.7,8 0.77 0.78 0.77 6A 0.95 0.98 0.61 6B 0.46 0.47 0.49 2F.1 0.29 0.40 0.27 3D, 2F.2,4,9 0.15 0.14 0.15 -0.36 -0.36 -0.36 0.76 0.77 0.76 6.12 6.01 5.33 | UNFCCC CRF code 3.06 3.09 2.69 2.53 3.49 3.27 3.09 2.40 0.33 0.43 0.31 0.31 4A-4F 3.35 3.12 3.05 3.04 1A-1B 1.27 1.25 1.10 0.89 2A-2E,2F.7,8 0.77 0.78 0.77 0.07 6A 0.95 0.98 0.61 0.65 6B 0.46 0.47 0.49 0.51 2F.1 0.29 0.40 0.27 0.27 3D, 2F.2,4,9 0.15 0.14 0.15 0.15 -0.36 -0.36 -0.36 -0.36 0.76 0.77 0.76 0.06 6.12 6.01 5.33 5.17 | UNFCCC CRF code 3.06 3.09 2.69 2.53 2.64 2.40 0.33 0.43 0.31 0.31 0.31 0.31 4A-4F 3.35 3.12 3.05 3.04 3.07 1A-1B 1.27 1.25 1.10 0.89 0.89 2.4-2E,2F.7,8 0.77 0.78 0.77 0.07 0.08 6A 0.95 0.98 0.61 0.65 0.73 6B 0.46 0.47 0.49 0.51 0.52 2F.1 0.29 0.40 0.27 0.27 0.27 3D, 2F.2,4,9 0.15 0.14 0.15 0.15 0.15 0.15 0.76 0.76 0.76 0.77 0.76 0.06 0.07 6.12 6.01 5.33 5.17 5.28 | UNFCCC CRF code 3.06 3.09 2.69 2.53 2.64 2.63 3.49 3.27 3.09 2.40 2.40 2.44 0.33 0.43 0.31 0.31 0.31 0.30 4A-4F 3.35 3.12 3.05 3.04 3.07 3.12 1A-1B 1.27 1.25 1.10 0.89 0.89 0.84 2A-2E,2F.7,8 0.77 0.78 0.77 0.07 0.08 0.08 6A 0.95 0.98 0.61 0.65 0.73 0.75 6B 0.46 0.47 0.49 0.51 0.52 0.53 2F.1 0.29 0.40 0.27 0.27 0.27 0.26 3D, 2F.2,4,9 0.15 0.14 0.15 0.15 0.15 0.15 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 | UNFCCC CRF code 3.06 3.09 2.69 2.53 2.64 2.63 2.37 3.49 3.27 3.09 2.40 2.40 2.40 2.44 2.49 0.33 0.43 0.31 0.31 0.31 0.30 0.31 4A-4F 3.35 3.12 3.05 3.04 3.07 3.12 3.18 1A-1B 1.27 1.25 1.10 0.89 0.89 0.84 0.82 2A-2E,2F.7,8 0.77 0.78 0.77 0.07 0.08 0.08 0.08 6A 0.95 0.98 0.61 0.65 0.73 0.75 0.50 6B 0.46 0.47 0.49 0.51 0.52 0.53 0.54 2F.1 0.29 0.40 0.27 0.27 0.27 0.26 0.27 3D, 2F.2,4,9 0.15 0.14 0.15 0.15 0.15 0.16 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.3 | UNFCCC CRF code 3.06 3.09 2.69 2.53 2.64 2.63 2.37 2.40 3.49 3.27 3.09 2.40 2.40 2.44 2.49 2.52 0.33 0.43 0.31 0.31 0.31 0.30 0.31 0.31 4A-4F 3.35 3.12 3.05 3.04 3.07 3.12 3.18 3.20 1A-1B 1.27 1.25 1.10 0.89 0.89 0.84 0.82 0.82 2A-2E,2F.7,8 0.77 0.78 0.77 0.07 0.08 0.08 0.08 0.0 | UNFCCC CRF code 3.06 3.09 2.69 2.53 2.64 2.63 2.37 2.40 2.44 3.49 3.27 3.09 2.40 2.40 2.44 2.49 2.52 2.53 0.33 0.43 0.31 0.31 0.31 0.30 0.31 0.31 0.33 4A-4F 3.35 3.12 3.05 3.04 3.07 3.12 3.18 3.20 3.21 1A-1B 1.27 1.25 1.10 0.89 0.89 0.84 0.82 0.82 0.83 2A-2E,2F.7,8 0.77 0.78 0.77 0.07 0.08 0.08 0.08 0.0 | Cyprus Non-CO₂ GHG emissions Reference scenario | - 71: | | | | | | | | | | | | |--|--------------|------|------|------|------|------|------|------|------|------|------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH ₄ | | 0.83 | 0.81 | 0.50 | 0.57 | 0.68 | 0.80 | 0.85 | 0.91 | 0.96 | 0.97 | | Total N₂O | | 0.47 | 0.47 | 0.45 | 0.44 | 0.44 | 0.45 | 0.46 | 0.46 | 0.47 | 0.47 | | Total F-gases | | 0.14 | 0.19 | 0.16 | 0.16 | 0.17 | 0.16 | 0.16 | 0.15 | 0.16 | 0.17 | | Agriculture | 4A-4F | 0.62 | 0.61 | 0.59 | 0.60 | 0.61 | 0.63 | 0.64 | 0.65 | 0.65 | 0.66 | | Energy | 1A-1B | 0.05 | 0.05 | 0.04 | 0.10 | 0.20 | 0.32 | 0.35 | 0.40 | 0.43 | 0.42 | | Industry | 2A-2E,2F.7,8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Waste | 6A | 0.36 | 0.38 | 0.14 | 0.13 | 0.13 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | | Wastewater | 6B | 0.16 | 0.13 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.09 | | Air Conditioning & refrigeration | 2F.1 | 0.12 | 0.17 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.12 | 0.13 | 0.14 | | Other sectors | 3D, 2F.2,4,9 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | Calibration to UNFCCC data | | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 1.44 | 1.46 | 1.11 | 1.17 | 1.29 | 1.41 | 1.46 | 1.52 | 1.59 | 1.62 | | Total non-CO ₂ GHG | | 1.44 | 1.46 | 1.11 | 1.17 | 1.29 | 1.41 | 1.46 | 1.52 | 1.59 | 1.62 | Source: GAINS Czech Republic Non-CO₂ GHG emissions Reference scenario | _ | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH ₄ | | 10.40 | 9.86 | 7.94 | 7.64 | 7.69 | 7.62 | 7.26 | 7.87 | 8.02 | 8.11 | | Total N₂O | | 8.18 | 7.20 | 6.78 | 6.51 | 6.46 | 6.30 | 6.15 | 6.14 | 6.19 | 6.29 | | Total F-gases | | 0.75 | 0.96 | 0.89 | 0.93 | 0.94 | 0.87 | 0.84 | 0.79 | 0.84 | 0.88 | | Agriculture | 4A-4F | 8.72 | 8.19 | 7.94 | 7.98 | 7.91 | 7.83 | 7.71 | 7.76 | 7.82 | 7.92 | | Energy | 1A-1B | 6.18 | 5.64 | 5.30 | 5.15 | 5.23 | 5.08 | 4.64 | 5.15 | 5.25 | 5.31 | | Industry | 2A-2E,2F.7,8 | 1.07 | 0.47 | 0.53 | 0.18 | 0.18 | 0.19 | 0.20 | 0.21 | 0.21 | 0.22 | | Waste | 6A | 2.51 | 2.66 | 0.83 | 0.71 | 0.68 | 0.68 | 0.72 | 0.75 | 0.78 | 0.82 | | Wastewater | 6B | 0.69 | 0.71 | 0.73 | 0.75 | 0.76 | 0.77 | 0.78 | 0.78 | 0.78 | 0.78 | | Air Conditioning & refrigeration | 2F.1 | 0.63 | 0.83 | 0.73 | 0.76 | 0.75 | 0.66 | 0.61 | 0.55 | 0.58 | 0.61 | | Other sectors | 3D, 2F.2,4,9 | 0.23 | 0.23 | 0.25 | 0.27 | 0.29 | 0.30 | 0.31 | 0.32 | 0.32 | 0.33 | | Calibration to UNFCCC data | | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | -0.71 | | in ETS sectors | | 1.02 | 0.41 | 0.46 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | in non-ETS sectors | | 18.30 | 17.61 | 15.14 | 14.98 | 14.98 | 14.68 | 14.14 | 14.69 | 14.94 | 15.17 | | Total non-CO₂ GHG | | 19.32 | 18.02 | 15.60 | 15.09 | 15.09 | 14.79 | 14.25 | 14.80 | 15.05 | 15.28 | Source: GAINS **Denmark** Non-CO₂ GHG emissions Reference scenario | | - | | | | | | | | | | | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 5.64 | 5.45 | 5.21 | 5.14 | 5.19 | 5.22 | 5.16 | 5.15 | 5.12 | 5.12 | | Total N₂O | | 6.28 | 6.17 | 5.86 | 5.74 | 5.60 | 5.46 | 5.31 | 5.19 | 5.11 | 5.03 | | Total F-gases | | 1.01 | 1.05 | 1.18 | 1.24 | 1.29 | 1.20 | 1.23 | 1.27 | 1.37 | 1.50 | | Agriculture | 4A-4F | 9.84 | 9.87 | 9.38 | 9.31 | 9.27 | 9.22 | 8.99 | 8.81 | 8.69 | 8.55 | | Energy | 1A-1B | 1.12 | 1.05 | 0.96 | 0.83 | 0.72 | 0.63 | 0.62 | 0.59 | 0.56 | 0.54 | | Industry | 2A-2E,2F.7,8 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | Waste | 6A | 0.39 | 0.19 | 0.19 | 0.17 | 0.19 | 0.18 | 0.19 | 0.19 | 0.20 | 0.21 | | Wastewater | 6B | 0.72 | 0.68 | 0.70 | 0.73 | 0.77 | 0.81 | 0.85 | 0.89 | 0.94 | 1.00 | | Air Conditioning & refrigeration | 2F.1 | 0.84 | 0.94 | 0.93 | 0.97 | 1.02 | 1.01 | 1.03 | 1.04 | 1.14 | 1.24 | | Other sectors | 3D, 2F.2,4,9 | 0.21 | 0.17 | 0.31 | 0.33 | 0.34 | 0.26 | 0.27 | 0.29 | 0.30 | 0.32 | | Calibration to UNFCCC data | | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 12.93 | 12.67 | 12.25 | 12.12 | 12.08 | 11.89 | 11.71 | 11.60 | 11.60 | 11.65 | | Total non-CO₂ GHG | | 12.93 | 12.67 | 12.25 | 12.12 | 12.08 | 11.89 | 11.71 | 11.60 | 11.60 | 11.65 | Estonia Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 1.04 | 1.04 | 0.94 | 0.94 | 1.00 | 0.96 | 0.99 | 1.01 | 1.01 | 1.00 | | Total N₂O | | 0.97 | 1.04 | 1.02 | 1.02 | 1.06 | 1.04 | 1.03 | 1.02 | 1.02 | 1.00 | | Total F-gases | | 0.20 | 0.16 | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | | Agriculture | 4A-4F | 1.39 | 1.42 | 1.35 | 1.44 | 1.52 | 1.52 | 1.52 | 1.52 | 1.50 | 1.47 | | Energy | 1A-1B | 0.39 | 0.43 | 0.40 | 0.36 | 0.36 | 0.34 | 0.35 | 0.35 | 0.34 | 0.34 | | Industry | 2A-2E,2F.7,8 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | Waste | 6A | 0.25 | 0.27 | 0.24 | 0.19 | 0.21 | 0.17 | 0.18 | 0.19 | 0.20 | 0.21 | | Wastewater | 6B | 0.18 | 0.17 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 | 0.19 | | Air Conditioning & refrigeration | 2F.1 | 0.10 | 0.12 | 0.11 | 0.11 | 0.11 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | | Other sectors | 3D, 2F.2,4,9 | 0.12 | 0.06 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | | Calibration to UNFCCC data | | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | -0.23 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 2.21 | 2.24 | 2.10 | 2.11 | 2.21 | 2.15 | 2.16 | 2.17 | 2.17 | 2.15 | | Total non-CO ₂ GHG | | 2.21 | 2.24 | 2.10 |
2.11 | 2.21 | 2.15 | 2.16 | 2.17 | 2.17 | 2.15 | Source: GAINS Finland Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 4.53 | 4.67 | 3.83 | 3.95 | 3.98 | 4.00 | 3.96 | 3.99 | 4.02 | 4.09 | | Total N₂O | | 6.67 | 5.33 | 5.18 | 5.03 | 4.98 | 4.89 | 4.83 | 4.65 | 4.55 | 4.40 | | Total F-gases | | 0.82 | 0.92 | 0.90 | 0.92 | 0.92 | 0.87 | 0.85 | 0.83 | 0.88 | 0.93 | | Agriculture | 4A-4F | 5.94 | 5.72 | 5.53 | 5.56 | 5.61 | 5.61 | 5.50 | 5.44 | 5.40 | 5.40 | | Energy | 1A-1B | 1.57 | 1.93 | 1.90 | 1.80 | 1.70 | 1.61 | 1.58 | 1.46 | 1.41 | 1.29 | | Industry | 2A-2E,2F.7,8 | 1.70 | 0.22 | 0.21 | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | Waste | 6A | 1.32 | 1.45 | 0.69 | 0.77 | 0.77 | 0.75 | 0.78 | 0.80 | 0.82 | 0.84 | | Wastewater | 6B | 0.97 | 0.97 | 0.97 | 1.00 | 1.03 | 1.07 | 1.08 | 1.09 | 1.10 | 1.12 | | Air Conditioning & refrigeration | 2F.1 | 0.67 | 0.78 | 0.70 | 0.72 | 0.72 | 0.66 | 0.63 | 0.61 | 0.66 | 0.70 | | Other sectors | 3D, 2F.2,4,9 | 0.17 | 0.17 | 0.24 | 0.24 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.26 | | Calibration to UNFCCC data | | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | -0.33 | | in ETS sectors | | 1.64 | 0.17 | 0.16 | 0.08 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | in non-ETS sectors | | 10.37 | 10.75 | 9.75 | 9.82 | 9.79 | 9.67 | 9.55 | 9.38 | 9.37 | 9.35 | | Total non-CO₂ GHG | | 12.01 | 10.92 | 9.91 | 9.90 | 9.88 | 9.75 | 9.63 | 9.47 | 9.45 | 9.43 | Source: GAINS France Non-CO₂ GHG emissions Reference scenario | | 2 - | | | | | | | | | | | |--|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 62.65 | 62.55 | 53.55 | 52.12 | 51.51 | 51.18 | 51.00 | 50.84 | 50.75 | 50.87 | | Total N₂O | | 67.48 | 62.06 | 62.42 | 59.70 | 57.60 | 57.55 | 57.17 | 57.17 | 57.78 | 58.57 | | Total F-gases | | 14.28 | 16.15 | 13.66 | 14.45 | 14.88 | 14.50 | 14.37 | 14.21 | 14.90 | 15.56 | | Agriculture | 4A-4F | 90.84 | 89.75 | 88.14 | 85.80 | 83.78 | 83.48 | 82.90 | 82.53 | 82.87 | 83.60 | | Energy | 1A-1B | 8.02 | 7.34 | 6.71 | 5.87 | 5.19 | 4.67 | 4.47 | 4.47 | 4.41 | 4.38 | | Industry | 2A-2E,2F.7,8 | 7.62 | 2.35 | 2.45 | 1.41 | 1.48 | 1.54 | 1.59 | 1.63 | 1.68 | 1.71 | | Waste | 6A | 9.63 | 10.03 | 3.40 | 3.34 | 3.13 | 3.41 | 3.55 | 3.70 | 3.87 | 4.04 | | Wastewater | 6B | 4.11 | 4.14 | 4.29 | 4.44 | 4.60 | 4.74 | 4.79 | 4.85 | 4.91 | 4.96 | | Air Conditioning & refrigeration | 2F.1 | 7.98 | 9.65 | 8.36 | 8.59 | 8.76 | 8.19 | 7.88 | 7.58 | 8.12 | 8.66 | | Other sectors | 3D, 2F.2,4,9 | 5.43 | 6.71 | 5.51 | 6.05 | 6.27 | 6.43 | 6.56 | 6.67 | 6.78 | 6.87 | | Calibration to UNFCCC data | | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | 10.78 | | in ETS sectors | | 6.50 | 1.72 | 1.80 | 0.74 | 0.75 | 0.76 | 0.76 | 0.76 | 0.75 | 0.74 | | in non-ETS sectors | | 137.90 | 139.04 | 127.83 | 125.53 | 123.25 | 122.48 | 121.77 | 121.46 | 122.67 | 124.26 | | Total non-CO₂ GHG | | 144.40 | 140.76 | 129.63 | 126.28 | 124.00 | 123.23 | 122.54 | 122.22 | 123.42 | 125.00 | | Germany | Non-CO ₂ GHG emissions Reference scenario | |---------|--| |---------|--| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 55.59 | 51.72 | 42.51 | 40.28 | 38.23 | 36.17 | 35.63 | 35.20 | 34.74 | 34.34 | | Total N₂O | | 61.30 | 55.33 | 55.60 | 51.84 | 49.91 | 48.55 | 47.94 | 47.53 | 46.99 | 46.41 | | Total F-gases | | 13.16 | 14.39 | 13.67 | 13.50 | 13.19 | 10.28 | 9.63 | 9.07 | 9.37 | 9.65 | | Agriculture | 4A-4F | 72.85 | 71.36 | 71.93 | 71.50 | 69.47 | 68.64 | 67.96 | 67.54 | 66.87 | 66.19 | | Energy | 1A-1B | 19.66 | 15.71 | 12.82 | 11.02 | 9.44 | 7.71 | 7.27 | 6.94 | 6.71 | 6.49 | | Industry | 2A-2E,2F.7,8 | 9.60 | 4.71 | 4.98 | 2.00 | 2.00 | 1.98 | 1.96 | 1.95 | 1.94 | 1.95 | | Waste | 6A | 10.99 | 11.16 | 4.25 | 3.40 | 3.06 | 2.24 | 2.31 | 2.34 | 2.36 | 2.38 | | Wastewater | 6B | 4.64 | 4.56 | 4.62 | 4.64 | 4.65 | 4.64 | 4.58 | 4.52 | 4.44 | 4.38 | | Air Conditioning & refrigeration | 2F.1 | 7.65 | 9.34 | 8.38 | 8.15 | 7.72 | 6.65 | 5.94 | 5.31 | 5.51 | 5.70 | | Other sectors | 3D, 2F.2,4,9 | 5.45 | 5.40 | 5.61 | 5.70 | 5.80 | 3.94 | 3.97 | 4.02 | 4.07 | 4.12 | | Calibration to UNFCCC data | | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | -0.81 | | in ETS sectors | | 8.59 | 3.99 | 4.24 | 1.26 | 1.24 | 1.22 | 1.19 | 1.17 | 1.14 | 1.13 | | in non-ETS sectors | | 121.45 | 117.44 | 107.54 | 104.36 | 100.09 | 93.78 | 92.00 | 90.64 | 89.96 | 89.28 | | Total non-CO₂ GHG | | 130.04 | 121.43 | 111.78 | 105.61 | 101.33 | 95.00 | 93.19 | 91.80 | 91.10 | 90.40 | Source: GAINS Greece Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 10.15 | 10.29 | 7.81 | 7.48 | 6.99 | 6.64 | 6.70 | 6.77 | 6.86 | 6.94 | | Total N₂O | | 7.94 | 7.59 | 6.89 | 6.37 | 6.09 | 6.00 | 6.11 | 6.12 | 6.10 | 6.05 | | Total F-gases | | 3.47 | 2.30 | 1.83 | 1.84 | 1.82 | 1.75 | 1.75 | 1.73 | 1.81 | 1.90 | | Agriculture | 4A-4F | 8.79 | 8.73 | 7.88 | 7.74 | 7.65 | 7.74 | 8.10 | 8.17 | 8.22 | 8.26 | | Energy | 1A-1B | 2.86 | 2.44 | 2.17 | 1.83 | 1.32 | 0.84 | 0.63 | 0.60 | 0.59 | 0.56 | | Industry | 2A-2E,2F.7,8 | 1.98 | 0.58 | 0.56 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | | Waste | 6A | 2.85 | 3.17 | 1.13 | 1.08 | 0.90 | 0.84 | 0.84 | 0.87 | 0.90 | 0.92 | | Wastewater | 6B | 1.01 | 1.07 | 1.08 | 1.10 | 1.11 | 1.13 | 1.15 | 1.15 | 1.16 | 1.17 | | Air Conditioning & refrigeration | 2F.1 | 1.63 | 1.93 | 1.54 | 1.54 | 1.51 | 1.43 | 1.42 | 1.39 | 1.46 | 1.53 | | Other sectors | 3D, 2F.2,4,9 | 0.57 | 0.39 | 0.32 | 0.33 | 0.34 | 0.35 | 0.36 | 0.37 | 0.37 | 0.38 | | Calibration to UNFCCC data | | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | 1.86 | | in ETS sectors | | 0.61 | 0.48 | 0.45 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | | in non-ETS sectors | | 20.95 | 19.70 | 16.08 | 15.58 | 14.80 | 14.29 | 14.45 | 14.51 | 14.67 | 14.79 | | Total non-CO₂ GHG | | 21.56 | 20.18 | 16.53 | 15.69 | 14.90 | 14.40 | 14.56 | 14.62 | 14.78 | 14.89 | Source: GAINS Hungary Non-CO₂ GHG emissions Reference scenario | | 552 5 | | | | | | | | | | | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 8.99 | 8.13 | 5.97 | 5.43 | 5.11 | 4.75 | 4.77 | 4.82 | 4.63 | 4.64 | | Total N₂O | | 8.74 | 6.50 | 7.24 | 7.45 | 7.45 | 7.54 | 7.67 | 7.70 | 7.64 | 7.60 | | Total F-gases | | 0.83 | 0.70 | 0.70 | 0.72 | 0.75 | 0.71 | 0.69 | 0.64 | 0.68 | 0.72 | | Agriculture | 4A-4F | 9.42 | 8.59 | 9.09 | 9.30 | 9.26 | 9.32 | 9.47 | 9.51 | 9.46 | 9.40 | | Energy | 1A-1B | 2.96 | 2.55 | 2.39 | 2.17 | 2.11 | 2.01 | 2.01 | 2.02 | 1.81 | 1.82 | | Industry | 2A-2E,2F.7,8 | 1.95 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | Waste | 6A | 3.02 | 3.26 | 1.52 | 1.23 | 1.02 | 0.79 | 0.82 | 0.85 | 0.89 | 0.92 | | Wastewater | 6B | 1.10 | 0.66 | 0.64 | 0.63 | 0.61 | 0.60 | 0.58 | 0.57 | 0.55 | 0.54 | | Air Conditioning & refrigeration | 2F.1 | 0.55 | 0.64 | 0.61 | 0.62 | 0.65 | 0.60 | 0.58 | 0.52 | 0.56 | 0.59 | | Other sectors | 3D, 2F.2,4,9 | 0.21 | 0.19 | 0.22 | 0.23 | 0.23 | 0.23 | 0.24 | 0.24 | 0.24 | 0.23 | | Calibration to UNFCCC data | | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | -0.64 | | in ETS sectors | | 1.93 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | | in non-ETS sectors | | 16.64 | 15.28 | 13.85 | 13.56 | 13.25 | 12.94 | 13.08 | 13.10 | 12.90 | 12.90 | | Total non-CO₂ GHG | | 18.57 | 15.33 | 13.90 | 13.61 | 13.30 | 12.99 | 13.14 | 13.16 | 12.95 | 12.95 | | Ireland | Non-CO ₂ GHG emissions Reference scenario | |---------|--| | | | | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 12.81 | 11.65 | 12.22 | 12.40 | 12.61 | 12.50 | 12.73 | 13.05 | 13.37 | 13.70 | | Total N₂O | | 8.09 | 7.77 | 7.84 | 7.88 | 7.89 | 7.86 | 7.82 | 7.93 | 8.02 | 8.08 | | Total F-gases | | 1.06 | 0.91 | 0.81 | 0.89 | 0.99 | 1.04 | 1.07 | 1.10 | 1.19 | 1.29 | | Agriculture | 4A-4F | 18.96 | 17.75 | 18.24 | 18.52 | 18.62 | 18.68 | 18.73 | 19.01 | 19.27 | 19.51 | | Energy | 1A-1B | 0.58 | 0.57 | 0.56 | 0.52 | 0.47 | 0.46 | 0.48 | 0.49 | 0.50 | 0.51 | | Industry | 2A-2E,2F.7,8 | 0.25 | 0.07 | 0.08 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.13 | | Waste | 6A | 1.20 | 0.88 | 1.02 | 0.98 | 1.11 | 0.90 | 1.00 | 1.11 | 1.23 | 1.34 | | Wastewater | 6B | 0.23 | 0.29 | 0.31 | 0.33 | 0.36 | 0.39 | 0.41 | 0.43 | 0.45 | 0.47 | | Air Conditioning & refrigeration | 2F.1 | 0.60 | 0.68 | 0.62 | 0.68 |
0.75 | 0.77 | 0.79 | 0.80 | 0.87 | 0.95 | | Other sectors | 3D, 2F.2,4,9 | 0.27 | 0.23 | 0.18 | 0.20 | 0.22 | 0.24 | 0.26 | 0.27 | 0.29 | 0.30 | | Calibration to UNFCCC data | | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 21.96 | 20.33 | 20.87 | 21.17 | 21.48 | 21.39 | 21.63 | 22.09 | 22.58 | 23.06 | | Total non-CO₂ GHG | | 21.96 | 20.33 | 20.87 | 21.17 | 21.48 | 21.39 | 21.63 | 22.09 | 22.58 | 23.06 | Source: GAINS Italy Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 41.25 | 33.54 | 33.00 | 32.00 | 30.08 | 29.27 | 28.44 | 28.63 | 28.53 | 28.82 | | Total N₂O | | 37.75 | 26.97 | 27.96 | 27.31 | 27.15 | 27.03 | 26.10 | 26.02 | 26.10 | 26.18 | | Total F-gases | | 11.34 | 12.34 | 10.57 | 10.86 | 11.09 | 10.55 | 10.26 | 9.92 | 10.46 | 11.04 | | Agriculture | 4A-4F | 35.68 | 31.59 | 33.43 | 33.26 | 33.25 | 33.32 | 32.17 | 32.20 | 32.25 | 32.47 | | Energy | 1A-1B | 10.10 | 8.92 | 9.23 | 8.85 | 7.98 | 7.51 | 6.59 | 6.30 | 5.88 | 5.66 | | Industry | 2A-2E,2F.7,8 | 8.41 | 1.04 | 1.06 | 0.55 | 0.56 | 0.57 | 0.59 | 0.62 | 0.65 | 0.67 | | Waste | 6A | 19.41 | 13.33 | 11.15 | 10.43 | 9.12 | 8.48 | 8.78 | 9.14 | 9.52 | 9.92 | | Wastewater | 6B | 4.20 | 4.13 | 4.57 | 4.68 | 4.78 | 4.88 | 4.87 | 4.85 | 4.83 | 4.79 | | Air Conditioning & refrigeration | 2F.1 | 9.63 | 10.87 | 9.32 | 9.51 | 9.69 | 9.08 | 8.72 | 8.32 | 8.79 | 9.30 | | Other sectors | 3D, 2F.2,4,9 | 1.94 | 2.02 | 1.80 | 1.92 | 1.98 | 2.04 | 2.10 | 2.15 | 2.21 | 2.26 | | Calibration to UNFCCC data | | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | in ETS sectors | | 7.93 | 0.71 | 0.72 | 0.21 | 0.21 | 0.21 | 0.21 | 0.22 | 0.23 | 0.23 | | in non-ETS sectors | | 82.41 | 72.15 | 70.80 | 69.96 | 68.12 | 66.64 | 64.59 | 64.35 | 64.87 | 65.81 | | Total non-CO₂ GHG | | 90.34 | 72.86 | 71.52 | 70.16 | 68.32 | 66.85 | 64.80 | 64.57 | 65.09 | 66.04 | Source: GAINS Latvia Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 1.82 | 1.77 | 1.44 | 1.34 | 1.42 | 1.41 | 1.40 | 1.42 | 1.38 | 1.36 | | Total N₂O | | 1.61 | 1.69 | 1.55 | 1.65 | 1.77 | 1.81 | 1.88 | 1.97 | 2.06 | 2.15 | | Total F-gases | | 0.13 | 0.13 | 0.15 | 0.15 | 0.14 | 0.12 | 0.10 | 0.09 | 0.09 | 0.09 | | Agriculture | 4A-4F | 2.18 | 2.25 | 2.14 | 2.22 | 2.43 | 2.48 | 2.54 | 2.65 | 2.72 | 2.79 | | Energy | 1A-1B | 0.49 | 0.52 | 0.51 | 0.47 | 0.46 | 0.46 | 0.46 | 0.46 | 0.45 | 0.44 | | Industry | 2A-2E,2F.7,8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | Waste | 6A | 0.53 | 0.57 | 0.20 | 0.16 | 0.16 | 0.14 | 0.15 | 0.15 | 0.16 | 0.17 | | Wastewater | 6B | 0.25 | 0.15 | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 | | Air Conditioning & refrigeration | 2F.1 | 0.12 | 0.12 | 0.14 | 0.14 | 0.13 | 0.10 | 0.09 | 0.07 | 0.07 | 0.07 | | Other sectors | 3D, 2F.2,4,9 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | Calibration to UNFCCC data | | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | -0.06 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 3.56 | 3.60 | 3.15 | 3.14 | 3.33 | 3.34 | 3.38 | 3.47 | 3.53 | 3.60 | | Total non-CO ₂ GHG | | 3.56 | 3.60 | 3.15 | 3.14 | 3.33 | 3.34 | 3.38 | 3.47 | 3.53 | 3.60 | ## Lithuania Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 3.38 | 3.41 | 2.77 | 2.80 | 2.65 | 2.52 | 2.54 | 2.55 | 2.55 | 2.55 | | Total N₂O | | 5.28 | 3.43 | 3.44 | 3.20 | 3.32 | 3.42 | 3.48 | 3.45 | 3.44 | 3.56 | | Total F-gases | | 0.28 | 0.34 | 0.33 | 0.33 | 0.31 | 0.28 | 0.26 | 0.24 | 0.26 | 0.27 | | Agriculture | 4A-4F | 4.42 | 4.35 | 4.20 | 4.38 | 4.56 | 4.63 | 4.69 | 4.63 | 4.61 | 4.71 | | Energy | 1A-1B | 0.77 | 0.74 | 0.79 | 0.75 | 0.63 | 0.60 | 0.60 | 0.61 | 0.61 | 0.62 | | Industry | 2A-2E,2F.7,8 | 2.43 | 0.59 | 0.63 | 0.27 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.24 | | Waste | 6A | 0.77 | 0.89 | 0.28 | 0.30 | 0.22 | 0.15 | 0.16 | 0.16 | 0.17 | 0.18 | | Wastewater | 6B | 0.40 | 0.42 | 0.43 | 0.43 | 0.43 | 0.45 | 0.45 | 0.47 | 0.48 | 0.49 | | Air Conditioning & refrigeration | 2F.1 | 0.26 | 0.32 | 0.31 | 0.31 | 0.29 | 0.25 | 0.23 | 0.21 | 0.23 | 0.24 | | Other sectors | 3D, 2F.2,4,9 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | Calibration to UNFCCC data | | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | -0.17 | | in ETS sectors | | 2.43 | 0.58 | 0.62 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 | 0.24 | 0.23 | | in non-ETS sectors | | 6.52 | 6.61 | 5.92 | 6.07 | 6.03 | 5.97 | 6.04 | 5.99 | 6.01 | 6.15 | | Total non-CO ₂ GHG | | 8.95 | 7.19 | 6.54 | 6.33 | 6.29 | 6.23 | 6.28 | 6.24 | 6.25 | 6.38 | Source: GAINS Luxembourg Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|------|------|------|------|------|------|------|------|------|------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 0.46 | 0.49 | 0.43 | 0.41 | 0.37 | 0.36 | 0.35 | 0.35 | 0.35 | 0.34 | | Total N₂O | | 0.48 | 0.50 | 0.45 | 0.45 | 0.44 | 0.44 | 0.43 | 0.43 | 0.43 | 0.43 | | Total F-gases | | 0.12 | 0.15 | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.17 | 0.18 | | Agriculture | 4A-4F | 0.63 | 0.72 | 0.61 | 0.60 | 0.54 | 0.53 | 0.52 | 0.52 | 0.51 | 0.50 | | Energy | 1A-1B | 0.16 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.13 | | Industry | 2A-2E,2F.7,8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Waste | 6A | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | | Wastewater | 6B | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | | Air Conditioning & refrigeration | 2F.1 | 0.11 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 | 0.17 | | Other sectors | 3D, 2F.2,4,9 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | | Calibration to UNFCCC data | | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 1.06 | 1.13 | 1.00 | 1.00 | 0.95 | 0.94 | 0.94 | 0.94 | 0.95 | 0.96 | | Total non-CO₂ GHG | | 1.06 | 1.13 | 1.00 | 1.00 | 0.95 | 0.94 | 0.94 | 0.94 | 0.95 | 0.96 | Source: GAINS Malta Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------------|------|------|------|------|------|------|------|------|------|------| | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 0.22 | 0.23 | 0.14 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | | Total N₂O | | 0.05 | 0.05 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | | Total F-gases | | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | | Agriculture | 4A-4F | 0.11 | 0.10 | 0.10 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | | Energy | 1A-1B | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | | Industry | 2A-2E,2F.7,8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Waste | 6A | 0.12 | 0.14 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | | Wastewater | 6B | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | | Air Conditioning & refrigeration | 2F.1 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | | Other sectors | 3D, 2F.2,4,9 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | | Calibration to UNFCCC data | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in ETS sectors | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | in non-ETS sectors | | 0.33 | 0.34 | 0.25 | 0.28 | 0.28 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | | Total non-CO ₂ GHG | | 0.33 | 0.34 | 0.25 | 0.28 | 0.28 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | Netherlands Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO ₂ GHG in Mt CO ₂ eq | CRF code | | | | | | | | | | | | Total CH₄ | | 17.36 | 17.82 | 13.32 | 13.20 | 12.84 | 12.49 | 12.60 | 12.77 | 12.78 | 12.75 | | Total N₂O | | 15.63 | 9.56 | 9.65 | 9.39 | 9.18 | 9.04 | 8.90 | 8.86 | 8.84 | 8.82 | | Total F-gases | | 2.01 | 2.13 | 2.21 | 2.27 | 2.27 | 2.11 | 2.03 | 1.94 | 2.05 | 2.16 | | Agriculture | 4A-4F | 18.55 | 18.65 | 18.61 | 18.40 | 17.96 | 17.49 | 17.41 | 17.55 | 17.51 | 17.43 | | Energy | 1A-1B | 2.25 | 2.29 | 2.40 | 2.14 | 1.94 | 1.79 | 1.75 | 1.65 | 1.60 | 1.54 | | Industry | 2A-2E,2F.7,8 | 6.87 | 0.88 | 0.95 | 0.95 | 0.94 | 0.96 | 0.97 | 0.99 | 1.01 | 1.01 | | Waste | 6A | 6.22 | 6.30 | 1.72 | 1.78 | 1.86 | 1.95 | 2.03 | 2.10 | 2.17 | 2.26 | | Wastewater | 6B | 1.00 | 0.94 | 0.99 | 1.02 | 1.04 | 1.07 | 1.09 | 1.11 |
1.13 | 1.15 | | Air Conditioning & refrigeration | 2F.1 | 1.35 | 1.69 | 1.74 | 1.77 | 1.74 | 1.55 | 1.44 | 1.33 | 1.42 | 1.52 | | Other sectors | 3D, 2F.2,4,9 | 0.25 | 0.26 | 0.27 | 0.29 | 0.30 | 0.32 | 0.33 | 0.33 | 0.32 | 0.32 | | Calibration to UNFCCC data | | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | -1.49 | | in ETS sectors | | 6.34 | 0.55 | 0.60 | 0.59 | 0.56 | 0.57 | 0.56 | 0.55 | 0.54 | 0.53 | | in non-ETS sectors | | 28.66 | 28.95 | 24.58 | 24.28 | 23.73 | 23.07 | 22.97 | 23.02 | 23.13 | 23.21 | | Total non-CO₂ GHG | | 35.00 | 29.51 | 25.18 | 24.87 | 24.30 | 23.64 | 23.53 | 23.57 | 23.67 | 23.74 | Source: GAINS Poland Non-CO₂ GHG emissions Reference scenario | | 2 | | | | | | | | | | | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 37.22 | 36.19 | 32.57 | 33.93 | 33.96 | 32.84 | 32.88 | 33.47 | 33.78 | 33.61 | | Total N₂O | | 29.36 | 26.55 | 26.19 | 26.20 | 25.38 | 25.07 | 24.55 | 24.56 | 24.67 | 24.45 | | Total F-gases | | 4.71 | 5.87 | 6.59 | 7.12 | 7.31 | 6.90 | 6.67 | 6.41 | 6.69 | 6.88 | | Agriculture | 4A-4F | 34.96 | 35.48 | 35.23 | 35.96 | 35.22 | 35.31 | 35.11 | 35.46 | 35.79 | 35.95 | | Energy | 1A-1B | 18.58 | 16.64 | 16.69 | 17.12 | 16.67 | 14.86 | 14.16 | 14.03 | 13.80 | 13.01 | | Industry | 2A-2E,2F.7,8 | 4.93 | 1.17 | 1.39 | 0.66 | 0.68 | 0.70 | 0.71 | 0.72 | 0.72 | 0.70 | | Waste | 6A | 7.49 | 8.70 | 4.64 | 5.43 | 5.77 | 6.03 | 6.53 | 6.99 | 7.41 | 7.78 | | Wastewater | 6B | 2.87 | 2.89 | 2.98 | 3.06 | 3.10 | 3.13 | 3.06 | 2.99 | 2.92 | 2.83 | | Air Conditioning & refrigeration | 2F.1 | 3.95 | 5.35 | 5.83 | 6.38 | 6.53 | 6.06 | 5.79 | 5.51 | 5.76 | 5.94 | | Other sectors | 3D, 2F.2,4,9 | 1.06 | 0.93 | 1.14 | 1.18 | 1.22 | 1.25 | 1.28 | 1.29 | 1.28 | 1.27 | | Calibration to UNFCCC data | | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | -2.54 | | in ETS sectors | | 4.84 | 1.07 | 1.28 | 0.53 | 0.55 | 0.56 | 0.57 | 0.57 | 0.56 | 0.53 | | in non-ETS sectors | | 66.46 | 67.55 | 64.07 | 66.71 | 66.11 | 64.24 | 63.53 | 63.88 | 64.58 | 64.41 | | Total non-CO₂ GHG | | 71.30 | 68.61 | 65.35 | 67.25 | 66.66 | 64.80 | 64.10 | 64.45 | 65.14 | 64.94 | Source: GAINS Portugal Non-CO₂ GHG emissions Reference scenario | 2 | | | | | | | | | | | |--------------|--|---|---|--|--|---|---|---|---|------------------------| | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | CRF code | | | | | | | | | | | | | 11.98 | 12.01 | 9.77 | 9.80 | 9.61 | 9.35 | 9.76 | 9.87 | 9.98 | 9.87 | | | 5.21 | 4.68 | 4.69 | 4.46 | 4.48 | 4.51 | 4.72 | 4.73 | 4.76 | 4.71 | | | 1.12 | 1.27 | 1.01 | 1.03 | 1.08 | 1.02 | 0.98 | 0.92 | 0.98 | 1.03 | | 4A-4F | 7.33 | 7.06 | 7.14 | 7.17 | 7.33 | 7.44 | 8.05 | 8.15 | 8.29 | 8.11 | | 1A-1B | 1.45 | 1.30 | 1.16 | 1.15 | 1.03 | 0.89 | 0.84 | 0.81 | 0.78 | 0.74 | | 2A-2E,2F.7,8 | 0.59 | 0.33 | 0.32 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 6A | 4.40 | 4.61 | 2.44 | 2.40 | 2.11 | 1.83 | 1.77 | 1.76 | 1.76 | 1.79 | | 6B | 2.57 | 2.55 | 2.56 | 2.64 | 2.71 | 2.80 | 2.90 | 2.97 | 3.01 | 3.04 | | 2F.1 | 0.97 | 1.18 | 0.92 | 0.93 | 0.98 | 0.91 | 0.86 | 0.80 | 0.85 | 0.90 | | 3D, 2F.2,4,9 | 0.27 | 0.22 | 0.23 | 0.23 | 0.23 | 0.24 | 0.25 | 0.25 | 0.26 | 0.26 | | | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | | | 0.56 | 0.30 | 0.28 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | | | 17.75 | 17.67 | 15.19 | 15.26 | 15.15 | 14.86 | 15.44 | 15.49 | 15.70 | 15.59 | | | 18.31 | 17.97 | 15.47 | 15.29 | 15.17 | 14.88 | 15.46 | 15.52 | 15.72 | 15.61 | | | 4A-4F
1A-1B
2A-2E,2F.7,8
6A
6B
2F.1 | UNFCCC CRF code 11.98 5.21 1.12 4A-4F 7.33 1A-1B 1.45 2A-2E,2F.7,8 0.59 6A 4.40 6B 2.57 2F.1 0.97 3D, 2F.2,4,9 0.27 0.71 0.56 17.75 | UNFCCC CRF code 11.98 12.01 5.21 4.68 1.12 1.27 4A-4F 7.33 7.06 1A-1B 1.45 1.30 2A-2E,2F.7,8 0.59 0.33 6A 4.40 4.61 6B 2.57 2.55 2F.1 0.97 1.18 3D, 2F.2,4,9 0.27 0.22 0.71 0.71 0.56 0.30 17.75 17.67 | CRF code 11.98 12.01 9.77 5.21 4.68 4.69 1.12 1.27 1.01 4A-4F 7.33 7.06 7.14 1A-1B 1.45 1.30 1.16 2A-2E,2F.7,8 0.59 0.33 0.32 6A 4.40 4.61 2.44 6B 2.57 2.55 2.56 2F.1 0.97 1.18 0.92 3D, 2F.2,4,9 0.27 0.22 0.23 0.71 0.71 0.71 0.71 0.56 0.30 0.28 17.75 17.67 15.19 | UNFCCC CRF code 111.98 12.01 9.77 9.80 5.21 4.68 4.69 4.46 1.12 1.27 1.01 1.03 4A-4F 7.33 7.06 7.14 7.17 1A-1B 1.45 1.30 1.16 1.15 2A-2E,2F.7,8 0.59 0.33 0.32 0.05 6A 4.40 4.61 2.44 2.40 6B 2.57 2.55 2.56 2.64 2F.1 0.97 1.18 0.92 0.93 3D, 2F.2,4,9 0.27 0.22 0.23 0.23 0.71 0.71 0.71 0.71 0.56 0.30 0.28 0.02 17.75 17.67 15.19 15.26 | UNFCCC CRF code 11.98 12.01 9.77 9.80 9.61 5.21 4.68 4.69 4.46 4.48 1.12 1.27 1.01 1.03 1.08 4A-4F 7.33 7.06 7.14 7.17 7.33 1A-1B 1.45 1.30 1.16 1.15 1.03 2A-2E,2F.7,8 0.59 0.33 0.32 0.05 0.06 6A 4.40 4.61 2.44 2.40 2.11 6B 2.57 2.55 2.56 2.64 2.71 2F.1 0.97 1.18 0.92 0.93 0.98 3D, 2F.2,4,9 0.27 0.22 0.23 0.23 0.23 0.23 0.71 0.71 0.71 0.71 0.71 0.71 0.56 0.30 0.28 0.02 0.02 17.75 17.67 15.19 15.26 15.15 | UNFCCC CRF code 11.98 12.01 9.77 9.80 9.61 9.35 5.21 4.68 4.69 4.46 4.48 4.51 1.12 1.27 1.01 1.03 1.08 1.02 4A-4F 7.33 7.06 7.14 7.17 7.33 7.44 1A-1B 1.45 1.30 1.16 1.15 1.03 0.89 2A-2E,2F.7,8 0.59 0.33 0.32 0.05 0.06 0.06 6A 4.40 4.61 2.44 2.40 2.11 1.83 6B 2.57 2.55 2.56 2.64 2.71 2.80 2F.1 0.97 1.18 0.92 0.93 0.98 0.91 3D, 2F.2,4,9 0.27 0.22 0.23 0.23 0.23 0.24 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 | UNFCCC CRF code 11.98 12.01 9.77 9.80 9.61 9.35 9.76 5.21 4.68 4.69 4.46 4.48 4.51 4.72 1.12 1.27 1.01 1.03 1.08 1.02 0.98 4A-4F 7.33 7.06 7.14 7.17 7.33 7.44 8.05 1A-1B 1.45 1.30 1.16 1.15 1.03 0.89 0.84 2A-2E,2F.7,8 0.59 0.33 0.32 0.05 0.06 0.06 0.06 6A 4.40 4.61 2.44 2.40 2.11 1.83 1.77 6B 2.57 2.55 2.56 2.64 2.71 2.80 2.90 2F.1 0.97 1.18 0.92 0.93 0.98 0.91 0.86 3D, 2F.2,4,9 0.27 0.22 0.23 0.23 0.23 0.24 0.25 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 | UNFCCC CRF code 11.98 12.01 9.77 9.80 9.61 9.35 9.76 9.87 5.21 4.68 4.69 4.46 4.48 4.51 4.72 4.73 1.12 1.27 1.01 1.03 1.08 1.02 0.98 0.92 4A-4F 7.33 7.06 7.14 7.17 7.33 7.44 8.05 8.15 1A-1B 1.45 1.30 1.16 1.15 1.03 0.89 0.84 0.81 2A-2E,2F.7,8 0.59 0.33 0.32 0.05 0.06 0.06 0.06 0.06 6A 4.40 4.61 2.44 2.40 2.11 1.83 1.77 1.76 6B 2.57 2.55 2.56 2.64 2.71 2.80 2.90 2.97 2F.1 0.97 1.18 0.92 0.93 0.98 0.91 0.86 0.80 3D, 2F.2,4,9 0.27 0.22 0.23 0.23 0.23 0.24 0.25 0.25 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 | UNFCCC CRF code 11.98 | | Romania | Non-CO ₂ GHG emissions Reference scenario | |---------|--| | | | | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------
-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 26.15 | 22.33 | 22.00 | 21.89 | 21.69 | 21.19 | 21.16 | 21.16 | 21.12 | 20.94 | | Total N₂O | | 13.73 | 11.75 | 13.42 | 12.29 | 12.31 | 12.37 | 12.45 | 12.44 | 12.39 | 12.41 | | Total F-gases | | 0.65 | 1.13 | 0.96 | 1.04 | 1.05 | 0.93 | 0.87 | 0.79 | 0.85 | 0.90 | | Agriculture | 4A-4F | 18.69 | 17.00 | 18.98 | 18.84 | 18.77 | 18.79 | 18.85 | 18.93 | 18.88 | 18.97 | | Energy | 1A-1B | 6.08 | 5.51 | 5.53 | 5.67 | 5.67 | 5.50 | 5.50 | 5.42 | 5.42 | 5.21 | | Industry | 2A-2E,2F.7,8 | 3.08 | 1.29 | 1.44 | 0.30 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 | 0.29 | | Waste | 6A | 3.79 | 2.24 | 1.47 | 1.39 | 1.30 | 1.03 | 1.07 | 1.09 | 1.10 | 1.10 | | Wastewater | 6B | 1.43 | 1.21 | 1.20 | 1.20 | 1.19 | 1.17 | 1.14 | 1.11 | 1.08 | 1.05 | | Air Conditioning & refrigeration | 2F.1 | 0.43 | 0.91 | 0.70 | 0.76 | 0.76 | 0.64 | 0.57 | 0.49 | 0.54 | 0.59 | | Other sectors | 3D, 2F.2,4,9 | 0.43 | 0.42 | 0.43 | 0.44 | 0.44 | 0.44 | 0.44 | 0.45 | 0.44 | 0.44 | | Calibration to UNFCCC data | | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | | in ETS sectors | | 3.04 | 1.26 | 1.40 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | | in non-ETS sectors | | 37.49 | 33.95 | 34.97 | 34.96 | 34.79 | 34.23 | 34.22 | 34.15 | 34.13 | 34.02 | | Total non-CO ₂ GHG | | 40.53 | 35.20 | 36.38 | 35.22 | 35.05 | 34.49 | 34.48 | 34.39 | 34.37 | 34.25 | Source: GAINS Slovakia Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 4.52 | 4.42 | 3.09 | 3.12 | 3.13 | 3.10 | 3.12 | 3.13 | 3.16 | 3.17 | | Total N₂O | | 3.81 | 3.21 | 3.47 | 2.81 | 2.83 | 2.84 | 2.82 | 2.83 | 2.80 | 2.80 | | Total F-gases | | 0.40 | 0.52 | 0.48 | 0.53 | 0.56 | 0.53 | 0.49 | 0.45 | 0.46 | 0.47 | | Agriculture | 4A-4F | 3.44 | 3.01 | 3.36 | 3.42 | 3.42 | 3.41 | 3.39 | 3.39 | 3.38 | 3.38 | | Energy | 1A-1B | 1.16 | 1.10 | 1.10 | 1.08 | 1.08 | 1.03 | 1.03 | 1.02 | 1.00 | 1.00 | | Industry | 2A-2E,2F.7,8 | 1.36 | 0.98 | 0.97 | 0.22 | 0.23 | 0.24 | 0.24 | 0.23 | 0.23 | 0.22 | | Waste | 6A | 2.22 | 2.26 | 0.85 | 0.90 | 0.87 | 0.87 | 0.90 | 0.93 | 0.96 | 0.99 | | Wastewater | 6B | 0.77 | 0.88 | 0.90 | 0.93 | 0.97 | 1.00 | 1.02 | 1.02 | 1.03 | 1.03 | | Air Conditioning & refrigeration | 2F.1 | 0.24 | 0.40 | 0.35 | 0.39 | 0.40 | 0.36 | 0.32 | 0.28 | 0.29 | 0.29 | | Other sectors | 3D, 2F.2,4,9 | 0.17 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | | Calibration to UNFCCC data | | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | -0.61 | | in ETS sectors | | 1.34 | 0.97 | 0.95 | 0.21 | 0.21 | 0.22 | 0.22 | 0.21 | 0.20 | 0.19 | | in non-ETS sectors | | 7.40 | 7.18 | 6.09 | 6.25 | 6.30 | 6.24 | 6.22 | 6.20 | 6.22 | 6.25 | | Total non-CO₂ GHG | | 8.74 | 8.15 | 7.04 | 6.46 | 6.51 | 6.46 | 6.43 | 6.41 | 6.42 | 6.44 | Source: GAINS Slovenia Non-CO₂ GHG emissions Reference scenario | | 552 5 | | | | | | | | | | | |----------------------------------|--------------|------|------|------|------|------|------|------|------|------|------| | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 2.17 | 1.89 | 1.86 | 1.75 | 1.73 | 1.67 | 1.65 | 1.66 | 1.68 | 1.67 | | Total N₂O | | 1.21 | 1.18 | 1.02 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.97 | | Total F-gases | | 0.21 | 0.20 | 0.20 | 0.21 | 0.22 | 0.19 | 0.17 | 0.15 | 0.15 | 0.15 | | Agriculture | 4A-4F | 1.94 | 1.88 | 1.73 | 1.75 | 1.76 | 1.77 | 1.76 | 1.76 | 1.76 | 1.76 | | Energy | 1A-1B | 0.45 | 0.50 | 0.47 | 0.41 | 0.42 | 0.39 | 0.36 | 0.36 | 0.37 | 0.36 | | Industry | 2A-2E,2F.7,8 | 0.06 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | Waste | 6A | 0.68 | 0.43 | 0.40 | 0.31 | 0.26 | 0.22 | 0.22 | 0.23 | 0.24 | 0.24 | | Wastewater | 6B | 0.24 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | Air Conditioning & refrigeration | 2F.1 | 0.12 | 0.16 | 0.15 | 0.15 | 0.15 | 0.12 | 0.10 | 0.07 | 0.08 | 0.08 | | Other sectors | 3D, 2F.2,4,9 | 0.06 | 0.05 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | Calibration to UNFCCC data | | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | in ETS sectors | | 0.05 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | in non-ETS sectors | | 3.53 | 3.26 | 3.06 | 2.93 | 2.91 | 2.82 | 2.77 | 2.76 | 2.78 | 2.77 | | Total non-CO₂ GHG | | 3.58 | 3.28 | 3.08 | 2.96 | 2.94 | 2.85 | 2.80 | 2.79 | 2.81 | 2.80 | Spain Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 34.33 | 33.56 | 29.98 | 29.66 | 29.29 | 28.78 | 30.25 | 30.98 | 31.66 | 32.35 | | Total N₂O | | 28.45 | 26.38 | 25.78 | 26.18 | 26.43 | 26.01 | 26.43 | 26.77 | 27.17 | 27.70 | | Total F-gases | | 8.79 | 9.83 | 8.63 | 9.08 | 9.86 | 10.16 | 10.38 | 10.34 | 10.84 | 11.39 | | Agriculture | 4A-4F | 41.63 | 39.94 | 39.97 | 40.59 | 40.78 | 40.36 | 42.04 | 42.58 | 43.37 | 44.38 | | Energy | 1A-1B | 4.67 | 3.84 | 3.59 | 3.41 | 3.23 | 3.17 | 3.00 | 3.13 | 3.08 | 2.99 | | Industry | 2A-2E,2F.7,8 | 2.14 | 1.06 | 1.09 | 0.68 | 0.71 | 0.73 | 0.74 | 0.75 | 0.76 | 0.77 | | Waste | 6A | 8.38 | 9.21 | 5.10 | 5.00 | 4.70 | 4.13 | 4.41 | 4.72 | 4.98 | 5.24 | | Wastewater | 6B | 4.14 | 3.91 | 4.01 | 4.15 | 4.30 | 4.42 | 4.50 | 4.59 | 4.64 | 4.68 | | Air Conditioning & refrigeration | 2F.1 | 6.70 | 8.09 | 6.70 | 7.02 | 7.59 | 7.68 | 7.73 | 7.56 | 7.95 | 8.38 | | Other sectors | 3D, 2F.2,4,9 | 2.07 | 1.90 | 2.10 | 2.23 | 2.43 | 2.64 | 2.80 | 2.93 | 3.05 | 3.17 | | Calibration to UNFCCC data | | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | | in ETS sectors | | 1.61 | 0.64 | 0.66 | 0.24 | 0.25 | 0.25 | 0.26 | 0.26 | 0.26 | 0.26 | | in non-ETS sectors | | 69.96 | 69.14 | 63.73 | 64.68 | 65.32 | 64.69 | 66.80 | 67.83 | 69.41 | 71.18 | | Total non-CO ₂ GHG | | 71.57 | 69.78 | 64.39 | 64.92 | 65.57 | 64.95 | 67.05 | 68.09 | 69.67 | 71.44 | Source: GAINS Sweden Non-CO₂ GHG emissions Reference scenario | | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |----------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Non-CO₂ GHG in Mt CO₂eq | CRF code | | | | | | | | | | | | Total CH₄ | | 5.89 | 4.87 | 4.64 | 4.62 | 4.76 | 4.85 | 4.95 | 5.05 | 5.15 | 5.26 | | Total N₂O | | 7.03 | 6.88 | 7.10 | 6.89 | 6.95 | 6.90 | 6.90 | 6.81 | 6.75 | 6.74 | | Total F-gases | | 2.22 | 2.14 | 2.30 | 2.43 | 2.56 | 2.61 | 2.73 | 2.87 | 3.13 | 3.38 | | Agriculture | 4A-4F | 7.62 | 7.24 | 7.34 | 7.31 | 7.39 | 7.41 | 7.42 | 7.41 | 7.43 | 7.45 | | Energy | 1A-1B | 1.81 | 1.99 | 2.06 | 2.06 | 2.06 | 2.00 | 2.00 | 1.94 | 1.89 | 1.87 | | Industry | 2A-2E,2F.7,8 | 0.82 | 0.43 | 0.44 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.17 | 0.18 | | Waste | 6A | 1.47 | 0.58 | 0.37 | 0.39 | 0.42 | 0.44 | 0.47 | 0.50 | 0.53 | 0.56 | | Wastewater | 6B | 1.22 | 1.27 | 1.31 | 1.35 | 1.43 | 1.49 | 1.54 | 1.60 | 1.64 | 1.69 | | Air Conditioning & refrigeration | 2F.1 | 1.64 | 1.87 | 1.94 | 2.06 | 2.18 | 2.23 | 2.34 | 2.47 | 2.71 | 2.96 | | Other sectors | 3D, 2F.2,4,9 | 0.34 | 0.30 | 0.38 | 0.39 | 0.40 | 0.41 | 0.42 | 0.43 | 0.45 | 0.46 | | Calibration to UNFCCC data | | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | | in ETS sectors | | 0.69 | 0.35 | 0.35 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | | in non-ETS sectors | | 14.44 | 13.55 | 13.69 | 13.86 | 14.19 | 14.28 | 14.50 | 14.66 | 14.95 | 15.30 | | Total non-CO₂ GHG | | 15.13 | 13.90 | 14.04 | 13.94 | 14.27 | 14.36 | 14.58 | 14.74 | 15.03 | 15.38 | Source: GAINS United Kingdom Non-CO₂ GHG emissions Reference scenario | - | | | | | | | | | | | |--------------|--|--|---|---
---|---|---|--|---|---| | UNFCCC | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | CRF code | | | | | | | | | | | | | 46.92 | 40.21 | 37.02 | 34.58 | 33.34 | 29.88 | 29.49 | 29.53 | 29.65 | 29.77 | | | 40.25 | 36.10 | 36.28 | 34.49 | 34.14 | 34.07 | 34.34 | 34.94
| 35.54 | 35.87 | | | 11.13 | 11.51 | 11.11 | 11.60 | 11.93 | 11.59 | 11.54 | 11.47 | 12.26 | 13.05 | | 4A-4F | 49.69 | 46.13 | 46.40 | 45.88 | 46.20 | 46.49 | 46.92 | 47.70 | 48.49 | 49.05 | | 1A-1B | 17.99 | 14.65 | 13.58 | 10.95 | 10.16 | 7.06 | 6.15 | 5.63 | 5.21 | 4.71 | | 2A-2E,2F.7,8 | 3.66 | 1.61 | 1.69 | 0.48 | 0.49 | 0.50 | 0.51 | 0.52 | 0.52 | 0.52 | | 6A | 13.74 | 11.22 | 8.70 | 8.68 | 7.38 | 6.58 | 6.85 | 7.13 | 7.44 | 7.77 | | 6B | 3.25 | 3.37 | 3.52 | 3.62 | 3.76 | 3.82 | 3.89 | 3.95 | 3.99 | 4.03 | | 2F.1 | 6.76 | 8.04 | 6.95 | 7.24 | 7.41 | 6.89 | 6.68 | 6.43 | 7.04 | 7.67 | | 3D, 2F.2,4,9 | 4.58 | 4.15 | 4.93 | 5.17 | 5.37 | 5.56 | 5.74 | 5.93 | 6.12 | 6.30 | | | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | -1.36 | | | 3.07 | 1.40 | 1.48 | 0.28 | 0.29 | 0.29 | 0.29 | 0.28 | 0.27 | 0.26 | | | 95.23 | 86.41 | 82.93 | 80.38 | 79.12 | 75.25 | 75.09 | 75.65 | 77.18 | 78.42 | | | 98.30 | 87.81 | 84.41 | 80.66 | 79.41 | 75.54 | 75.38 | 75.93 | 77.45 | 78.68 | | | 4A-4F
1A-1B
2A-2E,2F.7,8
6A
6B
2F.1 | CRF code 46.92 40.25 11.13 4A-4F 49.69 1A-1B 17.99 2A-2E,2F.7,8 3.66 6A 13.74 6B 3.25 2F.1 6.76 3D, 2F.2,4,9 4.58 -1.36 3.07 95.23 | CRF code 46.92 40.21 40.25 36.10 11.13 11.51 4A-4F 49.69 46.13 1A-1B 17.99 14.65 2A-2E,2F.7,8 3.66 1.61 6A 13.74 11.22 6B 3.25 3.37 2F.1 6.76 8.04 3D, 2F.2,4,9 4.58 4.15 -1.36 -1.36 3.07 1.40 95.23 86.41 | CRF code 46.92 40.21 37.02 40.25 36.10 36.28 11.13 11.51 11.11 4A-4F 49.69 46.13 46.40 1A-1B 17.99 14.65 13.58 2A-2E,2F.7,8 3.66 1.61 1.69 6A 13.74 11.22 8.70 6B 3.25 3.37 3.52 2F.1 6.76 8.04 6.95 3D, 2F.2,4,9 4.58 4.15 4.93 -1.36 -1.36 -1.36 3.07 1.40 1.48 95.23 86.41 82.93 | CRF code 46.92 40.21 37.02 34.58 40.25 36.10 36.28 34.49 11.13 11.51 11.11 11.60 4A-4F 49.69 46.13 46.40 45.88 1A-1B 17.99 14.65 13.58 10.95 2A-2E,2F.7,8 3.66 1.61 1.69 0.48 6A 13.74 11.22 8.70 8.68 6B 3.25 3.37 3.52 3.62 2F.1 6.76 8.04 6.95 7.24 3D, 2F.2,4,9 4.58 4.15 4.93 5.17 -1.36 -1.36 -1.36 -1.36 3.07 1.40 1.48 0.28 95.23 86.41 82.93 80.38 | CRF code 46.92 40.21 37.02 34.58 33.34 40.25 36.10 36.28 34.49 34.14 11.13 11.51 11.11 11.60 11.93 4A-4F 49.69 46.13 46.40 45.88 46.20 1A-1B 17.99 14.65 13.58 10.95 10.16 2A-2E,2F.7,8 3.66 1.61 1.69 0.48 0.49 6A 13.74 11.22 8.70 8.68 7.38 6B 3.25 3.37 3.52 3.62 3.76 2F.1 6.76 8.04 6.95 7.24 7.41 3D, 2F.2,4,9 4.58 4.15 4.93 5.17 5.37 -1.36 -1.36 -1.36 -1.36 -1.36 3.07 1.40 1.48 0.28 0.29 95.23 86.41 82.93 80.38 79.12 | CRF code 46.92 40.21 37.02 34.58 33.34 29.88 40.25 36.10 36.28 34.49 34.14 34.07 11.13 11.51 11.11 11.60 11.93 11.59 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 6A 13.74 11.22 8.70 8.68 7.38 6.58 6B 3.25 3.37 3.52 3.62 3.76 3.82 2F.1 6.76 8.04 6.95 7.24 7.41 6.89 3D, 2F.2,4,9 4.58 4.15 4.93 5.17 5.37 5.56 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 -1.36 <th>CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 40.25 36.10 36.28 34.49 34.14 34.07 34.34 11.13 11.51 11.11 11.60 11.93 11.59 11.54 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 2F.1 6.76 8.04 6.95 7.24 7.41 6.89 6.68 3D, 2F.2,4,9 4.58 4.15 4.93 5.17 5.37 5.56 5.74 -1.36 -1.36</th> <th>CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 29.53 40.25 36.10 36.28 34.49 34.14 34.07 34.34 34.94 11.13 11.51 11.11 11.60 11.93 11.59 11.54 11.47 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 47.70 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 5.63 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 0.52 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 7.13 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 3.95 2F.1 6.76 8.04 6.95 7.24 7.41 6.89 6.68 6.43 3D, 2F.2,4,9 4.58</th> <th>CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 29.53 29.65 40.25 36.10 36.28 34.49 34.14 34.07 34.34 34.94 35.54 11.13 11.51 11.11 11.60 11.93 11.59 11.54 11.47 12.26 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 47.70 48.49 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 5.63 5.21 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 0.52 0.52 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 7.13 7.44 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 3.95 3.99 2F.1 6.76 8.04 6.95<</th> | CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 40.25 36.10 36.28 34.49 34.14 34.07 34.34 11.13 11.51 11.11 11.60 11.93 11.59 11.54 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 2F.1 6.76 8.04 6.95 7.24 7.41 6.89 6.68 3D, 2F.2,4,9 4.58 4.15 4.93 5.17 5.37 5.56 5.74 -1.36 -1.36 | CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 29.53 40.25 36.10 36.28 34.49 34.14 34.07 34.34 34.94 11.13 11.51 11.11 11.60 11.93 11.59 11.54 11.47 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 47.70 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 5.63 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 0.52 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 7.13 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 3.95 2F.1 6.76 8.04 6.95 7.24 7.41 6.89 6.68 6.43 3D, 2F.2,4,9 4.58 | CRF code 46.92 40.21 37.02 34.58 33.34 29.88 29.49 29.53 29.65 40.25 36.10 36.28 34.49 34.14 34.07 34.34 34.94 35.54 11.13 11.51 11.11 11.60 11.93 11.59 11.54 11.47 12.26 4A-4F 49.69 46.13 46.40 45.88 46.20 46.49 46.92 47.70 48.49 1A-1B 17.99 14.65 13.58 10.95 10.16 7.06 6.15 5.63 5.21 2A-2E,2F,7,8 3.66 1.61 1.69 0.48 0.49 0.50 0.51 0.52 0.52 6A 13.74 11.22 8.70 8.68 7.38 6.58 6.85 7.13 7.44 6B 3.25 3.37 3.52 3.62 3.76 3.82 3.89 3.95 3.99 2F.1 6.76 8.04 6.95< | EU-28 LULUCF emissions Reference scenario | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------|---|---|---|--|---
--|--|--|--|---
--|--|--| | CRF | | | | | | | | | | | | | | | 5A | | | -345.5 | -315.1 | -298.8 | -260.9 | -235.8 | -222.9 | -207.6 | -198.9 | -194.6 | -168.7 | -150.1 | | 5A.1 | Forest management | Biomass | -393.4 | -340.1 | -303.3 | -246.4 | -192.6 | -158.3 | -126.4 | -103.4 | -85.7 | -50.1 | -23.5 | | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -17.0 | -28.5 | -39.4 | -51.8 | -63.8 | -73.9 | -83.6 | -93.3 | -100.0 | -105.9 | | | Afforestation/ reforestation | Soil | -6.1 | -9.0 | -11.6 | -13.9 | -16.0 | -17.9 | -19.6 | -21.0 | -22.4 | -23.5 | -24.3 | | | Deforestation | Biomass | 43.0 | 31.5 | 22.2 | 19.4 | 13.7 | 10.0 | 7.3 | 5.4 | 4.1 | 2.8 | 2.1 | | | Deforestation | Soil | 11.0 | 19.6 | 22.4 | 19.4 | 10.9 | 7.1 | 5.0 | 3.6 | 2.8 | 2.1 | 1.6 | | 5B | Cropland management | Soil | 45.8 | 35.7 | 25.7 | 21.5 | 17.4 | 15.9 | 14.4 | 13.6 | 12.9 | 14.4 | 16.0 | | 5B.1 | Cropland management | Soil | 39.7 | 28.0 | 16.3 | 9.5 | 2.7 | -0.2 | -3.1 | -4.9 | -6.6 | -5.8 | -4.9 | | 5B.2 | Cropland management | Soil | 6.1 | 7.7 | 9.3 | 12.0 | 14.6 | 16.1 | 17.6 | 18.5 | 19.5 | 20.2 | 20.9 | | 5C | Grassland management | Soil | 8.2 | 5.9 | 3.5 | 1.3 | -0.9 | -2.9 | -4.9 | -6.8 | -8.7 | -10.4 | -12.2 | | 5C.1 | Grassland management | Soil | 9.9 | 9.8 | 9.6 | 9.4 | 9.3 | 9.1 | 8.9 | 8.9 | 8.8 | 8.7 | 8.6 | | 5C.2 | Grassland management | Soil | -1.7 | -3.9 | -6.1 | -8.1 | -10.1 | -12.0 | -13.9 | -15.7 | -17.5 | -19.2 | -20.8 | | 5D | Wetlands | | 6.2 | 6.1 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | | 5E | Settlements | | 33.5 | 37.5 | 38.8 | 38.8 | 38.8 | 38.8 | 38.8 | 38.8 | 38.8 | 38.8 | 38.8 | | 5F | Other land | | 1.4 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | 5G | Harvested Wood Produc | ts | 0.0 | -9.4 | -18.8 | -34.8 | -50.8 | -55.8 | -60.8 | -65.2 | -69.5 | -82.0 | -94.5 | | 5 | LULUCF | | -250.3 | -238.5 | -243.6 | -228.1 | -225.3 | -220.9 | -214.1 | -212.5 | -215.1 | -201.9 | -196.0 | | | CRF 5A 5A.1 5A.2 5B 5B.1 5B.2 5C 5C.1 5C.2 5D 55E 5F 5G | 5A 5A.1 Forest management 5A.2 Afforestation/ reforestation | CRF 5A 5A.1 Forest management Biomass 5A.2 Afforestation/ reforestation Biomass | CRF 5A -345.5 5A.1 Forest management Biomass -393.4 5A.2 Afforestation/ reforestation Biomass 0.0 Afforestation/ reforestation Biomass 43.0 Deforestation Soil 11.0 5B Cropland management Soil 45.8 5B.1 Cropland management Soil 39.7 5B.2 Cropland management Soil 6.1 5C Grassland management Soil 9.9 5C.1 Grassland management Soil 9.9 5C.2 Grassland management Soil -1.7 5D Wetlands 6.2 5E Settlements 33.5 5F Other land 1.4 5G Harvested Wood Products 0.0 | CRF 5A -345.5 -315.1 5A.1 Forest management Biomass .393.4 -340.1 5A.2 Afforestation/ reforestation Biomass -6.1 -9.0 Deforestation Biomass 43.0 31.5 Deforestation Soil 41.0 19.6 5B.1 Cropland management Soil 45.8 35.7 5B.2 Cropland management Soil 99.7 28.0 5B.2 Cropland management Soil 8.2 5.9 5C.1 Grassland management Soil 8.2 5.9 5C.2 Grassland management Soil 9.9 9.8 5C.2 Grassland management Soil -1.7 -3.9 5D Wetlands 6.2 6.1 5E Settlements 33.5 37.5 5F Other land 1.4 0.7 4B 4B -4.1 -4.1 4B -4.2 -4.2 | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -393.4 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -303.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.3 -340.1 -340.1 -340.3 -340.1 -340. | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -393.4 -340.1 -303.3 -246.4 SA Afforestation/ reforestation Biomass -6.1 -9.0 -11.6 -3.9 -3.9 -1.9 -3.9
-3.9 - | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -260.9 -260.9 -235.8 -260. | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -222.9 -235.8 -222.9 -235.8 -222.9 -235.8 -222.9 -235.8 -222.9 -235.8 -239.4 -340.1 -303.3 -246.4 -192.6 -158.3 -160.0 -17.0 -28.5 -39.4 -51.8 -63.8 -54.6 -63.8 -63.8 -260.9 -11.6 -13.9 -16.0 -17.9 -17.0 -17. | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -222.9 -207.6 | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -222.9 -207.6 -198.9 -103.4 -340.1 -303.3 -246.4 -192.6 -158.3 -126.4 -103.4 -103.4 -340.1 -303.3 -246.4 -192.6 -158.3 -126.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.4 -103.8 -73.9 -83.6 -83.6 -83.8 -73.9 -83.6 -83.6 -73.9 -83.6 -83.6 -73.9 -83.6 -83.6 -73.9 -83.6 -83.6 -83.6 -73.9 -83.6 -83.6 -73.9 -83.6 -83.6 -73.9 -83.6 -83.6 -73.9 -73.9 -73.9 -73.9 -73.9 -73.9 -73.9 -73.0 -73.9 -73.0 | CRF SA Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -222.9 -207.6 -198.9 -194.6 -54.2 SA SA SA SA SA SA SA | CRF Forest management Biomass -345.5 -315.1 -298.8 -260.9 -235.8 -222.9 -207.6 -198.9 -194.6 -168.7 -50.1 -50.2 Afforestation/ reforestation Biomass -61.0 -9.0 -11.6 -13.9 -15.8 -63.8 -73.9 -83.6 -93.3 -100.0 -10 | Source: G4M, GLOBIOM EU-27 LULUCF emissions Reference scenario | | | | | - | | | | | | | | | | | |-------------------------------------|--------|------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -340.0 | -309.4 | -294.7 | -259.1 | -236.3 | -223.7 | -208.6 | -200.6 | -197.0 | -171.8 | -153.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -384.7 | -332.7 | -300.0 | -246.2 | -195.1 | -161.4 | -129.9 | -107.6 | -90.9 | -56.1 | -29.3 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -16.6 | -27.6 | -38.0 | -50.1 | -61.7 | -71.7 | -81.2 | -90.9 | -97.4 | -103.3 | | | | Afforestation/ reforestation | Soil | -5.9 | -8.8 | -11.3 | -13.6 | -15.7 | -17.6 | -19.3 | -20.7 | -22.0 | -23.1 | -24.0 | | Forest Land converted to other land | | Deforestation | Biomass | 40.4 | 30.3 | 22.2 | 19.4 | 13.7 | 10.0 | 7.3 | 5.4 | 4.0 | 2.8 | 2.1 | | use categories | | Deforestation | Soil | 10.2 | 18.3 | 22.0 | 19.3 | 10.9 | 7.0 | 5.0 | 3.6 | 2.8 | 2.1 | 1.6 | | Total Cropland | 5B | Cropland management | Soil | 45.6 | 35.5 | 25.4 | 21.3 | 17.1 | 15.6 | 14.2 | 13.4 | 12.6 | 14.2 | 15.7 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 39.5 | 27.8 | 16.1 | 9.3 | 2.5 | -0.4 | -3.4 | -5.1 | -6.9 | -6.0 | -5.1 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 6.1 | 7.7 | 9.3 | 12.0 | 14.6 | 16.1 | 17.5 | 18.5 | 19.5 | 20.2 | 20.9 | | Total Grassland | 5C | Grassland management | Soil | 8.2 | 5.9 | 3.5 | 1.4 | -0.8 | -2.8 | -4.8 | -6.7 | -8.6 | -10.3 | -12.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 9.9 | 9.8 | 9.6 | 9.4 | 9.3 | 9.1 | 8.9 | 8.9 | 8.8 | 8.7 | 8.6 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -1.7 | -3.9 | -6.1 | -8.1 | -10.1 | -11.9 | -13.7 | -15.6 | -17.4 | -19.0 | -20.7 | | Total Wetlands | 5D | Wetlands | | 6.2 | 6.1 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | | Total Settlements | 5E | Settlements | | 33.2 | 37.0 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 | 38.1 | | Total Other land | 5F | Other land | | 1.4 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -9.0 | -18.1 | -34.0 | -50.0 | -55.0 | -60.0 | -64.4 | -68.8 | -81.3 | -93.9 | | LULUCF | 5 | LULUCF | | -245.5 | -233.3 | -239.8 | -226.5 | -225.9 | -221.8 | -215.2 | -214.3 | -217.8 | -205.2 | -199.1 | | | | | | | | | | | | | | | | | Source: G4M, GLOBIOM Austria LULUCF emissions Reference scenario | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------
------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -5.9 | -2.8 | 3.8 | 2.7 | 2.2 | 2.3 | 4.0 | 4.9 | 5.9 | 7.9 | 8.1 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -9.8 | -6.4 | 1.6 | 2.3 | 2.8 | 3.6 | 5.9 | 7.3 | 8.7 | 11.0 | 11.6 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.2 | -0.4 | -0.7 | -1.0 | -1.5 | -1.8 | -2.1 | -2.4 | -2.6 | -2.9 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.5 | -0.5 | -0.6 | -0.7 | | Forest Land converted to other land | | Deforestation | Biomass | 3.1 | 2.4 | 1.2 | 0.7 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | | use categories | | Deforestation | Soil | 0.9 | 1.5 | 1.6 | 0.7 | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.1 | -0.1 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | | Total Wetlands | 5D | Wetlands | | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | | Total Settlements | 5E | Settlements | | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Other land | 5F | Other land | | 0.6 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.1 | -0.1 | -2.0 | -4.0 | -4.9 | -5.8 | -6.2 | -6.6 | -7.7 | -8.9 | | LULUCF | 5 | LULUCF | | -4.8 | -1.7 | 4.9 | 1.8 | -0.6 | -1.3 | -0.5 | 0.1 | 0.7 | 1.6 | 0.8 | | Belgium | LULUCE | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -3.6 | -2.7 | -2.9 | -1.7 | -0.4 | -0.4 | 0.0 | 0.4 | 0.7 | 0.7 | 0.7 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -4.3 | -3.1 | -3.3 | -1.8 | -0.3 | -0.3 | 0.2 | 0.7 | 1.0 | 1.1 | 1.2 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.4 | -0.4 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | | Forest Land converted to other land | | Deforestation | Biomass | 0.6 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.8 | 0.9 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.8 | 0.8 | 0.8 | 0.7 | 0.5 | 0.5 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | | Total Other land | 5F | Other land | | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.2 | -0.4 | -0.6 | -0.7 | -0.8 | -0.9 | -1.0 | -1.0 | -1.1 | -1.1 | | LULUCF | 5 | LULUCF | | -1.8 | -0.9 | -1.4 | -0.4 | 0.6 | 0.4 | 0.6 | 0.9 | 1.1 | 1.0 | 0.9 | LULUCF Source: G4M, GLOBIOM | Bulgaria | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -10.8 | -9.8 | -9.7 | -8.5 | -7.6 | -6.7 | -6.0 | -5.5 | -5.0 | -4.9 | -4.9 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -10.7 | -9.1 | -8.6 | -6.7 | -5.2 | -3.9 | -2.4 | -1.2 | -0.1 | 0.5 | 1.1 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.6 | -1.0 | -1.5 | -2.0 | -2.3 | -3.0 | -3.5 | -4.0 | -4.5 | -5.0 | | | | Afforestation/ reforestation | Soil | -0.2 | -0.3 | -0.3 | -0.4 | -0.5 | -0.6 | -0.7 | -0.8 | -0.9 | -1.0 | -1.1 | | Forest Land converted to other land | | Deforestation | Biomass | 0.0 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 1.4 | 1.2 | 1.0 | 0.9 | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 | 0.5 | 0.4 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 1.1 | 0.7 | 0.3 | 0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.3 | 0.5 | 0.6 | 0.7 | 0.9 | 0.9 | 0.8 | 0.7 | 0.6 | 0.6 | 0.6 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Settlements | 5E | Settlements | | 0.1 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | -0.3 | -0.6 | -0.7 | -0.8 | -0.7 | -0.7 | -0.8 | -1.0 | | LULUCE | 5 | LULUCE | | -9.4 | -8.4 | -8.2 | -7.4 | -6.9 | -6.2 | -5.6 | -5.2 | -4.9 | -4.9 | -5.2 | LULUCF Source: G4M, GLOBIOM | Croatia | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -5.5 | -5.7 | -4.1 | -1.8 | 0.5 | 0.8 | 1.0 | 1.7 | 2.5 | 3.1 | 2.9 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -8.7 | -7.5 | -3.3 | -0.2 | 2.5 | 3.1 | 3.5 | 4.3 | 5.2 | 6.0 | 5.8 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.5 | -0.9 | -1.4 | -1.8 | -2.0 | -2.2 | -2.4 | -2.5 | -2.5 | -2.6 | | | | Afforestation/ reforestation | Soil | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | | Forest Land converted to other land | | Deforestation | Biomass | 2.6 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.8 | 1.2 | 0.4 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | | Total Wetlands | 5D | Wetlands | | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.3 | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.3 | -0.7 | -0.7 | -0.8 | -0.8 | -0.8 | -0.8 | -0.7 | -0.7 | -0.7 | | LULUCF | 5 | LULUCF | | -4.9 | -5.2 | -3.8 | -1.6 | 0.6 | 0.9 | 1.0 | 1.8 | 2.6 | 3.3 | 3.0 | | Cyprus | LULUCF emissions Reference scenario | |--------|-------------------------------------|
--------|-------------------------------------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Forest Land converted to other land | | Deforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | LULUCF | 5 | LULUCF | | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Source: G4M, GLOBIOM Czech Republic LULUCF emissions Reference scenario | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |--------|--|--|--|------|----------|-------------------------------|--------------------------------------|-----------------|----------------|----------------|---|--|--| | CRF | | | | | | | | | | | | | | | 5A | | | -7.9 | -6.3 | -1.8 | -2.5 | -2.3 | -1.4 | -1.2 | -0.2 | 0.8 | 1.9 | 3.0 | | 5A.1 | Forest management | Biomass | -8.1 | -6.6 | -2.1 | -2.6 | -2.1 | -1.1 | -0.7 | 0.4 | 1.5 | 2.8 | 4.0 | | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.1 | -0.1 | -0.2 | -0.3 | -0.3 | -0.4 | -0.5 | -0.6 | -0.7 | -0.8 | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | | | Deforestation | Biomass | 0.2 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | Deforestation | Soil | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5B | Cropland management | Soil | 0.1 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.1 | -0.1 | -0.1 | -0.1 | | 5B.1 | Cropland management | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.3 | -0.2 | -0.2 | -0.2 | -0.1 | | 5B.2 | Cropland management | Soil | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5C | Grassland management | Soil | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5C.2 | Grassland management | Soil | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5E | Settlements | | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5G | Harvested Wood Produc | ts | 0.0 | 0.3 | 0.5 | -0.3 | -1.1 | -1.5 | -1.8 | -2.1 | -2.4 | -2.9 | -3.3 | | 5 | LULUCF | | -7.7 | -5.9 | -1.3 | -2.8 | -3.5 | -3.0 | -3.2 | -2.5 | -1.8 | -1.2 | -0.6 | | | 5A
5A.1
5A.2
5B.6
5B.1
5B.2
5C
5C.1
5C.2
5D
5E
5F
5G | CRF 5A 5A.1 Forest management 5A.2 Afforestation/ reforestation | CRF 5A 5A.1 Forest management Biomass 5A.2 Afforestation/ reforestation Biomass Afforestation/ reforestation Biomass Afforestation Biomass Deforestation Biomass Deforestation Biomass Deforestation Soil 5B Cropland management Soil 5B.2 Cropland management Soil 5C Grassland management Soil 5C.1 Grassland management Soil 5C.2 Grassland management Soil 5C.2 Grassland management Soil 5C.3 Grassland management Soil 5C.4 Grassland management Soil 5C.5 Grassland management Soil 5C.6 Grassland management Soil 5C.7 Grassland management Soil 5C.8 Grassland management Soil 5C.9 Grassland management Soil 5C.1 Grassland management Soil 5C.2 Grassland management Soil 5C.3 Grassland management Soil 5C.4 Grassland management Soil 5C.5 Grassland management Soil 5C.6 Hart Land Harvested Wood Products | 1.00 | CRF CA | CRF SA -7.9 -6.3 -1.8 | CRF SA -7.9 -6.3 -1.8 -2.5 | CRF SA -7.9 | CRF CRF CA | CRF CRF CA | CRF | Afforestation Forest management Biomass A.1 -6.6 -2.1 -2.6 -2.3 -1.4 -1.2 -0.2 0.8 | CRF SAA Forest management Biomass -8.1 -6.6 -2.1 -2.6 -2.1 -1.1 -0.7 0.4 1.5 2.8 | Source: G4M, GLOBIOM #### Denmark LULUCF emissions Reference scenario | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | 0.5 | 0.4 | -0.2 | -0.2 | -0.3 | -0.2 | -0.3 | -0.4 | -0.4 | -0.4 | -0.6 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | 0.4 | 0.3 | 0.0 | 0.1 | 0.1 | 0.4 | 0.4 | 0.5 | 0.6 | 0.7 | 0.7 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | -0.3 | -0.3 | -0.4 | -0.6 | -0.7 | -0.7 | -0.8 | -0.9 | -1.1 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | |
Forest Land converted to other land | | Deforestation | Biomass | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 2.9 | 2.8 | 2.8 | 3.0 | 3.3 | 2.8 | 2.3 | 1.6 | 1.0 | 1.5 | 2.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 2.9 | 2.8 | 2.7 | 2.9 | 3.1 | 2.6 | 2.1 | 1.4 | 0.8 | 1.3 | 1.8 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.3 | -0.4 | -0.4 | -0.5 | -0.6 | -0.6 | | LULUCF | 5 | LULUCF | | 3.7 | 3.5 | 2.8 | 3.0 | 3.1 | 2.5 | 1.9 | 1.2 | 0.5 | 0.9 | 1.2 | | Estonia | LULUCE | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -0.1 | -2.2 | 1.0 | 1.9 | 2.2 | 2.3 | 2.4 | 1.5 | 0.0 | -0.2 | -0.4 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -0.4 | -2.3 | 0.9 | 2.3 | 3.4 | 3.9 | 4.3 | 3.8 | 2.7 | 2.6 | 2.4 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.4 | -0.6 | -0.7 | -1.1 | -1.3 | -1.4 | -1.8 | -2.1 | -2.2 | -2.2 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.3 | -0.3 | -0.4 | -0.5 | -0.5 | -0.6 | -0.6 | -0.6 | -0.6 | | Forest Land converted to other land | | Deforestation | Biomass | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | -0.8 | -0.8 | -0.9 | -0.9 | -0.9 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.1 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | -0.8 | -0.8 | -0.8 | -0.8 | -0.8 | -0.8 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.3 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.0 | 0.1 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.1 | -0.1 | -0.2 | -0.1 | 0.0 | 0.2 | 0.3 | 0.1 | 0.0 | | LULUCF | 5 | LULUCF | | -0.8 | -2.7 | 0.6 | 1.3 | 1.3 | 1.5 | 1.8 | 1.0 | -0.5 | -0.9 | -1.3 | Source: G4M, GLOBIOM | Finland | LULUCF | emissions Reference | scenario | • | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -34.2 | -33.8 | -29.8 | -22.0 | -17.9 | -15.7 | -12.5 | -8.4 | -6.7 | -5.6 | -5.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -37.3 | -37.6 | -33.5 | -25.1 | -19.6 | -16.6 | -12.8 | -8.1 | -6.0 | -4.5 | -3.5 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.1 | -0.2 | -0.3 | -0.4 | -0.6 | -0.8 | -0.9 | -1.0 | -1.1 | -1.3 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.5 | -0.5 | -0.6 | | Forest Land converted to other land | | Deforestation | Biomass | 2.3 | 2.3 | 1.7 | 1.3 | 1.2 | 1.0 | 0.8 | 0.5 | 0.4 | 0.3 | 0.2 | | use categories | | Deforestation | Soil | 0.9 | 1.7 | 2.5 | 2.4 | 1.3 | 1.0 | 0.7 | 0.5 | 0.4 | 0.2 | 0.2 | | Total Cropland | 5B | Cropland management | Soil | 3.8 | 3.4 | 3.0 | 2.6 | 2.1 | 1.9 | 1.6 | 1.5 | 1.4 | 1.3 | 1.2 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 3.8 | 3.4 | 3.0 | 2.4 | 1.8 | 1.5 | 1.2 | 1.1 | 1.0 | 0.8 | 0.7 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.1 | 0.2 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | | Total Grassland | 5C | Grassland management | Soil | 1.5 | 1.5 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 1.5 | 1.4 | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | | Total Wetlands | 5D | Wetlands | | 1.4 | 1.5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Total Settlements | 5E | Settlements | | 1.4 | 1.9 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.1 | -0.3 | -1.7 | -3.1 | -4.6 | -6.1 | -7.9 | -9.7 | -10.5 | -11.3 | | LULUCF | 5 | LULUCF | | -26.2 | -25.6 | -21.8 | -15.8 | -13.5 | -13.1 | -11.7 | -9.5 | -9.6 | -9.4 | -9.6 | Source: G4M, GLOBIOM | France | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -19.5 | -44.6 | -44.5 | -24.0 | -7.4 | -4.3 | 1.7 | -5.2 | -15.8 | -17.8 | -21.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -36.5 | -54.1 | -48.2 | -21.3 | 2.0 | 9.5 | 19.1 | 15.4 | 8.8 | 9.5 | 8.1 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -4.3 | -7.0 | -8.3 | -11.3 | -13.5 | -15.4 | -17.7 | -21.1 | -23.0 | -24.5 | | | | Afforestation/ reforestation | Soil | -1.1 | -1.7 | -2.2 | -2.8 | -3.2 | -3.7 | -4.0 | -4.4 | -4.7 | -5.0 | -5.2 | | Forest Land converted to other land | | Deforestation | Biomass | 15.2 | 10.3 | 7.2 | 4.9 | 3.3 | 2.2 | 1.2 | 0.9 | 0.7 | 0.5 | 0.4 | | use categories | | Deforestation | Soil | 3.0 | 5.1 | 5.8 | 3.4 | 1.8 | 1.1 | 0.8 | 0.5 | 0.4 | 0.3 | 0.3 | | Total Cropland | 5B | Cropland management | Soil | 8.5 | 5.4 | 2.3 | 1.8 | 1.3 | 1.7 | 2.2 | 1.9 | 1.7 | 2.2 | 2.6 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 8.0 | 4.8 | 1.6 | 0.5 | -0.5 | -0.5 | -0.4 | -0.8 | -1.2 | -1.0 | -0.9 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.5 | 0.6 | 0.7 | 1.2 | 1.8 | 2.2 | 2.6 | 2.7 | 2.8 | 3.2 | 3.5 | | Total Grassland | 5C | Grassland management | Soil | -0.4 | -0.7 | -0.9 | -1.1 | -1.3 | -1.5 | -1.6 | -1.8 | -1.9 | -2.1 | -2.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.4 | -0.7 | -0.9 | -1.1 | -1.3 | -1.5 | -1.6 | -1.8 | -1.9 | -2.1 | -2.2 | | Total Wetlands | 5D | Wetlands | | -2.6 | -2.5 | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | -3.5 | | Total Settlements | 5E | Settlements | | 11.2 | 13.1 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | 14.3 | | Total Other land | 5F | Other land | | 0.2 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -3.1 | -6.2 | -12.2 | -18.2 | -15.8 | -13.5 | -10.9 | -8.2 | -7.0 | -5.7 | | LULUCF | 5 | LULUCF | | -2.5 | -31.9 | -38.4 | -24.7 | -14.8 | -9.1 | -0.4 | -5.1 | -13.5 | -13.8 | -15.4 | | Germany | LULUCF emissions Reference scenario | |---------|-------------------------------------| | | | | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -27.9 | -23.6 | -10.3 | -15.6 | -23.2 | -24.8 | -25.6 | -23.0 | -20.0 | -15.2 | -10.4 | | Forest Land remaining Forest Land | 5A.1 | Forest
management | Biomass | -33.0 | -25.8 | -10.3 | -13.3 | -18.7 | -18.4 | -17.4 | -13.1 | -8.6 | -2.3 | 3.7 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -1.7 | -2.8 | -3.9 | -5.0 | -6.3 | -7.9 | -9.2 | -10.4 | -11.6 | -12.6 | | | | Afforestation/ reforestation | Soil | -0.3 | -0.5 | -0.6 | -0.8 | -0.9 | -1.1 | -1.2 | -1.4 | -1.5 | -1.7 | -1.8 | | Forest Land converted to other land | | Deforestation | Biomass | 4.9 | 3.3 | 2.2 | 1.5 | 1.0 | 0.8 | 0.6 | 0.5 | 0.3 | 0.3 | 0.2 | | use categories | | Deforestation | Soil | 0.6 | 1.1 | 1.3 | 0.9 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | | Total Cropland | 5B | Cropland management | Soil | 10.7 | 8.2 | 5.7 | 4.8 | 3.9 | 3.4 | 3.0 | 2.8 | 2.6 | 2.6 | 2.5 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 9.7 | 7.0 | 4.2 | 2.8 | 1.4 | 0.7 | -0.1 | -0.5 | -1.0 | -1.2 | -1.5 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 1.0 | 1.2 | 1.5 | 2.0 | 2.5 | 2.8 | 3.1 | 3.3 | 3.6 | 3.8 | 4.0 | | Total Grassland | 5C | Grassland management | Soil | 8.7 | 8.4 | 8.1 | 7.7 | 7.4 | 7.0 | 6.6 | 6.4 | 6.2 | 5.9 | 5.6 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 9.1 | 9.0 | 8.9 | 8.8 | 8.6 | 8.5 | 8.3 | 8.2 | 8.2 | 8.1 | 8.1 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.4 | -0.6 | -0.9 | -1.1 | -1.3 | -1.5 | -1.7 | -1.8 | -2.0 | -2.2 | -2.4 | | Total Wetlands | 5D | Wetlands | | 2.6 | 2.4 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | | Total Settlements | 5E | Settlements | | 2.8 | 2.0 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -2.2 | -4.5 | -5.4 | -6.3 | -6.8 | -7.3 | -8.9 | -10.5 | -11.8 | -13.2 | | LULUCF | 5 | LULUCF | | -3.0 | -4.8 | 3.7 | -3.7 | -13.4 | -16.4 | -18.6 | -18.0 | -17.1 | -13.8 | -10.6 | Source: G4M, GLOBIOM Greece LULUCF emissions Reference scenario | UNFCCC | _ | | | | | | | | | | | | | |----------|--|--|---|------|--|--|---|--
--|--|--|--|----------| | OINI CCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | CRF | | | | | | | | | | | | | | | 5A | | | -2.3 | -2.5 | -2.7 | -2.8 | -2.7 | -2.9 | -3.1 | -3.1 | -3.0 | -2.9 | -2.8 | | 5A.1 | Forest management | Biomass | -1.9 | -1.8 | -1.7 | -1.5 | -1.1 | -1.0 | -1.0 | -0.8 | -0.7 | -0.5 | -0.3 | | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.1 | -0.3 | -0.5 | -0.7 | -0.9 | -1.2 | -1.3 | -1.4 | -1.5 | -1.6 | | | Afforestation/ reforestation | Soil | -0.4 | -0.6 | -0.7 | -0.8 | -0.9 | -0.9 | -0.9 | -0.9 | -1.0 | -1.0 | -1.0 | | | Deforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Deforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5B | Cropland management | Soil | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | | 5B.1 | Cropland management | Soil | 0.3 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5B.2 | Cropland management | Soil | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5E | Settlements | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5 | LULUCF | | -1.8 | -2.0 | -2.3 | -2.4 | -2.4 | -2.5 | -2.6 | -2.7 | -2.6 | -2.5 | -2.3 | | | 5A
5A.1
5A.2
5B.5B.1
5B.2
5C.5C.1
5C.2
5D.5E.5
5F.56 | 5A 5A.1 Forest management 5A.2 Afforestation/ reforestation Afforestation/ reforestation Deforestation Deforestation Deforestation 5B Cropland management Cropland management GC Grassland management GC.1 Grassland management GC.2 Grassland management GC.2 Grassland management GC.3 Grassland management GC.4 Grassland management GC.5 Grassland management GC.5 Grassland management GC.6 Grassland management GC.7 Grassland management GC.8 Grassland management GC.9 Grassland management GC.1 Grassland management GC.2 Grassland management GC.3 Grassland management GC.4 Grassland management GC.5 Grassland management GC.6 Harvested Wood Product GC.7 Grassland Management GC.8 Grassland Management GC.9 | 5A 5A.1 Forest management Biomass 5A.2 Afforestation/ reforestation Soil Deforestation Biomass Deforestation Biomass Deforestation Biomass Deforestation Biomass Deforestation Biomass Deforestation Soil SB.1 Cropland management Soil SB.2 Cropland management Soil GC Grassland management Soil GC Grassland management Soil GC.1 Grassland management Soil GC.2 Grassland management Soil GC.3 Grassland management Soil GC.4 Grassland management Soil GC.5 Grassland management Soil GC.5 Grassland management Soil GC.6 Grassland management Soil GC.7 Grassland management Soil GC.8 Grassland management Soil GC.9 Grassland management Soil GC.1 Grassland management Soil GC.2 Grassland management Soil GC.3 Grassland management Soil GC.4 Grassland management Soil GC.5 Grassland management Soil GC.6 Grassland management Soil GC.7 Grassland management Soil GC.8 Grassland management Soil GC.9 | 1.9 | 2.3 -2.5
-2.5 - | Forest management Biomass -1.9 -1.8 -1.7 | Forest management Biomass -1.9 -1.8 -1.7 -1.5 | Forest management Biomass -2.3 -2.5 -2.7 -2.8 -2.7 | Company Comp | 1-23 -2.5 -2.7 -2.8 -2.7 -2.9 -3.1 | 1-3.1 1-3. | Comparison Com | Columbia | Source: G4M, GLOBIOM Hungary LULUCF emissions Reference scenario | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -1.8 | -2.1 | -2.2 | -1.8 | -1.4 | -1.4 | -1.5 | -1.5 | -1.6 | -1.3 | -1.1 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -1.8 | -1.7 | -1.5 | -0.8 | 0.0 | 0.4 | 0.7 | 1.0 | 1.1 | 1.6 | 2.0 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.4 | -0.7 | -0.9 | -1.2 | -1.5 | -1.8 | -2.1 | -2.3 | -2.5 | -2.7 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | | Forest Land converted to other land | | Deforestation | Biomass | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.4 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.3 | 0.2 | 0.1 | -0.1 | -0.2 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.2 | 0.4 | 0.3 | 0.3 | 0.1 | 0.0 | -0.1 | -0.2 | -0.3 | -0.5 | | LULUCF | 5 | LULUCF | | -0.7 | -1.0 | -1.0 | -0.8 | -0.5 | -0.7 | -0.9 | -1.2 | -1.4 | -1.3 | -1.4 | | Ireland | LULUCE | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -0.8 | -1.1 | -1.0 | -0.9 | 0.1 | 0.2 | 0.2 | -0.3 | -0.5 | -0.4 | -0.4 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -0.9 | -0.9 | -0.5 | 0.0 | 1.3 | 1.7 | 2.0 | 1.9 | 2.0 | 2.4 | 2.7 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.3 | -0.5 | -0.8 | -1.0 | -1.3 | -1.5 | -1.8 | -2.1 | -2.4 | -2.6 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | -0.5 | -0.5 | -0.5 | | Forest Land converted to other land | | Deforestation | Biomass | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.2 | 0.1 | 0.1 | 0.0 | -0.1 | -0.1 | -0.2 | -0.1 | -0.1 | -0.1 | -0.1 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Grassland | 5C | Grassland management | Soil | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | | Total Wetlands | 5D | Wetlands | | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Other land | 5F | Other land | | 0.0 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | -0.5 | -1.0 | -1.1 | -1.1 | -1.0 | -1.0 | -1.2 | -1.4 | | LULUCE | 5 | LULUCE | | -0.3 | -0.8 | -1 0 | -1 4 | -1 0 | -0.9 | -1 0 | -1 4 | -16 | -1 8 | -2 1 | Source: G4M, GLOBIOM | Italy | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -36.3 | -39.2 | -40.9 | -41.3 | -40.4 | -40.1 | -39.8 | -39.4 | -38.8 | -37.4 | -35.9 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -35.6 | -35.1 | -34.3 | -32.2 | -29.2 | -27.3 | -25.7 | -24.5 | -23.3 | -21.8 | -20.3 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -3.0 | -5.2 | -7.3 | -9.2 | -10.7 | -11.9 | -12.7 | -13.2 | -13.4 | -13.3 | | | | Afforestation/ reforestation | Soil | -1.0 | -1.4 | -1.8 | -1.9 | -2.1 | -2.1 | -2.2 | -2.3 | -2.3 | -2.3 | -2.3 | | Forest Land converted to other land | | Deforestation | Biomass | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 2.2 | 1.9 | 1.7 | 1.7 | 1.7 | 1.9 | 2.1 | 2.3 | 2.6 | 2.6 | 2.7 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 1.3 | 0.8 | 0.4 | 0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.4 | -0.4 | -0.4 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.9 | 1.1 | 1.3 | 1.6 | 2.0 | 2.2 | 2.3 | 2.6 | 3.0 | 3.0 | 3.1 | | Total Grassland | 5C | Grassland management | Soil | -1.1 | -1.3 | -1.5 | -1.7 | -1.8 | -2.0 | -2.2 | -2.3 | -2.4 | -2.6 | -2.7 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | -0.8 | -0.8 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | | Land
converted to Grassland | 5C.2 | Grassland management | Soil | -0.3 | -0.5 | -0.7 | -0.9 | -1.1 | -1.3 | -1.4 | -1.6 | -1.8 | -1.9 | -2.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 2.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.8 | 1.5 | 1.9 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | | LULUCF | 5 | LULUCF | | -32.7 | -34.4 | -35.7 | -36.0 | -34.9 | -34.6 | -34.3 | -33.8 | -33.1 | -31.8 | -30.4 | Source: G4M, GLOBIOM | Latvia | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -18.3 | -17.5 | -16.8 | -14.4 | -13.0 | -13.0 | -13.0 | -12.7 | -13.3 | -13.5 | -13.7 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -18.8 | -18.1 | -17.5 | -14.8 | -12.8 | -12.7 | -12.5 | -12.1 | -12.5 | -12.7 | -12.8 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.1 | -0.2 | -0.2 | -0.3 | -0.4 | -0.5 | -0.5 | -0.6 | -0.7 | -0.7 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | | Forest Land converted to other land | | Deforestation | Biomass | 0.4 | 0.6 | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.2 | 0.3 | 0.4 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.4 | 0.3 | 0.2 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.4 | 0.3 | 0.2 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | Total Grassland | 5C | Grassland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.4 | 0.8 | 0.5 | 0.2 | -0.1 | -0.4 | -0.5 | -0.7 | -0.9 | -1.1 | | LULUCF | 5 | LULUCF | | -17.7 | -16.5 | -15.6 | -13.6 | -12.6 | -13.0 | -13.3 | -13.1 | -13.8 | -14.1 | -14.5 | | Lithuania | LULUCF emissions Reference scenario | |-----------|-------------------------------------| |-----------|-------------------------------------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -8.3 | -7.3 | -6.0 | -6.0 | -7.1 | -7.0 | -6.6 | -7.2 | -7.2 | -7.2 | -7.4 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -8.5 | -7.3 | -5.9 | -5.6 | -6.3 | -5.9 | -5.3 | -5.6 | -5.4 | -5.1 | -5.2 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.2 | -0.4 | -0.5 | -0.6 | -0.8 | -1.0 | -1.2 | -1.4 | -1.5 | -1.7 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.1 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.5 | -0.5 | -0.5 | | Forest Land converted to other land | | Deforestation | Biomass | 0.2 | 0.3 | 0.3 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.1 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.2 | 0.1 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | 0.0 | 0.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.2 | 0.1 | 0.1 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.1 | -0.1 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | -0.4 | -0.4 | -0.4 | | Total Wetlands | 5D | Wetlands | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Settlements | 5E | Settlements | | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.1 | 0.2 | 0.1 | 0.0 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | | LULUCF | 5 | LULUCF | | -7.2 | -6.7 | -5.5 | -5.7 | -7.0 | -7.1 | -6.9 | -7.6 | -7.6 | -7.5 | -7.8 | Source: G4M, GLOBIOM Luxembourg LULUCF emissions Reference scenario | Lakeling | | CHIBSSIONS INCIDION | 000114116 | , | | | | | | | | | | | |-------------------------------------|--------|------------------------------|-----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -0.5 | -0.2 | -0.5 | -0.5 | -0.3 | -0.2 | -0.1 | -0.2 | -0.2 | -0.2 | 0.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -0.5 | -0.2 | -0.5 | -0.5 | -0.3 | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | 0.2 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Forest Land converted to other land | | Deforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | | LULUCF | 5 | LULUCF | | -0.4 | -0.1 | -0.4 | -0.4 | -0.2 | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | 0.0 | | | | | | | | | | | | | | | | | Source: G4M, GLOBIOM Malta LULUCF emissions Reference scenario | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Forest Land converted to other land | | Deforestation | Biomass | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 |
Cropland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | LULUCF | 5 | LULUCF | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Netherlands | LULUCE | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -1.4 | -1.2 | -1.1 | -1.4 | -1.7 | -2.3 | -2.7 | -3.1 | -3.4 | -3.7 | -3.9 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -2.6 | -2.2 | -1.9 | -1.6 | -1.3 | -1.3 | -1.2 | -1.1 | -1.0 | -1.1 | -1.0 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.2 | -0.2 | -0.4 | -0.7 | -1.0 | -1.3 | -1.6 | -2.0 | -2.2 | -2.5 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | -0.1 | -0.1 | -0.2 | -0.3 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | | Forest Land converted to other land | | Deforestation | Biomass | 0.9 | 0.7 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.2 | 0.4 | 0.6 | 0.4 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.1 | 0.0 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.1 | 0.0 | -0.1 | -0.2 | -0.3 | -0.3 | -0.3 | -0.3 | -0.3 | -0.2 | -0.2 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Grassland | 5C | Grassland management | Soil | 2.9 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 3.4 | 3.5 | 3.6 | 3.6 | 3.7 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | | Total Wetlands | 5D | Wetlands | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Settlements | 5E | Settlements | | 0.5 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.1 | -0.3 | -0.3 | -0.3 | -0.2 | -0.2 | -0.2 | -0.3 | -0.2 | -0.2 | | LULUCF | 5 | LULUCF | | 2.2 | 2.6 | 2.6 | 2.4 | 2.0 | 1.6 | 1.2 | 0.9 | 0.7 | 0.5 | 0.3 | LULUCF Source: G4M, GLOBIOM | Poland | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -42.6 | -34.9 | -29.3 | -27.3 | -26.9 | -26.2 | -24.3 | -22.8 | -21.5 | -16.2 | -11.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -42.6 | -33.5 | -27.2 | -24.4 | -22.9 | -21.3 | -18.5 | -16.2 | -14.3 | -8.4 | -2.6 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -1.3 | -1.9 | -2.6 | -3.3 | -4.0 | -4.7 | -5.4 | -5.9 | -6.4 | -6.8 | | | | Afforestation/ reforestation | Soil | -0.4 | -0.5 | -0.7 | -0.8 | -0.9 | -1.0 | -1.1 | -1.3 | -1.4 | -1.5 | -1.6 | | Forest Land converted to other land | | Deforestation | Biomass | 0.3 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.7 | 0.0 | -0.6 | -1.1 | -1.6 | -1.7 | -1.8 | -1.6 | -1.4 | -1.3 | -1.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.4 | -0.3 | -0.9 | -1.4 | -1.9 | -2.0 | -2.1 | -1.9 | -1.8 | -1.6 | -1.4 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Total Grassland | 5C | Grassland management | Soil | 0.5 | 0.3 | 0.2 | 0.0 | -0.2 | -0.3 | -0.5 | -0.7 | -0.8 | -1.0 | -1.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.1 | -0.2 | -0.3 | -0.5 | -0.6 | -0.8 | -0.9 | -1.1 | -1.2 | -1.4 | -1.6 | | Total Wetlands | 5D | Wetlands | | 2.9 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | | Total Settlements | 5E | Settlements | | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.9 | -1.9 | -3.5 | -5.1 | -5.5 | -6.0 | -6.5 | -7.0 | -9.5 | -12.0 | | LULUCE | 5 | LULUCE | | -38.2 | -32.3 | -28.3 | -28.6 | -30.4 | -30.5 | -29.3 | -28.3 | -27.5 | -24.7 | -22.0 | Source: G4M, GLOBIOM | Portugal | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|------|------|------|-------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -4.9 | -5.1 | -4.7 | -6.2 | -8.2 | -8.7 | -8.7 | -8.9 | -8.7 | -8.2 | -7.5 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -9.9 | -8.2 | -5.5 | -10.6 | -8.8 | -6.1 | -4.4 | -3.4 | -2.2 | -1.4 | -0.6 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -1.3 | -1.7 | -2.9 | -3.6 | -4.4 | -5.0 | -5.5 | -6.0 | -5.8 | -5.6 | | | | Afforestation/ reforestation | Soil | -0.3 | -0.5 | -0.7 | -0.9 | -1.1 | -1.4 | -1.5 | -1.6 | -1.7 | -1.7 | -1.7 | | Forest Land converted to other land | | Deforestation | Biomass | 3.7 | 2.0 | 0.7 | 4.3 | 2.9 | 1.8 | 1.3 | 0.9 | 0.7 | 0.4 | 0.3 | | use categories | | Deforestation | Soil | 1.7 | 2.8 | 2.5 | 3.9 | 2.5 | 1.3 | 0.9 | 0.6 | 0.5 | 0.3 | 0.2 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Total Settlements | 5E | Settlements | | 2.1 | 2.6 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | | Total Other land | 5F | Other land | | -0.8 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | -0.7 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.2 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | -0.4 | -0.3 | | LULUCF | 5 | LULUCF | | -3.0 | -2.8 | -3.0 | -4.5 | -6.6 | -7.1 | -7.1 | -7.4 | -7.2 | -6.6 | -5.9 | | Romania | LULUCF | emissions Reference | scenario |) | |----------------------|--------|---------------------|----------|---| | LULUCF CO2 emissions | UNFCCC | Source | Pool | | | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|-------|-------|-------|-------|------|------|------|------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -21.9 | -19.8 | -20.5 | -13.9 | -6.7 | -2.4 | 2.6 | 5.4 | 8.6 | 12.5 | 16.1 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -24.4 | -22.5 | -23.5 | -16.8 | -9.1 | -4.5 | 1.0 | 4.3 | 8.2 | 12.8 | 16.9 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.2 | -0.3 | -0.4 | -0.5 | -0.7 | -0.8 | -1.0 | -1.1 | -1.3 | -1.4 | | | | Afforestation/ reforestation | Soil | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | | Forest Land converted to other land | | Deforestation | Biomass | 2.1 | 2.1 | 2.2 | 2.2 | 2.1 | 2.1 | 1.9 | 1.6 | 1.2 |
0.9 | 0.6 | | use categories | | Deforestation | Soil | 0.4 | 0.8 | 1.2 | 1.2 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 | 0.3 | 0.2 | | Total Cropland | 5B | Cropland management | Soil | 1.8 | 1.7 | 1.6 | 1.3 | 1.0 | 0.9 | 0.8 | 1.0 | 1.2 | 0.7 | 0.3 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 1.3 | 0.9 | 0.6 | 0.2 | -0.2 | -0.3 | -0.5 | -0.5 | -0.5 | -0.6 | -0.7 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.5 | 0.8 | 1.1 | 1.2 | 1.3 | 1.3 | 1.3 | 1.5 | 1.7 | 1.4 | 1.0 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Wetlands | 5D | Wetlands | | 0.0 | -0.3 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | -0.1 | | Total Settlements | 5E | Settlements | | 0.5 | 0.6 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | | Total Other land | 5F | Other land | | 1.1 | 0.4 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.8 | -1.5 | -2.6 | -3.7 | -4.1 | -4.5 | -4.4 | -4.4 | -5.0 | -5.5 | | LULUCF | 5 | LULUCF | | -18.5 | -18.1 | -19.3 | -14.1 | -8.3 | -4.5 | 0.0 | 3.0 | 6.5 | 9.4 | 12.0 | Source: G4M, GLOBIOM Slovakia LULUCF emissions Reference scenario | Olovania | | CHIBSSIONS INCIDION | 000114116 | , | | | | | | | | | | | |-------------------------------------|--------|------------------------------|-----------|------|------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -8.3 | -4.8 | -3.5 | -4.3 | -4.7 | -4.6 | -3.8 | -3.3 | -2.4 | -1.3 | -0.1 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -8.5 | -5.0 | -3.7 | -4.4 | -4.7 | -4.5 | -3.6 | -3.1 | -2.2 | -1.1 | 0.2 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | | | | Afforestation/ reforestation | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | -0.1 | | Forest Land converted to other land | | Deforestation | Biomass | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.6 | 0.4 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | -0.1 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.3 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.3 | -0.3 | -0.3 | -0.3 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Other land | 5F | Other land | | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.2 | -0.4 | -0.7 | -0.9 | -1.0 | -1.1 | -1.1 | -1.0 | -1.8 | -2.7 | | LULUCF | 5 | LULUCF | | -7.5 | -4.4 | -3.6 | -4.6 | -5.2 | -5.3 | -4.6 | -4.2 | -3.2 | -3.0 | -2.7 | | | | | | | | | | | | | | | | | Source: G4M, GLOBIOM Slovenia LULUCF emissions Reference scenario | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |-------------------------------------|--------|------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------| | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -10.4 | -10.7 | -10.3 | -10.4 | -10.1 | -10.7 | -10.5 | -10.0 | -9.4 | -8.7 | -9.2 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -10.9 | -10.8 | -10.0 | -9.8 | -9.2 | -8.9 | -8.7 | -8.0 | -7.5 | -6.8 | -7.1 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.4 | -0.6 | -0.8 | -1.0 | -1.8 | -1.7 | -1.7 | -1.7 | -1.7 | -1.9 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.1 | -0.1 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | -0.2 | | Forest Land converted to other land | | Deforestation | Biomass | 0.5 | 0.4 | 0.4 | 0.3 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | Total Grassland | 5C | Grassland management | Soil | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.1 | -0.1 | -0.2 | -0.3 | -0.4 | -0.4 | -0.5 | -0.6 | -0.7 | -0.7 | | LULUCF | 5 | LULUCF | | -9.7 | -9.9 | -9.4 | -9.5 | -9.3 | -9.9 | -9.6 | -9.2 | -8.8 | -8.1 | -8.6 | | Spain | LULUCE | emissions Reference | scenario | • | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -19.3 | -19.7 | -21.8 | -20.4 | -18.8 | -18.5 | -17.9 | -18.3 | -18.1 | -15.5 | -12.7 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -18.9 | -18.2 | -19.4 | -17.1 | -14.6 | -13.4 | -12.2 | -11.7 | -11.1 | -8.1 | -5.1 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.8 | -1.5 | -2.1 | -2.7 | -3.3 | -3.8 | -4.4 | -4.7 | -5.0 | -5.1 | | | | Afforestation/ reforestation | Soil | -0.6 | -0.9 | -1.2 | -1.4 | -1.7 | -2.0 | -2.2 | -2.3 | -2.5 | -2.5 | -2.6 | | Forest Land converted to other land | | Deforestation | Biomass | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | | use categories | | Deforestation | Soil | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | | Total Cropland | 5B | Cropland management | Soil | 1.5 | 1.4 | 1.2 | 1.0 | 0.7 | 0.8 | 0.9 | 0.8 | 0.7 | 0.7 | 0.7 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 1.1 | 0.8 | 0.5 | 0.0 | -0.6 | -0.7 | -0.8 | -0.8 | -0.9 | -0.9 | -0.9 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.5 | 0.6 | 0.7 | 1.0 | 1.3 | 1.5 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | Total Grassland | 5C | Grassland management | Soil | -0.2 | -1.3 | -2.4 | -3.4 | -4.4 | -5.3 | -6.2 | -7.1 | -8.0 | -8.8 | -9.6 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.2 | -1.3 | -2.4 | -3.4 | -4.4 | -5.3 | -6.2 | -7.1 | -8.0 | -8.8 | -9.6 | | Total Wetlands | 5D | Wetlands | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Settlements | 5E | Settlements | | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -0.5 | -1.0 | -1.2 | -1.3 | -1.4 | -1.5 | -1.5 | -1.5 | -2.4 | -3.3 | | LULUCE | 5 | LULUCE | | -17 4 | -196 | -23 4 | -23 4 | -23 1 | -23 R | -24 2 | -25 5 | -26.2 | -25 4 | -24 4 | Source: G4M, GLOBIOM | Sweden | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -43.1 | -8.5 | -31.3 | -30.3 | -33.2 | -31.7 | -37.3 | -35.5 | -33.2 | -30.1 | -28.6 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -47.7 | -12.0 | -34.3 | -32.0 | -31.8 | -28.6 | -33.4 | -31.2 | -28.7
 -25.6 | -24.1 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.7 | -1.2 | -1.8 | -2.4 | -2.9 | -3.3 | -3.5 | -3.6 | -3.6 | -3.6 | | | | Afforestation/ reforestation | Soil | -0.6 | -0.9 | -1.0 | -1.1 | -1.1 | -1.2 | -1.2 | -1.2 | -1.2 | -1.2 | -1.2 | | Forest Land converted to other land | | Deforestation | Biomass | 4.2 | 3.1 | 2.5 | 1.5 | 0.8 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | | use categories | | Deforestation | Soil | 1.1 | 2.0 | 2.8 | 3.2 | 1.4 | 0.7 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | | Total Cropland | 5B | Cropland management | Soil | 1.9 | 1.2 | 0.5 | 0.4 | 0.2 | 0.1 | -0.1 | -0.2 | -0.3 | -0.4 | -0.5 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 1.8 | 1.1 | 0.4 | 0.1 | -0.1 | -0.3 | -0.4 | -0.5 | -0.5 | -0.5 | -0.6 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 0.2 | 0.2 | 0.1 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.1 | | Total Grassland | 5C | Grassland management | Soil | -0.6 | -0.8 | -1.0 | -1.2 | -1.4 | -1.6 | -1.8 | -1.9 | -2.1 | -2.2 | -2.2 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | -0.5 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.1 | -0.3 | -0.5 | -0.7 | -0.9 | -1.1 | -1.3 | -1.4 | -1.6 | -1.7 | -1.7 | | Total Wetlands | 5D | Wetlands | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Total Settlements | 5E | Settlements | | 2.4 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | -2.2 | -4.3 | -4.0 | -3.8 | -5.2 | -6.6 | -8.6 | -10.6 | -14.0 | -17.4 | | LULUCE | 5 | LULUCE | | -39.3 | -7.3 | -33.1 | -32.2 | -35.2 | -35.4 | -42.8 | -43.3 | -43.3 | -43.7 | -45.7 | Source: G4M, GLOBIOM | United Kingdom | LULUCF | emissions Reference | scenario |) | | | | | | | | | | | |-------------------------------------|--------|------------------------------|----------|-------|-------|------|------|------|------|------|------|------|------|------| | LULUCF CO2 emissions | UNFCCC | Source | Pool | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | | in Mt CO₂eq | CRF | | | | | | | | | | | | | | | Total Forest Land | 5A | | | -10.1 | -9.1 | -7.7 | -7.3 | -6.7 | -5.3 | -4.7 | -4.0 | -3.9 | -4.0 | -4.0 | | Forest Land remaining Forest Land | 5A.1 | Forest management | Biomass | -11.3 | -10.5 | -8.9 | -7.8 | -6.6 | -4.8 | -3.7 | -2.6 | -2.1 | -1.9 | -1.7 | | Land converted to Forest Land | 5A.2 | Afforestation/ reforestation | Biomass | 0.0 | -0.2 | -0.4 | -0.6 | -0.8 | -1.0 | -1.3 | -1.5 | -1.7 | -1.9 | -2.1 | | | | Afforestation/ reforestation | Soil | -0.1 | -0.2 | -0.2 | -0.3 | -0.4 | -0.4 | -0.5 | -0.5 | -0.6 | -0.6 | -0.7 | | Forest Land converted to other land | | Deforestation | Biomass | 0.6 | 0.5 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | | use categories | | Deforestation | Soil | 0.7 | 1.3 | 1.5 | 1.1 | 0.8 | 0.6 | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 | | Total Cropland | 5B | Cropland management | Soil | 6.0 | 4.7 | 3.3 | 2.7 | 2.1 | 2.0 | 1.8 | 1.9 | 2.1 | 2.7 | 3.3 | | Cropland remaining Cropland | 5B.1 | Cropland management | Soil | 4.9 | 3.4 | 1.9 | 1.0 | 0.1 | -0.3 | -0.7 | -0.9 | -1.0 | -0.7 | -0.4 | | Land converted to Cropland | 5B.2 | Cropland management | Soil | 1.1 | 1.3 | 1.4 | 1.8 | 2.1 | 2.3 | 2.5 | 2.8 | 3.1 | 3.4 | 3.7 | | Total Grassland | 5C | Grassland management | Soil | -3.7 | -3.8 | -3.9 | -4.0 | -4.0 | -4.1 | -4.2 | -4.3 | -4.4 | -4.5 | -4.5 | | Grassland remaining Grassland | 5C.1 | Grassland management | Soil | -3.4 | -3.4 | -3.3 | -3.3 | -3.2 | -3.2 | -3.1 | -3.1 | -3.1 | -3.1 | -3.0 | | Land converted to Grassland | 5C.2 | Grassland management | Soil | -0.3 | -0.4 | -0.5 | -0.7 | -0.8 | -0.9 | -1.1 | -1.2 | -1.3 | -1.4 | -1.5 | | Total Wetlands | 5D | Wetlands | | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Total Settlements | 5E | Settlements | | 6.5 | 6.3 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | | Total Other land | 5F | Other land | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Harvested Wood Products | 5G | Harvested Wood Produc | ts | 0.0 | 0.0 | 0.0 | -0.8 | -1.5 | -2.4 | -3.3 | -3.5 | -3.8 | -4.5 | -5.3 | | LULUCF | 5 | LULUCF | | -0.7 | -1.4 | -1.8 | -2.9 | -3.7 | -3.4 | -4.0 | -3.4 | -3.5 | -3.8 | -4.1 | ### **HOW TO OBTAIN EU PUBLICATIONS** #### Free publications: - via EU Bookshop (http://bookshop.europa.eu); - at the European Union's representations or delegations. You can obtain their contact details on the Internet (http://ec.europa.eu) or by sending a fax to +352 2929-42758. #### **Priced publications:** • via EU Bookshop (http://bookshop.europa.eu). Priced subscriptions (e.g. annual series of the Official Journal of the European Union and reports of cases before the Court of Justice of the European Union): • via one of the sales agents of the Publications Office of the European Union (http://publications.europa.eu/others/agents/index en.htm). European Commission Luxembourg: Publications Office of the European Union 2013 —173 pp. — 21 x 29,7 cm ISBN 978-92-79-33728-4 doi: 10.2833/17897 Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*)Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.